[go: up one dir, main page]

JPH04214880A - Organic monomolecular film accumulation method and chemical adsorbent used therein - Google Patents

Organic monomolecular film accumulation method and chemical adsorbent used therein

Info

Publication number
JPH04214880A
JPH04214880A JP3002071A JP207191A JPH04214880A JP H04214880 A JPH04214880 A JP H04214880A JP 3002071 A JP3002071 A JP 3002071A JP 207191 A JP207191 A JP 207191A JP H04214880 A JPH04214880 A JP H04214880A
Authority
JP
Japan
Prior art keywords
group
monomolecular film
forming
organic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3002071A
Other languages
Japanese (ja)
Other versions
JP2684849B2 (en
Inventor
Norihisa Mino
規央 美濃
Yoshikazu Yamagata
芳和 山縣
Kazufumi Ogawa
一文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3002071A priority Critical patent/JP2684849B2/en
Publication of JPH04214880A publication Critical patent/JPH04214880A/en
Application granted granted Critical
Publication of JP2684849B2 publication Critical patent/JP2684849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To offer the accumulating method of a chemisorption monomolecular film regardless of the atmosphere and a chemisorption agent without causing a side reaction. CONSTITUTION:An org. molecule having a covalent bond forming group or a hydroxylating group is used. A monomolecular film is formed with the covalent bond forming group, substrate and chemical reaction through the covalent bond. The hydroxylating group is then substituted for a hydroxyl group by the oxidation with hydrogen peroxide or alkali treatment. The chemisorption agent is then subjected to a reaction, and a monomolecular film is easily and safely accumulated. No defect is caused even in the molecule by irradiation with a high-energy beam, and a safe chemisorption agent without the explosive reactivity like diborane is offered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、有機単分子膜に関する
もので、詳しくは、有機単分子膜上にさらに有機単分子
膜を累積する手法およびそのための化学吸着剤に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic monomolecular film, and more particularly to a method of accumulating an organic monomolecular film on an organic monomolecular film and a chemical adsorbent therefor.

【0002】0002

【従来の技術】従来の有機単分子膜形成方法としてラン
グミュア・ブロジェット法及び化学吸着法がある。
2. Description of the Related Art Conventional methods for forming organic monomolecular films include the Langmuir-Blodgett method and the chemisorption method.

【0003】ラングミュア・ブロジェット法は、末端が
親水性基である直鎖状炭化水素分子を、気水界面上に展
開し、気水界面に展開された分子の占有面積を最小にし
た上で任意の基板上に移す方法である。直鎖状炭化水素
分子の一端が親水性であることから、気水界面上で上記
分子は親水基を水中に向けた状態になる。分子の占有面
積を最小にするため、一般にバリアと呼ばれる治具で気
水界面の一端を押し、上記分子の展開された界面の面積
を減少させ、上記分子の密度をあげる。この操作により
上記分子は親水基を水中に向け、直鎖状炭化水素部を水
面に対して直立させた単分子膜が形成される。この状態
の膜を基板に移し取った膜が、ラングミュア・ブロジェ
ット膜といわれる。また、同様の操作を繰り返す事によ
って、単分子膜の累積が可能となる。
[0003] In the Langmuir-Blodgett method, a linear hydrocarbon molecule with a hydrophilic group at the end is developed on the air-water interface, and the area occupied by the developed molecule at the air-water interface is minimized. This is a method of transferring onto an arbitrary substrate. Since one end of the linear hydrocarbon molecule is hydrophilic, the hydrophilic group of the molecule faces the water at the air-water interface. In order to minimize the area occupied by the molecules, one end of the air-water interface is generally pushed with a jig called a barrier, reducing the area of the interface where the molecules are expanded and increasing the density of the molecules. By this operation, a monomolecular film is formed in which the hydrophilic groups of the molecules are directed toward the water, and the linear hydrocarbon portions are erected against the water surface. A film obtained by transferring a film in this state to a substrate is called a Langmuir-Blodgett film. Further, by repeating the same operation, it becomes possible to accumulate a monomolecular film.

【0004】一方化学吸着法は、基板表面に露出した例
えば親水性のような化学結合性基と、炭化水素分子中の
活性基との反応を利用し、化学結合を介した単分子膜を
形成する方法であり、このようにして得た単分子膜は特
に化学吸着単分子膜と呼ばれる。
On the other hand, the chemisorption method utilizes the reaction between chemical bonding groups, such as hydrophilic ones, exposed on the substrate surface and active groups in hydrocarbon molecules to form a monomolecular film through chemical bonds. The monomolecular film obtained in this way is particularly called a chemisorption monomolecular film.

【0005】[0005]

【発明が解決しようとする課題】従来例のラングミュア
・ブロジェット法で形成された単分子膜では、基板との
結合がファンデルワールズ力、ないし、イオン結合であ
り、また、累積膜形成での膜間の結合も同様にファンデ
ルワールズ力、ないし、イオン結合である。この結合で
は基板・膜間、また、膜間同士の結合エネルギ−が極め
て弱いため、例えば膜の加工処理に際して単分子膜が剥
離や溶解などを引き起こし膜自体が破壊されるという重
大な欠点があった。
[Problems to be Solved by the Invention] In the monomolecular film formed by the conventional Langmuir-Blodgett method, the bond with the substrate is van der Waals force or ionic bond, and there is a problem in the cumulative film formation. Bonds between membranes are also van der Waals forces or ionic bonds. In this type of bonding, the bonding energy between the substrate and the film, as well as between the films, is extremely weak, which has the serious drawback that, for example, during processing of the film, the monomolecular film may peel or dissolve, resulting in destruction of the film itself. Ta.

【0006】その弱い結合力を解決する新しい単分子膜
の形成法として化学吸着法が考案された。この方法では
、単分子膜を構成する炭化水素分子と基板とが化学結合
を介しているため、膜形成後の加工処理でも十分耐え得
る結合力を保持している。
[0006] A chemical adsorption method was devised as a new method for forming a monomolecular film to solve this weak bonding force. In this method, since the hydrocarbon molecules constituting the monomolecular film and the substrate are chemically bonded, the monomolecular film maintains a bonding force sufficient to withstand processing after film formation.

【0007】化学吸着法を利用した単分子膜の累積方法
のその1つとして、電子線照射により単分子膜表面を化
学結合性基に変化させ、単分子膜表面を化学吸着できる
状態にする方法が報告されている。しかしこの電子線照
射による方法では、照射エネルギーが膜表面だけでなく
膜内にまでも及び、膜表面及び内部で例えば重合、架橋
又は分解等の副次的な反応が生じる欠点があった。
[0007] One of the methods of accumulating a monomolecular film using chemisorption is a method in which the surface of the monomolecular film is changed into a chemically bonding group by irradiation with an electron beam, thereby making the surface of the monomolecular film capable of chemical adsorption. has been reported. However, this method using electron beam irradiation has the disadvantage that the irradiation energy is applied not only to the membrane surface but also to the inside of the membrane, and secondary reactions such as polymerization, crosslinking, or decomposition occur on the membrane surface and inside the membrane.

【0008】化学吸着法で形成された単分子膜の累積膜
形成の他の手法として、単分子膜を構成している炭化水
素分子の末端がビニル基等の不飽和結合である場合には
、ジボランによる末端不飽和結合基の開裂反応に伴う末
端基の水酸基化を利用して、累積膜を形成するものがあ
る。しかしこの方法で用いるジボランは、湿った空気と
触れると低温であっても爆発的に反応するため、非常に
取り扱いにくい薬品である。したがって、その操作法は
工業化において難題であった。
[0008] As another method for forming a cumulative monomolecular film formed by chemisorption, when the terminals of the hydrocarbon molecules constituting the monomolecular film are unsaturated bonds such as vinyl groups, There is a method that forms a cumulative film by utilizing the hydroxylization of the terminal group due to the cleavage reaction of the terminal unsaturated bond group by diborane. However, the diborane used in this method reacts explosively when it comes into contact with moist air, even at low temperatures, making it an extremely difficult chemical to handle. Therefore, its method of operation has been a challenge in industrialization.

【0009】また、これらの化学吸着法による累積手法
を改善するための新たな化学吸着剤もなかった。
[0009] Furthermore, there have been no new chemical adsorbents to improve the cumulative techniques of these chemical adsorption methods.

【0010】本発明は、係る従来の課題に対してなされ
たもので、膜間に非常に強固な結合を有した有機単分子
累積膜を提供し、副次的な反応も発生することがなく、
また雰囲気に対する注意も特に必要がない単分子累積方
法、及びこれに用いる化学吸着剤を提供することを目的
とする。
[0010] The present invention has been made to solve the conventional problem, and provides an organic monomolecular cumulative film having very strong bonds between the films, without causing any side reactions. ,
Another object of the present invention is to provide a single molecule accumulation method that does not require special attention to the atmosphere, and a chemical adsorbent used therein.

【0011】[0011]

【課題を解決するための手段】本発明は、単分子形成性
の炭化水素分子で基板上に単分子膜を形成する単分子膜
形成工程と、この単分子膜に過酸化水素酸化を施し、炭
化水素分子末端を水酸基に置換する水酸基化工程と、単
分子膜形成性の炭化水素分子で単分子膜を累積する単分
子膜累積工程とを含む有機単分子膜の累積方法で、従来
の課題を解決したものである。
[Means for Solving the Problems] The present invention includes a monomolecular film forming step of forming a monomolecular film on a substrate using monomolecular-forming hydrocarbon molecules, and oxidizing the monomolecular film with hydrogen peroxide. This is an organic monolayer accumulation method that includes a hydroxylization step in which the terminal end of a hydrocarbon molecule is replaced with a hydroxyl group, and a monolayer accumulation step in which a monolayer is accumulated with monolayer-forming hydrocarbon molecules, which solves the conventional problems. This is the solution.

【0012】0012

【作用】本発明の有機単分子膜を構成する化合物は、少
なくとも基板直上の単分子膜には一端に共有結合形成性
基を有し他端に水酸基化形成基とを有する。この共有結
合形成性基は基板と共有結合を介して単分子膜を形成す
る所謂化学吸着性基であり、この共有結合形成性基で基
板・膜間に強固な共有結合を介して吸着しているため、
膜加工性に優れた単分子膜を形成できる。また、本発明
の化合物の他端の水酸基化形成基は過酸化水素酸化又は
アルカリ処理で容易に水酸基化され、この末端が水酸基
化された単分子上に共有結合形成性基を有する化合物を
接触させると、膜・膜間に共有結合を介して単分子膜が
累積され、強固な単分子累積膜が形成できる。
[Operation] The compound constituting the organic monomolecular film of the present invention has a covalent bond-forming group at one end and a hydroxyl group-forming group at the other end, at least in the monomolecular film immediately above the substrate. This covalent bond-forming group is a so-called chemisorbent group that forms a monomolecular film through covalent bonds with the substrate, and this covalent bond-forming group adsorbs between the substrate and the film through strong covalent bonds. Because there are
A monomolecular film with excellent film processability can be formed. In addition, the hydroxyl-forming group at the other end of the compound of the present invention is easily hydroxylized by hydrogen peroxide oxidation or alkali treatment, and this end is contacted with a compound having a covalent bond-forming group on the hydroxyl-formed monomolecule. By doing so, a monomolecular film is accumulated through covalent bonds between the films, and a strong monomolecular cumulative film can be formed.

【0013】[0013]

【実施例】本発明に供される基板としては、化学吸着剤
が基板と共有結合を形成し得る基板で有れば如何なる基
板であればよく、例えば金属、シリコン、ガラス、プラ
スティック等が挙げられる。但し化学吸着剤が共有結合
を形成するためには、基板表面に親水性基が露出してい
る必要があり、この様な親水性基としては水酸基,アミ
ノ基,カルボキシル基又はアルデヒド基等の活性水素を
有する基が挙げられる。その中でも水酸基,アミノ基又
はカルボキシル基が通常の処理を行うことによって得ら
れ易く、特に水酸基が活性が高く好ましい。また、例え
ばプラスティック基板のように表面に親水性基の露出割
合が低い場合には、予め酸素又は窒素雰囲気中で電子線
照射等の手法で親水性基化して用いられる。
[Example] The substrate used in the present invention may be any substrate as long as the chemical adsorbent can form a covalent bond with the substrate, such as metal, silicon, glass, plastic, etc. . However, in order for the chemical adsorbent to form a covalent bond, a hydrophilic group must be exposed on the substrate surface. Examples include groups having hydrogen. Among them, hydroxyl groups, amino groups, and carboxyl groups are easily obtained by ordinary treatments, and hydroxyl groups are particularly preferred because of their high activity. Furthermore, in the case of a plastic substrate in which the proportion of hydrophilic groups exposed on the surface is low, the substrate is made hydrophilic in advance by a method such as electron beam irradiation in an oxygen or nitrogen atmosphere before use.

【0014】本発明に供される少なくとも基板直上の単
分子膜を構成する分子は、共有結合性基と水酸基化形成
基とを有する。この共有結合形成性基としては、例えば
クロロシリル基や低級アルコキシシリル基等の反応性シ
リル基が挙げられる。この反応性シリル基の内クロロシ
リル基が常温でも反応し、容易に単分子膜を形成できる
ため好ましい。なお、クロロシリル基はトリクロロシリ
ル基、ジクロロシリル基又はモノクロロシリル基の何れ
でも適応できるが、トリクロロシリル基以外の場合のS
i原子とCl原子との結合に関与しないSiの結合子は
、アルキル基、低級アルコキシ基または水素原子と結合
する。
[0014] The molecules constituting at least the monomolecular film immediately above the substrate used in the present invention have a covalent bonding group and a hydroxyl forming group. Examples of this covalent bond-forming group include reactive silyl groups such as chlorosilyl group and lower alkoxysilyl group. Among these reactive silyl groups, a chlorosilyl group is preferable because it reacts even at room temperature and can easily form a monomolecular film. Note that the chlorosilyl group can be any trichlorosilyl group, dichlorosilyl group, or monochlorosilyl group, but S in cases other than trichlorosilyl group
The Si bond that does not participate in the bond between the i atom and the Cl atom bonds with an alkyl group, a lower alkoxy group, or a hydrogen atom.

【0015】また、本発明に供される水酸基化形成基と
しては、有機珪素基が挙げられる。この基に過酸化水素
を反応させることにより、C−Si結合で酸化が行なわ
れC−Si結合が切断されてC−OH結合が形成される
。このことによりC−OH結合化された単分子膜の上に
累積する2層目の化学吸着単分子膜と1層目の化学吸着
単分子膜とが共有結合(−C−O−Si−)を介し結合
され、非常に強固な膜形成が可能となる。あるいは、例
えばジメチルシリル基(−Si(CH3)2H)のよう
にSi−H結合を有する場合には、アルカリ処理により
Si−H結合が酸化されSi−H結合が切断されてSi
−OH結合が形成される。このことによりSi−OH結
合化された単分子膜の上に累積する2層目の化学吸着単
分子膜と1層目の化学吸着単分子膜とが共有結合(−S
i−O−Si−)を介して結合され、非常に強固な膜形
成が可能となる。
[0015] Furthermore, examples of the hydroxyl group-forming group used in the present invention include organosilicon groups. By reacting this group with hydrogen peroxide, the C--Si bond is oxidized, the C--Si bond is cut, and a C--OH bond is formed. As a result, the second layer of chemisorbed monolayer and the first layer of chemisorbed monolayer accumulated on the C-OH bonded monolayer form a covalent bond (-C-O-Si-). This makes it possible to form a very strong film. Alternatively, in the case of a dimethylsilyl group (-Si(CH3)2H) having an Si-H bond, the alkali treatment oxidizes the Si-H bond and breaks the Si-H bond, resulting in Si
-OH bonds are formed. As a result, the second chemisorbed monomolecular film and the first chemisorbed monomolecular film accumulated on the Si-OH bonded monomolecular film are covalently bonded (-S
i-O-Si-), making it possible to form a very strong film.

【0016】即ち本発明に供される化学吸着剤としては
、一般式でSiX3−nYn基(n=1,2であり、X
およびYはハロゲン、アミノ基、アルキルアミノ基、ア
ルキル基、アルコキシ基、アルケニル基、アルケニルオ
キシ基、アルカジエニル基、アルカジエニルオキシ基、
アルキィニル基、アルキィニルオキシ基、アルカジィニ
ル基、アルカジィニルオキシ基の何れかを示し、XとY
とは同一の基ではない)と書き表される基、例えば、S
i(CH3)2F基、Si(CH3)F2基、Si(C
H3)2Cl基、Si(CH3)Cl2基、Si(CH
3)2(NR2)基、Si(CH3)2(OR)基、S
i(CH3)(OR)2基またはSi(CH3)2Ph
基(但し式中のRは何れも低級アルキル基、Phはフェ
ニル環)等が挙げられる。
That is, the chemical adsorbent used in the present invention has a general formula of SiX3-nYn group (n=1,2,
and Y is a halogen, an amino group, an alkylamino group, an alkyl group, an alkoxy group, an alkenyl group, an alkenyloxy group, an alkadienyl group, an alkadienyloxy group,
Indicates any of an alkynyl group, an alkynyloxy group, an alkadinyl group, or an alkadinyloxy group, and X and Y
are not the same group), for example, S
i(CH3)2F group, Si(CH3)F2 group, Si(C
H3)2Cl group, Si(CH3)Cl2 group, Si(CH
3) 2(NR2) group, Si(CH3)2(OR) group, S
i(CH3)(OR)2 groups or Si(CH3)2Ph
group (wherein R in the formula is a lower alkyl group, Ph is a phenyl ring), and the like.

【0017】なお、本発明の単分子膜を構成する分子と
しては、吸着密度を考慮にいれると共有結合形成基と水
酸基化形成基との間の分子は直鎖状分子が好ましい。
Regarding the molecules constituting the monomolecular film of the present invention, in consideration of adsorption density, the molecules between the covalent bond-forming group and the hydroxyl group-forming group are preferably linear molecules.

【0018】特に、直鎖状の炭素鎖の間に任意の機能を
発現する官能基(Z)含ませておく、すなわち一般式S
iX3−nYn−(CH2)p−(Z)r−(CH2)
q−SiClnX3−n(但し式中nは1〜2の整数、
mは1〜3の整数、rは0又は1、p及びqは負を含ま
ない整数、Xは低級アルキル基、Yは水素,ハロゲン,
低級アルコキシ基,低級アルキルアミノ基,アリール基
,ピリジル基、Zはアルケニィレン,アルキィニレン,
フェニレン,アミノフェニレン,アルキルフェニレン,
フェニレンビニレン,フェニレンエチニレン,ピリジェ
ニレン,ピリジルビニレン,ピリジルエチニル,チェニ
レン,ピロリニレン,ピリジノピリジェニレン,アセン
(即ち縮合多環)の骨格、Wは水素,ハロゲン,アルキ
ル基,アルケニル基,アルカジエニル基,アルキィニル
基,アルコキシ基,H−(CH2)p−(Z)r−(C
H2)q−基,含珪素アルキル基,含珪素アルケニル基
,含珪素アルカジエニル基,含珪素アルキィニル基,S
iX3−nYn−(CH2)p−(Z)r−(CH2)
q−基)で表わされる化学吸着単分子膜累積用吸着剤を
用いれば、機能性薄膜を作成する上できわめて有効であ
る。
In particular, a functional group (Z) expressing an arbitrary function is included between the linear carbon chains, that is, the general formula S
iX3-nYn-(CH2)p-(Z)r-(CH2)
q-SiClnX3-n (where n is an integer of 1 to 2,
m is an integer of 1 to 3, r is 0 or 1, p and q are non-negative integers, X is a lower alkyl group, Y is hydrogen, halogen,
Lower alkoxy group, lower alkylamino group, aryl group, pyridyl group, Z is alkenylene, alkynylene,
Phenylene, aminophenylene, alkylphenylene,
Phenylenevinylene, phenyleneethynylene, pyridynylene, pyridylvinylene, pyridylethynyl, chenylene, pyrrolinylene, pyridinopyridynylene, acene (i.e. fused polycyclic) skeleton, W is hydrogen, halogen, alkyl group, alkenyl group, alkadienyl group, Alkynyl group, alkoxy group, H-(CH2)p-(Z)r-(C
H2) q- group, silicon-containing alkyl group, silicon-containing alkenyl group, silicon-containing alkadienyl group, silicon-containing alkynyl group, S
iX3-nYn-(CH2)p-(Z)r-(CH2)
The use of adsorbents for chemically adsorbed monomolecular film accumulation represented by q-groups is extremely effective in producing functional thin films.

【0019】具体的にはSiX3−nYn−基は、例え
ばSi(CH3)2F基、Si(CH3)F2基、Si
(CH3)2Cl基、Si(CH3)Cl2基、Si(
CH3)2(N(CH3)2)基、Si(CH3)2(
OCH3)基、Si(CH3)(OCH3)2基、Si
(CH3)2Ph(但しPhはフェニル環)基、Si(
CH3)2H基、Si(CH3)H2基等である。また
、Zは例えば以下に示す(化1)の官能基等が挙げられ
、この中でも直鎖状の不飽和結合を有する場合には、単
分子膜累積後にこの不飽和結合を重合するとより強固な
単分子累積膜が形成でき好ましい。
Specifically, SiX3-nYn- group includes, for example, Si(CH3)2F group, Si(CH3)F2 group, Si
(CH3)2Cl group, Si(CH3)Cl2 group, Si(
CH3)2(N(CH3)2) group, Si(CH3)2(
OCH3) group, Si(CH3)(OCH3)2 group, Si
(CH3)2Ph (where Ph is a phenyl ring) group, Si (
CH3)2H group, Si(CH3)H2 group, etc. In addition, Z can be, for example, the functional group shown below (Chemical formula 1), etc. Among these, when it has a linear unsaturated bond, if this unsaturated bond is polymerized after monomolecular film accumulation, it becomes stronger. This is preferable because a monomolecular cumulative film can be formed.

【0020】[0020]

【化1】[Chemical formula 1]

【0021】さらに、−SiClmW3−m基としては
、例えば−SiCl3,−SiCl2CH3,−SiC
l2C2H5,−SiCl(CH3)2,−SiCl(
C2H5)2,−SiCl(CH=C(CH3)2)2
,−SiCl2(OCH3)等の他、−SiCl((C
H2)q−(Z)r−(CH2)pH)2,−SiCl
((CH2)q−(Z)r−(CH2)pSiX3−n
Yn)2等が挙げられる。
Furthermore, as the -SiClmW3-m group, for example, -SiCl3, -SiCl2CH3, -SiC
l2C2H5, -SiCl(CH3)2, -SiCl(
C2H5)2, -SiCl(CH=C(CH3)2)2
, -SiCl2(OCH3) etc., -SiCl((C
H2)q-(Z)r-(CH2)pH)2,-SiCl
((CH2)q-(Z)r-(CH2)pSiX3-n
Yn)2 and the like.

【0022】本発明の有機単分子累積膜の最上層には上
記化学吸着剤でも良いが、最上層の単分子膜の末端は水
酸基化基である必要は必ずしもない。
The chemical adsorbent mentioned above may be used as the uppermost layer of the organic monomolecular cumulative film of the present invention, but the terminal of the uppermost monomolecular film does not necessarily have to be a hydroxyl group.

【0023】本発明に供されるアルカリ処理のアルカリ
源としては、例えばKOH,NaOH等の無機塩基、水
酸化テトラメチルアンモニウム,水酸化テトラエチルア
ンモニウム,水酸化テトラブチルアンモニウム等の第4
級アンモニウム、ピペリジン等の有機塩基等何れでも適
応できる。
Examples of the alkali source for the alkali treatment used in the present invention include inorganic bases such as KOH and NaOH, quaternary bases such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide.
Any organic base such as grade ammonium or piperidine can be used.

【0024】以下に本発明の有機単分子膜の累積方法と
、そのための化学吸着剤の一実施例を、模式的に図1か
ら図7を用いて段階的に説明する。
The method for accumulating an organic monomolecular film of the present invention and one embodiment of the chemical adsorbent therefor will be schematically explained step by step using FIGS. 1 to 7 below.

【0025】実施例1 図2に示すように、有機単分子膜および累積膜を形成す
るシリコン基板1にはシリコン酸化膜2が形成されてい
る。シリコン酸化膜の厚みは、0.2μmで、基板の大
きさは30×70mmである。シリコン酸化膜表面には
多数の水酸基(OH基)3が露出している。
Example 1 As shown in FIG. 2, a silicon oxide film 2 is formed on a silicon substrate 1 on which an organic monomolecular film and a cumulative film are to be formed. The thickness of the silicon oxide film is 0.2 μm, and the size of the substrate is 30×70 mm. A large number of hydroxyl groups (OH groups) 3 are exposed on the surface of the silicon oxide film.

【0026】上記基板1を、図3に示すように、単分子
膜を形成する化学吸着剤溶液4に浸漬する。
As shown in FIG. 3, the substrate 1 is immersed in a chemical adsorbent solution 4 that forms a monomolecular film.

【0027】本実施例で用いた化学吸着剤は、(1):
H(CH3)2Si(CH2)18SiCl3(2):
F(CH3)2Si(CH2)18SiCl3(3):
F2(CH3)Si(CH2)18SiCl3(4):
Cl(CH3)2Si(CH2)18SiCl3(5)
:Cl2(CH3)Si(CH2)18SiCl3(6
):(CH3)2N(CH3)2Si(CH2)18S
iCl3 (7):H3CO(CH3)2Si(CH2)18Si
Cl3(8):(H3CO)2(CH3)Si(CH2
)18SiCl3 (9):Ph(CH3)2Si(CH2)18SiCl
3の9種類である。即ち、この分子の一方の末端はトリ
クロルシリル基で、他の末端はジメチルシリル又はモノ
メチルシリル基である炭化水素分子であり、また、この
化学吸着剤の直鎖炭化水素部分の炭素数は18である。
The chemical adsorbents used in this example were (1):
H(CH3)2Si(CH2)18SiCl3(2):
F(CH3)2Si(CH2)18SiCl3(3):
F2(CH3)Si(CH2)18SiCl3(4):
Cl(CH3)2Si(CH2)18SiCl3(5)
:Cl2(CH3)Si(CH2)18SiCl3(6
):(CH3)2N(CH3)2Si(CH2)18S
iCl3 (7): H3CO(CH3)2Si(CH2)18Si
Cl3(8): (H3CO)2(CH3)Si(CH2
)18SiCl3 (9): Ph(CH3)2Si(CH2)18SiCl
There are 9 types of 3. That is, this molecule is a hydrocarbon molecule with a trichlorosilyl group at one end and a dimethylsilyl or monomethylsilyl group at the other end, and the number of carbon atoms in the straight chain hydrocarbon portion of this chemical adsorbent is 18. be.

【0028】各化学吸着剤各々を、ノルマルヘキサデカ
ン80重量%、クロロホルム12重量%、及び四塩化炭
素8重量%の混合溶媒に何れも10mMの濃度になるよ
うに溶かし、化学吸着剤溶液4とした。
Each chemical adsorbent was dissolved in a mixed solvent of 80% by weight of normal hexadecane, 12% by weight of chloroform, and 8% by weight of carbon tetrachloride to a concentration of 10mM to obtain chemical adsorbent solution 4. .

【0029】この各々の溶液を別個に25mlとり、上
記基板1を図3に示したように1枚浸漬した。この時、
液温は30℃、上記基板1の浸漬する時間は1時間であ
る。また、浸漬時の雰囲気は乾燥窒素雰囲気で行った。
25 ml of each of these solutions was separately taken and one of the above-mentioned substrates 1 was immersed as shown in FIG. At this time,
The liquid temperature was 30° C., and the substrate 1 was immersed for 1 hour. Further, the atmosphere during dipping was a dry nitrogen atmosphere.

【0030】代表的に(1)の吸着剤の場合について図
4に示すように、化学吸着剤溶液4に基板1を浸漬する
ことにより、基板表面に露出した水酸基3と、化学吸着
剤末端のトリクロルシリル基とが脱塩化水素反応をして
、Si−Oなる共有結合が形成され、基板1上に化学吸
着剤である直鎖状炭化水素分子からなる単分子膜5が形
成される。この単分子膜5の表面には化学吸着剤の直鎖
状炭化水素分子末端にあるジメチルシリル基6が、一様
に配列した状態になっている。
Typically, in the case of adsorbent (1), as shown in FIG. 4, by immersing the substrate 1 in a chemical adsorbent solution 4, the hydroxyl groups 3 exposed on the substrate surface and the end of the chemical adsorbent are removed. The trichlorosilyl group undergoes a dehydrochlorination reaction to form a covalent bond of Si--O, and a monomolecular film 5 made of linear hydrocarbon molecules, which is a chemical adsorbent, is formed on the substrate 1. On the surface of this monomolecular film 5, dimethylsilyl groups 6 at the ends of linear hydrocarbon molecules of the chemical adsorbent are uniformly arranged.

【0031】つぎに、上記化学吸着法で形成された単分
子膜5表面に、図5に示したように過酸化水素酸化を施
す。なお、過酸化水素酸化反応液7は以下に示す(表1
)の処方で、反応促進剤のフッ化カリウムをメタノ−ル
に溶かし、また、炭酸水素カリウムをテトラヒドロフラ
ン(以下THFと称す)に溶かし、さらに、30%過酸
化水素水を加えて作製した。
Next, the surface of the monomolecular film 5 formed by the chemisorption method is subjected to hydrogen peroxide oxidation as shown in FIG. The hydrogen peroxide oxidation reaction solution 7 is shown below (Table 1)
), potassium fluoride as a reaction accelerator was dissolved in methanol, potassium hydrogen carbonate was dissolved in tetrahydrofuran (hereinafter referred to as THF), and 30% hydrogen peroxide solution was added.

【0032】[0032]

【表1】[Table 1]

【0033】また、過酸化水素酸化は以下に示す方法に
よって行った。室温中で十分に撹拌溶解後、2つの溶液
を混合して、過酸化水素酸化反応液7を作成した。この
反応液7に上記単分子膜5が形成された基板1を、室温
中で10時間浸漬した。単分子膜が形成された基板1を
反応液7に浸漬することにより、図6に示したように、
単分子膜を形成する直鎖状炭化水素分子末端のジメチル
シリル基のC−Si結合は切断され、直鎖状炭化水素分
子末端に水酸基(OH基)8が形成された。
Further, hydrogen peroxide oxidation was carried out by the method shown below. After thorough stirring and dissolution at room temperature, the two solutions were mixed to create hydrogen peroxide oxidation reaction solution 7. The substrate 1 on which the monomolecular film 5 was formed was immersed in this reaction solution 7 for 10 hours at room temperature. By immersing the substrate 1 on which the monomolecular film is formed in the reaction solution 7, as shown in FIG.
The C-Si bond of the dimethylsilyl group at the terminal of the linear hydrocarbon molecule forming the monomolecular film was cut, and a hydroxyl group (OH group) 8 was formed at the terminal of the linear hydrocarbon molecule.

【0034】つぎに、図7に示すように、上記単分子膜
5を構成している直鎖状炭化水素分子末端が、OH基8
化処理された基板1を再度、化学吸着剤溶液9に浸漬し
て累積膜を形成した。化学吸着剤溶液9として、先ほど
と同じく直鎖状炭化水素分子末端がトリクロルシリル基
で、他の末端がジメチルシリル基又はモノメチルシリル
基の化学吸着剤(1)〜(9)を各々用いた。なお、希
釈のための有機溶剤は先ほどと同じ混合溶剤を用い、そ
の濃度、液温、浸漬時間、および、雰囲気も先ほどと同
じである。浸漬することによって、図1に示すように、
基板1上に形成された単分子膜5上に、新たに、酸素原
子を介して直鎖状炭化水素分子からなる累積膜10が形
成された。
Next, as shown in FIG.
The chemically treated substrate 1 was again immersed in the chemical adsorbent solution 9 to form a cumulative film. As the chemical adsorbent solution 9, chemical adsorbents (1) to (9) each having a linear hydrocarbon molecule with a trichlorosilyl group at one end and a dimethylsilyl group or a monomethylsilyl group at the other end were used, as in the previous example. The organic solvent for dilution is the same mixed solvent as before, and its concentration, solution temperature, immersion time, and atmosphere are also the same as before. By soaking, as shown in Figure 1,
A cumulative film 10 made of linear hydrocarbon molecules was newly formed on the monomolecular film 5 formed on the substrate 1 via oxygen atoms.

【0035】図8に、本実施例の代表として(1)の化
学吸着剤を用いた場合の累積膜形成前後の赤外吸収スペ
クトルを示す。なお、図8中aで示す赤外吸収スペクト
ルは累積前の単分子膜の状態であり、図8中bで示すス
ペクトルは累積後の状態のものである。スペクトル中2
925cm−1は、CH2の逆対称伸縮振動に起因する
吸収であり、また、2850cm−1は、CH2の対称
伸縮振動に起因する吸収である。CH2の個数は累積前
後で2倍になっていることから、累積処理にともなう赤
外吸収スペクトルのCH2の逆対称伸縮振動に起因する
吸収、および、対称伸縮振動に起因する吸収強度も2倍
になると考えられるとうり、図8中のa、bのCH2に
起因する吸収を比較すると、逆対称、対称伸縮振動とも
ほぼ2倍になっており、確かに累積膜が形成されている
ことが分かる。
FIG. 8 shows infrared absorption spectra before and after cumulative film formation when the chemical adsorbent (1) is used as a representative example of this example. The infrared absorption spectrum indicated by a in FIG. 8 is the state of the monomolecular film before accumulation, and the spectrum indicated by b in FIG. 8 is the state after accumulation. middle of the spectrum 2
925 cm-1 is an absorption caused by the antisymmetric stretching vibration of CH2, and 2850 cm-1 is an absorption caused by the symmetric stretching vibration of CH2. Since the number of CH2 is doubled before and after accumulation, the absorption due to the antisymmetric stretching vibration of CH2 in the infrared absorption spectrum and the absorption intensity due to the symmetric stretching vibration in the infrared absorption spectrum due to the accumulation process are also doubled. As expected, when comparing the absorption caused by CH2 in a and b in Fig. 8, both antisymmetric and symmetric stretching vibrations are almost twice as large, indicating that a cumulative film is indeed formed. .

【0036】以下に本発明の有機単分子膜の累積方法と
、それに用いる化学吸着剤の別の実施例を、上記の(1
)の化学吸着剤の場合について模式的に図9から図12
で順に説明する。
[0036] Hereinafter, another example of the organic monomolecular film accumulation method of the present invention and the chemical adsorbent used therein will be described.
9 to 12 schematically for the case of chemical adsorbent
will be explained in order.

【0037】実施例2 シリコン基板1を実施例1で述べた(1)の化学吸着剤
溶液に浸漬して、ジメチルシリル基6を有する単分子膜
5を得た。つぎに、図9に示したように、上記化学吸着
法で形成された単分子膜5表面を、アルカリ処理反応液
11で処理する。このアルカリ処理反応液11は、1%
水酸化テトラメチルアンモニウム水溶液を用い、処理反
応は室温で10分間程度浸漬した。単分子膜5が形成さ
れた基板1を、反応液11に浸漬することにより、単分
子膜5を形成する直鎖状炭化水素分子末端のジメチルシ
リル基6の≡SiH結合は切断され、図10に示したよ
うに直鎖状炭化水素分子末端に水酸基(OH基)8が形
成された。
Example 2 A silicon substrate 1 was immersed in the chemical adsorbent solution (1) described in Example 1 to obtain a monomolecular film 5 having dimethylsilyl groups 6. Next, as shown in FIG. 9, the surface of the monomolecular film 5 formed by the chemical adsorption method is treated with an alkali treatment reaction liquid 11. This alkali treatment reaction solution 11 contains 1%
A treatment reaction was carried out using a tetramethylammonium hydroxide aqueous solution for about 10 minutes at room temperature. By immersing the substrate 1 on which the monomolecular film 5 is formed in the reaction solution 11, the ≡SiH bond of the dimethylsilyl group 6 at the terminal of the linear hydrocarbon molecule forming the monomolecular film 5 is severed, and as shown in FIG. As shown in Figure 3, a hydroxyl group (OH group) 8 was formed at the end of the linear hydrocarbon molecule.

【0038】づぎに、図11に示すように、上記単分子
膜5を構成している直鎖状炭化水素分子末端がOH基8
化処理された基板1を再度、化学吸着剤溶液9に浸漬し
て累積膜を形成した。なお、化学吸着剤溶液として先ほ
どと同じく直鎖状炭化水素分子末端がトリクロルシリル
基で、他の末端がジメチルシリル基であるものを用いた
。また、希釈のための有機溶剤は先ほどと同じ混合溶剤
を用い、その濃度、液温、浸漬時間、および、雰囲気も
先ほどと同じである。10分程度の浸漬によって、図1
2に示すように、基板1上に形成された単分子膜5上に
、新たに、−Si−O−Si−結合の酸素原子を介して
、直鎖状炭化水素分子からなる累積膜10が形成された
Next, as shown in FIG. 11, the ends of the linear hydrocarbon molecules constituting the monomolecular film 5 have OH groups
The chemically treated substrate 1 was again immersed in the chemical adsorbent solution 9 to form a cumulative film. Note that as the chemical adsorbent solution used was one in which the terminal end of the linear hydrocarbon molecule was a trichlorosilyl group and the other terminal end was a dimethylsilyl group. Furthermore, the same mixed solvent as before was used as the organic solvent for dilution, and the concentration, solution temperature, immersion time, and atmosphere were also the same as before. By soaking for about 10 minutes, Figure 1
2, a cumulative film 10 made of linear hydrocarbon molecules is newly formed on the monomolecular film 5 formed on the substrate 1 via oxygen atoms of -Si-O-Si- bonds. Been formed.

【0039】この様にして得られた単分子累積膜10の
累積膜形成前後の赤外吸収スペクトルを図13に示す。 但し、図13(a)に示した赤外吸収スペクトルは、累
積前の単分子膜5であり、図13(b)に示したスペク
トルは、累積膜10を累積後である。スペクトル中29
25cm−1は、CH2の逆対称伸縮振動に起因する吸
収であり、また、2850cm−1は、CH2の対称伸
縮振動に起因する吸収である。CH2の個数は、累積前
後で2倍になっていることから、累積処理にともなう赤
外吸収スペクトルのCH2の逆対称伸縮振動の起因する
吸収、および、対称伸縮振動に起因する吸収強度も2倍
になると考えられるが、実際図13中の(a)と同図(
b)とのCH2に起因する吸収を比較すると、逆対称お
よび対称伸縮振動ともほぼ2倍になっており、確かに累
積膜が形成されていることが分かる。
FIG. 13 shows the infrared absorption spectra of the monomolecular cumulative film 10 obtained in this way before and after the cumulative film formation. However, the infrared absorption spectrum shown in FIG. 13(a) is for the monolayer film 5 before accumulation, and the spectrum shown in FIG. 13(b) is for the monolayer film 10 after accumulation. 29 in the spectrum
25 cm-1 is absorption due to antisymmetric stretching vibration of CH2, and 2850 cm-1 is absorption due to symmetric stretching vibration of CH2. Since the number of CH2 is doubled before and after accumulation, the absorption caused by antisymmetric stretching vibration of CH2 in the infrared absorption spectrum due to accumulation processing and the absorption intensity caused by symmetric stretching vibration are also doubled. However, in reality, (a) in Figure 13 and (
Comparing the absorption caused by CH2 with b), both the antisymmetric and symmetric stretching vibrations are almost twice as large, indicating that a cumulative film is certainly formed.

【0040】なお、本実施例で用いた基板にはシリコン
酸化膜形成を行ったが、通常のシリコン基板の取扱いで
は、シリコン基板表面には空気酸化により直ちに自然酸
化膜が形成されており、改めてシリコン酸化膜を設ける
必要がない場合もあり得る。また、上記実施例では基板
としてシリコン基板を用いたが、本発明の有機単分子累
積膜はシリコンに限定されるものでないこと勿論である
。さらに、化学吸着剤、化学吸着剤溶液、過酸化水素酸
化反応液、アルカリ処理反応液、並びに各種反応時間反
応温度等の材料および条件等は上記実施例に限定される
ものではなく、有機単分子累積膜の要求される機能によ
って選択される。
Although a silicon oxide film was formed on the substrate used in this example, when a silicon substrate is normally handled, a natural oxide film is immediately formed on the surface of the silicon substrate due to air oxidation. There may be cases where it is not necessary to provide a silicon oxide film. Furthermore, although a silicon substrate was used as the substrate in the above embodiments, it goes without saying that the organic monomolecular cumulative film of the present invention is not limited to silicon. Furthermore, materials and conditions such as chemical adsorbent, chemical adsorbent solution, hydrogen peroxide oxidation reaction liquid, alkali treatment reaction liquid, various reaction times and reaction temperatures are not limited to the above examples, and organic monomolecules It is selected depending on the required function of the cumulative film.

【0041】[0041]

【発明の効果】本発明の有機単分子膜の累積方法および
そのための化学吸着剤は、従来のラングミュア・ブロジ
ュット膜の累積膜では実現し得なかった膜間の結合が共
有結合であるものであり、非常に強固な膜形成が可能と
なった。また、従来の化学吸着法にあった累積法に一つ
である電子線照射による累積に比べ、室温での化学反応
を用いているため単分子膜のダメージは皆無であると考
えられる。また、副次的な反応も起こらず理想的な累積
法であるといえる。また、他の一つの累積法であるジボ
ランを用いる反応に比べ、本発明の累積方法は雰囲気を
十分に管理する必要が全くなく、安全に反応を行うこと
ができ、工業的にも問題がないといえる。
[Effects of the Invention] The method of accumulating an organic monomolecular film and the chemical adsorbent therefor of the present invention are such that the bond between the films is a covalent bond, which could not be achieved in the conventional cumulative film of Langmuir-Blodjut. , it became possible to form an extremely strong film. Furthermore, compared to accumulation by electron beam irradiation, which is one of the accumulation methods used in conventional chemisorption methods, it is thought that there is no damage to the monomolecular film because a chemical reaction at room temperature is used. Further, it can be said that it is an ideal accumulation method without causing any side reactions. In addition, compared to the other accumulation method, which uses diborane, the accumulation method of the present invention does not require sufficient control of the atmosphere, allowing the reaction to be carried out safely, and causing no industrial problems. It can be said.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の有機単分子膜の一実施例の単分子累積
膜の横断面図
[Fig. 1] A cross-sectional view of a monomolecular cumulative film of an embodiment of the organic monomolecular film of the present invention.

【図2】本発明の一実施例の基板の横断面図FIG. 2 is a cross-sectional view of a substrate according to an embodiment of the present invention.

【図3】本
発明の有機単分子膜の一実施例の化学吸着工程を説明す
る横断面図
[Fig. 3] A cross-sectional view illustrating the chemical adsorption process of an example of the organic monomolecular film of the present invention.

【図4】本発明の有機単分子膜の一実施例の化学吸着単
分子膜形成後の横断面図
FIG. 4: Cross-sectional view of an example of the organic monolayer of the present invention after formation of a chemically adsorbed monolayer

【図5】本発明の有機単分子膜の一実施例の過酸化水素
酸化処理工程を説明する横断面図
FIG. 5 is a cross-sectional view illustrating the hydrogen peroxide oxidation treatment step of an example of the organic monomolecular film of the present invention.

【図6】本発明の有機単分子膜の一実施例の過酸化水素
酸化処理後の横断面図
[Fig. 6] Cross-sectional view of an example of the organic monomolecular film of the present invention after hydrogen peroxide oxidation treatment

【図7】本発明の有機単分子膜の一実施例の累積工程を
説明する横断面図
FIG. 7 is a cross-sectional view illustrating the accumulation process of an example of the organic monomolecular film of the present invention.

【図8】本発明の有機単分子膜の一実施例における累積
前後の赤外吸収スペクトル図
[Figure 8] Infrared absorption spectrum diagrams before and after accumulation in an example of the organic monomolecular film of the present invention

【図9】本発明の有機単分子膜の別の実施例のアルカリ
処理工程を説明する横断面図
FIG. 9 is a cross-sectional view illustrating the alkali treatment step of another example of the organic monomolecular film of the present invention.

【図10】本発明の有機単分子膜の別の実施例のアルカ
リ処理後の横断面図
FIG. 10: Cross-sectional view of another example of the organic monomolecular film of the present invention after alkali treatment

【図11】本発明の有機単分子膜の別の実施例の累積工
程を説明する横断面図
FIG. 11 is a cross-sectional view illustrating the accumulation process of another example of the organic monolayer of the present invention.

【図12】本発明の有機単分子膜の別の実施例の単分子
累積膜の横断面図
FIG. 12 is a cross-sectional view of a monomolecular cumulative film of another embodiment of the organic monomolecular film of the present invention.

【図13】本発明の有機単分子膜の別の実施例における
累積前後の赤外吸収スペクトル図
FIG. 13: Infrared absorption spectrum diagrams before and after accumulation in another example of the organic monolayer of the present invention

【符号の説明】[Explanation of symbols]

1  シリコン基板 2  シリコン酸化膜 3  水酸基(OH基) 4  化学吸着剤溶液 5  単分子膜 6  ジメチルシリル基 7  過酸化水素酸化反応液 8  水酸基(OH基) 9  化学吸着剤溶液 10  累積膜 11  アルカリ処理反応液 1 Silicon substrate 2 Silicon oxide film 3 Hydroxyl group (OH group) 4. Chemical adsorbent solution 5 Monolayer 6 Dimethylsilyl group 7 Hydrogen peroxide oxidation reaction solution 8 Hydroxyl group (OH group) 9 Chemical adsorbent solution 10 Cumulative film 11 Alkaline treatment reaction solution

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  単分子形成性の炭化水素分子で基板上
に単分子膜を形成する単分子膜形成工程と、前記単分子
膜に過酸化水素酸化を施し、前記炭化水素分子末端を水
酸基に置換する水酸基化工程と、単分子膜形成性の炭化
水素分子で単分子膜を累積する単分子膜累積工程とを含
むことを特徴とする有機単分子膜の累積方法。
1. A monomolecular film forming step of forming a monomolecular film on a substrate using monomolecular-forming hydrocarbon molecules, and oxidizing the monomolecular film with hydrogen peroxide to convert the ends of the hydrocarbon molecules into hydroxyl groups. 1. A method for accumulating an organic monolayer, comprising a hydroxyl substitution step and a monolayer accumulation step of accumulating a monolayer with monolayer-forming hydrocarbon molecules.
【請求項2】  単分子形成性の炭化水素分子で基板上
に単分子膜を形成する単分子膜形成工程と、前記単分子
膜をアルカリ処理し、前記炭化水素分子末端を水酸基に
置換する水酸基化工程と、単分子膜形成性の炭化水素分
子で単分子膜を累積する単分子膜累積工程とを含むこと
を特徴とする有機単分子膜の累積方法。
2. A monomolecular film forming step of forming a monomolecular film on a substrate with monomolecular-forming hydrocarbon molecules, and a hydroxyl group in which the monomolecular film is treated with an alkali and the ends of the hydrocarbon molecules are replaced with hydroxyl groups. 1. A method for accumulating an organic monomolecular film, the method comprising: a step of forming a monomolecular film, and a monomolecular film accumulation step of accumulating a monomolecular film with monomolecular film-forming hydrocarbon molecules.
【請求項3】  基板表面に水酸基、アミノ基またはカ
ルボキシル基の何れかが露出していることを特徴とする
、請求項1もしくは2何れかに記載の有機単分子膜の累
積方法。
3. The method for accumulating an organic monomolecular film according to claim 1, wherein any one of a hydroxyl group, an amino group, or a carboxyl group is exposed on the surface of the substrate.
【請求項4】  少なくとも単分子形成工程に用いる単
分子形成性の炭化水素分子が、一端に反応性シリル基を
有し、他端に有機珪素基を有するシラン系界面活性剤で
あることを特徴とする、請求項1もしくは2何れかに記
載の有機単分子膜の累積方法。
4. At least the monomolecule-forming hydrocarbon molecule used in the monomolecule-forming step is a silane surfactant having a reactive silyl group at one end and an organosilicon group at the other end. The method for accumulating an organic monomolecular film according to claim 1 or 2.
【請求項5】  有機珪素基が、Si(CH3)2H基
、Si(CH3)2F基、Si(CH3)F2基、Si
(CH3)2Cl基、Si(CH3)Cl2基、Si(
CH3)2NR2基、Si(CH3)OR基、Si(C
H3)(OR)2基(但し式中のRは何れも低級アルキ
ル基を示す)、または、Si(CH3)2Ph基の何れ
かであることを特徴とする、請求項4記載の有機単分子
膜の累積方法。
5. The organosilicon group is a Si(CH3)2H group, a Si(CH3)2F group, a Si(CH3)F2 group, an Si
(CH3)2Cl group, Si(CH3)Cl2 group, Si(
CH3)2NR2 group, Si(CH3)OR group, Si(C
The organic monomolecule according to claim 4, characterized in that it is either a H3)(OR)2 group (wherein each R in the formula represents a lower alkyl group) or a Si(CH3)2Ph group. Membrane accumulation method.
【請求項6】  シラン系界面活性剤が、クロルシラン
結合を有するクロルシラン系界面活性剤であることを特
徴とする、請求項4記載の有機単分子膜の累積方法。
6. The method for accumulating an organic monomolecular film according to claim 4, wherein the silane surfactant is a chlorosilane surfactant having a chlorosilane bond.
【請求項7】  一般式SiX3−nYn−(CH2)
p−(Z)r−(CH2)q−SiClmW3−m(但
し式中nは1〜2の整数、mは1〜3の整数、rは0又
は1、p及びqは負を含まない整数、Xは低級アルキル
基、Yは水素,ハロゲン,低級アルコキシ基,低級アル
キルアミノ基,アリール基,ピリジル基、Zはアルケニ
ィレン,アルキィニレン,フェニレン,アミノフェニレ
ン,アルキルフェニレン,フェニレンビニレン,フェニ
レンエチニレン,ピリジェニレン,ピリジルビニレン,
ピリジルエチニル,チェニレン,ピロリニレン,ピリジ
ノピリジェニレン,アセン(即ち縮合多環)の骨格、W
は水素,ハロゲン,アルキル基,アルケニル基,アルカ
ジエニル基,アルキィニル基,アルコキシ基,H−(C
H2)p−(Z)r−(CH2)q−基,含珪素アルキ
ル基,含珪素アルケニル基,含珪素アルカジエニル基,
含珪素アルキィニル基,SiX3−nYn−(CH2)
p−(Z)r−(CH2)q−基)で表わされることを
特徴とする化学吸着剤。
Claim 7: General formula SiX3-nYn-(CH2)
p-(Z)r-(CH2)q-SiClmW3-m (where n is an integer of 1 to 2, m is an integer of 1 to 3, r is 0 or 1, p and q are non-negative integers , X is a lower alkyl group, Y is hydrogen, halogen, lower alkoxy group, lower alkylamino group, aryl group, pyridyl group, Z is alkenylene, alkynylene, phenylene, aminophenylene, alkylphenylene, phenylenevinylene, phenyleneethynylene, pyridylene , pyridylvinylene,
Pyridylethynyl, chenylene, pyrrolinylene, pyridinopyridenylene, acene (i.e. fused polycyclic) skeleton, W
is hydrogen, halogen, alkyl group, alkenyl group, alkadienyl group, alkynyl group, alkoxy group, H-(C
H2) p-(Z)r-(CH2)q- group, silicon-containing alkyl group, silicon-containing alkenyl group, silicon-containing alkadienyl group,
Silicon-containing alkynyl group, SiX3-nYn-(CH2)
A chemical adsorbent represented by p-(Z)r-(CH2)q- group).
JP3002071A 1990-01-12 1991-01-11 Method for accumulating organic monolayer and chemical adsorbent used therefor Expired - Lifetime JP2684849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3002071A JP2684849B2 (en) 1990-01-12 1991-01-11 Method for accumulating organic monolayer and chemical adsorbent used therefor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2-4982 1990-01-12
JP498290 1990-01-12
JP2-248182 1990-09-17
JP24818290 1990-09-17
JP3002071A JP2684849B2 (en) 1990-01-12 1991-01-11 Method for accumulating organic monolayer and chemical adsorbent used therefor

Publications (2)

Publication Number Publication Date
JPH04214880A true JPH04214880A (en) 1992-08-05
JP2684849B2 JP2684849B2 (en) 1997-12-03

Family

ID=27275190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3002071A Expired - Lifetime JP2684849B2 (en) 1990-01-12 1991-01-11 Method for accumulating organic monolayer and chemical adsorbent used therefor

Country Status (1)

Country Link
JP (1) JP2684849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246707A (en) * 2004-03-02 2005-09-15 Seiko Epson Corp Film forming method and film
WO2007119690A1 (en) * 2006-04-12 2007-10-25 Panasonic Corporation Method of forming organic molecular film structure and organic molecular film structure
WO2015136913A1 (en) * 2014-03-10 2015-09-17 国立大学法人京都大学 Method for producing surface-modified substrate, method for producing conjugate, novel hydrosilane compound, surface treatment agent, surface treatment agent kit, and surface-modified substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262478A (en) * 1987-04-17 1988-10-28 Nippon Telegr & Teleph Corp <Ntt> Production of thin oxide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262478A (en) * 1987-04-17 1988-10-28 Nippon Telegr & Teleph Corp <Ntt> Production of thin oxide film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246707A (en) * 2004-03-02 2005-09-15 Seiko Epson Corp Film forming method and film
WO2007119690A1 (en) * 2006-04-12 2007-10-25 Panasonic Corporation Method of forming organic molecular film structure and organic molecular film structure
US8178164B2 (en) 2006-04-12 2012-05-15 Panasonic Corporation Method of forming organic molecular film structure and organic molecular film structure
WO2015136913A1 (en) * 2014-03-10 2015-09-17 国立大学法人京都大学 Method for producing surface-modified substrate, method for producing conjugate, novel hydrosilane compound, surface treatment agent, surface treatment agent kit, and surface-modified substrate
JP5924633B2 (en) * 2014-03-10 2016-05-25 国立大学法人京都大学 Method for producing surface modified substrate, method for producing joined body, novel hydrosilane compound and surface modified substrate
US10227493B2 (en) 2014-03-10 2019-03-12 Kyoto University Method for producing surface-modified base material, method for producing joined body, new hydrosilane compound, surface treatment agent, surface treatment agent kit, and surface-modified base material

Also Published As

Publication number Publication date
JP2684849B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
EP0511548B1 (en) Chemically adsorbed film and method of manufacturing the same
Lee et al. Inherently Area‐Selective Atomic Layer Deposition of SiO2 Thin Films to Confer Oxide Versus Nitride Selectivity
US10731247B2 (en) Coated article
KR930013036A (en) Vapor phase manufacturing method of chemisorption membrane
KR940005773A (en) Method for producing chemisorbent membrane
KR920012353A (en) Adsorption Monolayer and its manufacturing method
CA2054094A1 (en) Chemically adsorbed monomolecular lamination film
CN103635313B (en) The method fixing waterproof and oilproof layer in amorphous carbon films and the duplexer formed by described method
US5268211A (en) Optical recording medium
JPH04214880A (en) Organic monomolecular film accumulation method and chemical adsorbent used therein
WO2002081618A2 (en) Adsorbing and non-adsorbing surfaces for biological materials
JP2633747B2 (en) Fluorine-based chemisorbed monomolecular cumulative film and method for producing the same
EP0437278A1 (en) A process for preparing a lamination of organic monomolecular films, and a chemical adsorbent used for the process
JP4868496B2 (en) Solar cell and manufacturing method thereof
JP5347359B2 (en) O-nitrobenzyl group-containing silazane compounds and uses
JPH05168913A (en) Vapor-phase manufacturing method of chemisorption film
JPH04328136A (en) Method for manufacturing chemisorption membrane
Wu et al. Effect of adsorbate coverage and ion beam exposure time on reactive ion-surface collisions: pyridine cation (C5H5N+) reactions with deuterated pyridine on silver surface (C5D5N/Ag (111))
JP3397215B2 (en) Hydrophilic lipophilic film and method for producing the same
JP3181093B2 (en) Manufacturing method of antistatic film
US20080318068A1 (en) Method for the production of a mineral substrate with modified surface and substrate thus obtained
JP2007106819A (en) Functional resin substrate and manufacturing method thereof
JP3498972B2 (en) Manufacturing method of chemical adsorption cumulative film
JPH04345633A (en) Organic functional cumulative film and its manufacturing method
KR920012352A (en) Light transmitting gas and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14