JPH04214808A - Blast furnace tuyere powder injection method - Google Patents
Blast furnace tuyere powder injection methodInfo
- Publication number
- JPH04214808A JPH04214808A JP3181691A JP3181691A JPH04214808A JP H04214808 A JPH04214808 A JP H04214808A JP 3181691 A JP3181691 A JP 3181691A JP 3181691 A JP3181691 A JP 3181691A JP H04214808 A JPH04214808 A JP H04214808A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- blast furnace
- plug
- blowing
- tuyere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims description 54
- 238000000034 method Methods 0.000 title claims description 22
- 238000002347 injection Methods 0.000 title description 18
- 239000007924 injection Substances 0.000 title description 18
- 238000007664 blowing Methods 0.000 claims description 32
- 239000003245 coal Substances 0.000 claims description 16
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 description 31
- 239000008187 granular material Substances 0.000 description 18
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 239000002893 slag Substances 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000571 coke Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は、高炉羽口からプラグ輸
送にて粉粒体を吹き込む高炉操業において、吹き込みノ
ズル直前で粉粒体を不連続なプラグ状態から分散した均
一かつ連続的な状態にすることで、安定な多量吹き込み
と溶銑成分制御を行うことを可能とする高炉羽口粉粒体
吹き込み方法に関するものである。[Industrial Application Field] The present invention is applicable to blast furnace operations in which powder and granules are injected from the blast furnace tuyere by plug transport, and the powder and granules are dispersed from a discontinuous plug state to a uniform and continuous state immediately before the blowing nozzle. This invention relates to a method for blowing powder into a blast furnace tuyere, which makes it possible to stably blow a large amount of hot metal and control the components of hot metal.
【0002】0002
【従来の技術】従来、高炉の操業形態としては、羽口か
ら重油、タール等の液体燃料を多量に吹き込むことによ
り、低コークス比、高出銑比を図る液体燃料吹き込み操
業が指向されていた。[Prior Art] Conventionally, blast furnace operation has been directed to liquid fuel injection operation in which a large amount of liquid fuel such as heavy oil or tar is injected through the tuyere to achieve a low coke ratio and high iron production ratio. .
【0003】しかし、最近の原油価格の高騰により、液
体燃料を使用しないオイルレス操業やオールコークス操
業が行われるようになってきているが、このような操業
では羽口前温度が上昇して操業が不安定になりやすく、
また最大出銑比が抑えられるなどの操業上のデメリット
がある。However, due to the recent rise in crude oil prices, oil-less operations that do not use liquid fuel and all-coke operations are being carried out, but in such operations, the temperature in front of the tuyere rises and the operation is interrupted. tends to become unstable,
There are also disadvantages in terms of operation, such as the maximum pig iron production ratio being suppressed.
【0004】そこで、このデメリットを解消するととも
にコークス使用量の低減を目的として、燃料として微粉
炭の羽口からの吹き込みが行われている。しかし、液体
燃料吹き込み操業に比べて微粉炭吹き込み操業では、微
粉炭由来のSiO2がレースウエイ近傍で炭素と反応し
、SiO ガスを発生して溶銑中のSi濃度の上昇をき
たす問題がある。また、オールコークス操業に比べて微
粉炭吹き込み操業時には、微粉炭中のSがレースウエイ
内でガス化し、溶銑中のS濃度の上昇をきたす問題もあ
る。また、微粉炭の大量吹き込みに伴う溶銑中のSiの
上昇に対処するため羽口からの粉鉱石の吹き込みも行わ
れている。[0004] Therefore, in order to eliminate this disadvantage and reduce the amount of coke used, pulverized coal is injected as a fuel through the tuyeres. However, compared to liquid fuel injection operation, pulverized coal injection operation has a problem in that SiO2 derived from pulverized coal reacts with carbon near the raceway, generates SiO 2 gas, and causes an increase in the Si concentration in hot metal. Furthermore, compared to all-coke operation, during pulverized coal injection operation, S in the pulverized coal gasifies in the raceway, causing an increase in the S concentration in the hot metal. In addition, in order to cope with the increase in Si in the hot metal due to the injection of large amounts of pulverized coal, fine ore is also injected through the tuyeres.
【0005】このような粉体吹き込み操業に際して、高
炉羽口への粉粒体の輸送は通常浮遊輸送で行われている
が、特に粉鉱石のような粉体硬度の高い粉粒体では、輸
送配管が摩耗して長期間の安定した多量吹き込みが実施
できないことが問題となってきている。[0005] During such powder blowing operations, the powder and granules are usually transported to the blast furnace tuyere by floating transportation, but especially for powders with high powder hardness such as fine ore, transportation is difficult. It has become a problem that piping wears out and stable, large-volume injection cannot be carried out for a long period of time.
【0006】以上のような配管摩耗対策の一つとして、
特開平2−66107号公報に開示されているように輸
送速度の低いプラグ輸送を行うことが考案されている。
ここでプラグ輸送とは、低流速・高濃度輸送を達成する
輸送法の一つであり、粒子群が管断面全体をプラグ(栓
)状に塞ぐ部分と、輸送キャリアガスのみの部分が、輸
送配管内に交互に連なるように存在して、キャリアガス
の圧力によってプラグを押し動かして輸送する方法であ
る。[0006] As one of the measures against piping wear as described above,
As disclosed in Japanese Unexamined Patent Publication No. 2-66107, it has been devised to transport plugs at a low transport speed. Here, plug transport is a transport method that achieves low flow rate and high concentration transport, and the part where the particle group plugs the entire pipe cross section and the part where only the transport carrier gas is transported In this method, the plugs are placed in a line alternately in the piping, and the plugs are pushed and moved by the pressure of the carrier gas.
【0007】[0007]
【発明が解決しようとする課題】ところで、プラグ輸送
では、輸送粉体の混合比(粉体の質量/輸送キャリアガ
スの質量)が浮遊輸送に比べて大きく、また粉粒体とキ
ャリアガスが交互にやってくるため、時間的には極めて
大きく吹き込み量が変動する吹き込み方法であるため、
次のような問題点がある。[Problems to be Solved by the Invention] In plug transport, the mixing ratio of the transported powder (mass of powder/mass of transported carrier gas) is larger than in floating transport, and the powder and carrier gas are alternately mixed. Since this is a blowing method in which the blowing amount fluctuates extremely significantly over time,
There are the following problems.
【0008】■ プラグ輸送では、粉粒体と輸送キャ
リアガスが交互に吹き込まれるために羽口での風圧変動
が大きくなり、炉況に悪影響をおよぼす。■ また、
ピーク時の粉粒体吹き込み量が非常に多いので、ブロー
パイプ内面および羽口内面の摩耗原因となる。■ 微
粉炭吹き込みにおいては、ピーク吹き込み量が多いため
酸素との混合が不十分となり、微粉炭がレースウェイ内
で燃焼しきれず多量の未燃チャーが生じ、炉況不調に陥
る可能性がある。■ 焼結鉱篩下、粉鉱石といった酸
化鉄粉吹き込みにおいても、ピーク吹き込み量が多いた
め直接還元反応、ソリューションロス反応による羽口前
温度の低下が起こり、粉鉱石の溶融還元が十分に進展し
ない。このため、レースウエイ近傍の通液性が悪化し、
風圧変動およびスリップ頻度の増大に結びつき、突発休
風にいたるおそれがある。[0008] In plug transportation, since the powder and granular material and the transport carrier gas are blown in alternately, the wind pressure fluctuation at the tuyere increases, which adversely affects the furnace condition. ■ Also,
Since the amount of powder and granular material blown at the peak time is extremely large, it causes wear on the inner surface of the blow pipe and the inner surface of the tuyere. ■ In pulverized coal injection, since the peak injection amount is large, mixing with oxygen is insufficient, and the pulverized coal is not completely combusted in the raceway, resulting in a large amount of unburned char, which may lead to poor furnace conditions. ■ Even when injecting iron oxide powder into the sintered ore sieve and fine ore, the peak injection amount is large, so the temperature in front of the tuyere decreases due to direct reduction reaction and solution loss reaction, and the smelting reduction of the fine ore does not progress sufficiently. . As a result, fluid permeability near the raceway deteriorates,
This may lead to wind pressure fluctuations and an increase in slip frequency, leading to sudden wind outages.
【0009】このように、プラグ状態で間欠的に粉粒体
を吹き込む方法では、炉況異常を起こしやすく粉粒体の
長期多量吹き込みには適さない。また、微粉炭の多量吹
き込みでは、溶銑中のSi、Sが増加することも問題と
なる。[0009] As described above, the method of intermittently blowing powder and granules in a plug state tends to cause abnormalities in the furnace condition and is not suitable for long-term, large-volume injection of powder and granules. In addition, when a large amount of pulverized coal is injected, an increase in Si and S in the hot metal also becomes a problem.
【0010】本発明は、高炉羽口から微粉炭及び/又は
酸化鉄粉をプラグ輸送にて吹き込む操業において、上記
問題点を解決することを目的とするもので、吹き込みノ
ズル直前で吹き込み粉粒体のプラグを壊すことにより、
安定な多量吹き込み操業を実現できる粉粒体吹き込み方
法を提供することを目的としている。The present invention aims to solve the above-mentioned problems in an operation in which pulverized coal and/or iron oxide powder is injected from a blast furnace tuyere by plug transportation. By breaking the plug of
The purpose of this invention is to provide a method for blowing powder and granular material that can realize stable large-volume blowing operations.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に第1の本発明に係る高炉羽口粉粒体吹き込み方法は、
プラグ輸送にて高炉内に微粉炭や酸化鉄粉等の粉粒体を
吹き込む操業において、吹き込みノズル直前にてブース
ターガスを導入し、プラグを壊して粉粒体を分散させ、
吹き込み量の時間変化の少ない均一かつ連続的な状態で
高炉内に吹き込み、安定な多量吹き込みを実施すること
を要旨としている。[Means for Solving the Problems] In order to achieve the above object, a method for blowing powder into a blast furnace tuyere according to the first invention includes the following steps:
In operations where granular materials such as pulverized coal and iron oxide powder are injected into the blast furnace by plug transportation, booster gas is introduced just before the blowing nozzle to break the plug and disperse the granular materials.
The gist is to blow into the blast furnace in a uniform and continuous state with little change over time in the injection amount, and to carry out stable large-volume injection.
【0012】また、第2の本発明に係る高炉羽口粉粒体
吹き込み方法は、前記第1の方法において、ブースター
ガスと共にCaO 源及び/又はMgO 源を含有する
造滓剤粉を導入し、プラグの破砕を効果的にして少ない
ガス量で破砕し、かつ造滓剤の効果により、溶銑成分の
悪化防止と溶融スラグの羽口への付着防止により、安定
な多量吹き込みを実施することを要旨としている。[0012] Furthermore, the second method of blowing powder into a blast furnace tuyere according to the present invention includes introducing, in the first method, slag-forming agent powder containing a CaO source and/or an MgO source together with the booster gas; The main idea is to effectively crush the plug with a small amount of gas, and use the effect of the slag-forming agent to prevent deterioration of the hot metal components and prevent molten slag from adhering to the tuyeres, thereby achieving stable large-volume injection. It is said that
【0013】本発明方法でプラグ輸送部分を長くし、プ
ラグを壊す位置を吹き込みノズル直前にしたのは、酸化
鉄粉のような粉体硬度の高い粉粒体でも配管摩耗量が少
なく輸送できるプラグ輸送の利点を生かすためである。
また、プラグを壊した後の浮遊輸送では、粉粒体の流送
速度が高いので配管摩耗量が多いため、その部分をでき
るだけ短くし、かつ直管部とするためである。更に、第
2の本発明方法でブースターガスと共に導入する粉体と
して造滓剤粉を採用したのは、微粉炭の多量吹き込みに
よる溶銑成分の悪化(Si、Sの上昇)を抑えるためで
ある。[0013] In the method of the present invention, the plug transporting part is made longer and the plug is broken at a position just before the blowing nozzle, which allows the plug to be transported with less piping wear even for powder particles with high powder hardness such as iron oxide powder. This is to take advantage of transportation. In addition, during floating transportation after the plug is broken, the flow rate of the powder is high, which causes a large amount of piping wear, so the purpose is to make that part as short as possible and make it a straight pipe part. Furthermore, the reason why the slag-forming agent powder is adopted as the powder introduced together with the booster gas in the second method of the present invention is to suppress the deterioration of the hot metal components (increase in Si and S) due to the injection of a large amount of pulverized coal.
【0014】[0014]
【作用】本発明方法は、吹き込みノズル直前にてブース
ターガスを導入し、プラグを形成している粉粒体を分散
させ、吹き込み量の時間変化の少ない均一な状態にして
高炉内に吹き込むものであり、粉粒体は分散した状態、
すなわち吹き込み量の時間変化の小さい連続的な状態で
羽口から吹き込まれるために風圧変動は小さくなる。ま
た、ピーク吹き込み量も少なくなるので、吹き込まれた
微粉炭の多くは、レースウェイ内で消費されてしまうた
め、未燃チャーの発生量は減少する。[Operation] The method of the present invention introduces booster gas just before the blowing nozzle, disperses the powder forming the plug, and blows it into the blast furnace in a uniform state with little change in blowing amount over time. Yes, the powder is in a dispersed state,
In other words, since the air is blown from the tuyere in a continuous state with small changes in the amount of air blown over time, fluctuations in wind pressure become small. Furthermore, since the peak injection amount is also reduced, most of the blown pulverized coal is consumed within the raceway, and the amount of unburned char generated is reduced.
【0015】また、第2の本発明方法では、ブースター
ガスと共に造滓剤粉を導入しているため、造滓剤粉とプ
ラグを形成している粉粒体が衝突するので、ブースター
ガス単体よりも少ないガス量で効果的にプラグを壊すこ
とができ、吹き込みノズル部での粉粒体流送速度の上昇
を極力抑制することが可能となる。粉鉱石においても、
粉粒体が分散して連続的に吹き込まれるため、溶融還元
が十分進み、羽口前の温度もほとんど低下しないので、
溶融スラグの羽口への付着もなくなり、安定な多量吹き
込みが実施できる。Furthermore, in the second method of the present invention, since the slag-forming agent powder is introduced together with the booster gas, the slag-forming agent powder and the powder particles forming the plug collide, so that It is also possible to effectively break the plug with a small amount of gas, making it possible to suppress as much as possible the increase in the flow rate of the powder or granular material at the blowing nozzle. Even in fine ore,
Because the powder and granules are dispersed and blown in continuously, melting reduction progresses sufficiently and the temperature in front of the tuyere hardly decreases.
There is no adhesion of molten slag to the tuyeres, and stable, large-volume injection can be carried out.
【0016】[0016]
【実施例】本発明による高炉羽口粉粒体吹き込み方法を
A高炉(内容積2700m3)に適用した結果を図1及
び図2に基づいて説明する。[Example] The results of applying the method of blowing powder into a blast furnace tuyere according to the present invention to a blast furnace A (inner volume 2700 m3) will be explained with reference to FIGS. 1 and 2.
【0017】図1は第1の本発明方法の実験に用いた配
管系統の模式図、図2は第2の本発明方法の実験に用い
た配管系統の模式図であり、微粉炭及び/又は酸化鉄粉
は吹き込みタンク1に投入され、プラグ輸送にて輸送配
管2内をブースターガス導入部3まで輸送される。また
図2の場合には、タンク4に投入された造滓剤粉も輸送
配管5内を輸送され、ブースターガス導入部3に導入さ
れる。そしてこのブースターガス導入部3でブースター
ガスを導入されてプラグ状態から分散状態にされる。図
2の場合には、更に造滓剤粉と混合される。分散状態と
なった粉粒体は、吹き込みノズル6からブローパイプ7
内の熱風とともに羽口8を介して高炉9内に吹き込まれ
る。FIG. 1 is a schematic diagram of the piping system used in the experiment of the first method of the present invention, and FIG. 2 is a schematic diagram of the piping system used in the experiment of the second method of the present invention. The iron oxide powder is put into a blowing tank 1 and transported through a transport pipe 2 to a booster gas introduction section 3 by plug transport. Further, in the case of FIG. 2, the slag-forming agent powder put into the tank 4 is also transported through the transportation pipe 5 and introduced into the booster gas introduction section 3. The booster gas is then introduced through the booster gas introduction section 3, changing the plug state to a dispersed state. In the case of FIG. 2, it is further mixed with slag forming agent powder. The dispersed powder is passed from the blow nozzle 6 to the blow pipe 7.
It is blown into the blast furnace 9 through the tuyere 8 together with the hot air inside.
【0018】図3はブースターガス導入部3の一例を示
したものであり、輸送配管2に対して気体導入管10を
介してブースターガスを導入するもので、輸送配管2内
のプラグを壊すときに粒子がぶつかる部分には必要に応
じて耐摩耗性のある材料例えばセラミックス11を内張
りしても良い。FIG. 3 shows an example of the booster gas introduction section 3, which introduces booster gas into the transport pipe 2 through the gas introduction pipe 10. If necessary, the portion where the particles collide may be lined with a wear-resistant material such as ceramics 11.
【0019】図4も図3と同様、輸送配管2に対して気
体導入管10を介してブースターガスを導入するもので
、輸送配管2の円周方向からブースターガスが導入され
るものである。Similarly to FIG. 3, in FIG. 4, booster gas is introduced into the transport pipe 2 via the gas introduction pipe 10, and the booster gas is introduced from the circumferential direction of the transport pipe 2.
【0020】図5は、輸送配管2の一部分を拡大して粉
粒体の滞留時間を長くし、気体導入管12を介してブー
スターガスを導入し、プラグを壊すもので、気体を均一
に導入するために多孔板13を介して気体を導入する。
この場合も、必要に応じて輸送配管2内には、セラミッ
クス等の耐摩耗性材料を内張りしても良い。In FIG. 5, a part of the transportation pipe 2 is enlarged to lengthen the residence time of the powder and granular material, and a booster gas is introduced through the gas introduction pipe 12 to break the plug, so that the gas is uniformly introduced. In order to do this, gas is introduced through the perforated plate 13. In this case as well, the transport pipe 2 may be lined with a wear-resistant material such as ceramics, if necessary.
【0021】図6は、輸送配管2に設置された気体導入
管14の上流側に圧力センサー15を設置しているもの
で、この圧力センサー15によってプラグの通過状況(
プラグの長さ、通過速度など)をモニターし、あらかじ
め調べておいた流送特性に従い演算装置16を介して流
量調整弁17を、また図2に示すものにあっては、流量
調整弁17あるいは吹き込みタンク4の固/気比を調節
することにより、ブースターガス量及び粉粒体の分散状
態の最適化が図られる。図2に示すものにあっては、こ
うすることにより、吹き込む造滓剤量が制限されスラグ
比の増大も抑えられる。In FIG. 6, a pressure sensor 15 is installed on the upstream side of the gas introduction pipe 14 installed in the transportation pipe 2, and the passage status of the plug (
plug length, passage speed, etc.), and adjusts the flow rate adjustment valve 17 via the calculation device 16 according to the flow characteristics investigated in advance, or in the case shown in FIG. By adjusting the solid/gas ratio of the blowing tank 4, the amount of booster gas and the dispersion state of the powder or granular material can be optimized. In the case shown in FIG. 2, by doing so, the amount of slag forming agent to be blown is limited and an increase in the slag ratio is also suppressed.
【0022】図7は、従来の方法における送風圧の変化
を示したものであり、プラグの通過にともない大きく圧
力がハンチングするが、図8に示す本発明方法では送風
圧の大きな変動がないことがわかる。FIG. 7 shows the change in the blowing pressure in the conventional method, and the pressure greatly hunts as the plug passes, but in the method of the present invention shown in FIG. 8, there is no large change in the blowing pressure. I understand.
【0023】表1は、A高炉での粉鉱石を吹き込んだと
きの図1に示す実施例の操業結果をまとめたもので、比
較例1のように浮遊輸送の場合は配管摩耗が顕著であり
、比較例2のようにプラグ状態のままで吹き込んだ場合
は配管摩耗は軽減されるが、羽口内面の摩耗が起こると
共にスリップ回数も増加している。これに対し、第1の
本発明方法では粉鉱石の吹き込み量が200kg/pt
まで輸送配管および羽口の摩耗もなく安定な操業が継続
された。[0023] Table 1 summarizes the operational results of the example shown in Fig. 1 when fine ore was injected in blast furnace A. In the case of floating transportation as in Comparative Example 1, piping wear was remarkable. When blowing in the plug state as in Comparative Example 2, piping wear is reduced, but the inner surface of the tuyere wears out and the number of slips increases. On the other hand, in the first method of the present invention, the amount of fine ore injected is 200 kg/pt.
Stable operation continued with no wear on the transport piping or tuyeres.
【0024】[0024]
【表1】[Table 1]
【0025】表2は、A高炉で粉鉱石および微粉炭を吹
き込んだときの図2に示す実施例の操業結果をまとめた
もので、比較例3のように浮遊輸送の場合は、配管摩耗
が非常に顕著であり突発休風を余儀なくされ、安定な操
業の継続は不可能であった。また比較例4のようにプラ
グ状態のままで吹き込んだ場合は、配管摩耗は軽減され
るが、羽口内面の摩耗が起こると共にスリップ回数も増
加し、やはり突発休風を余儀なくされ、安定な操業の継
続は困難であった。これに対し、第2の本発明では粉鉱
石の吹き込み量が200kg/ptまで輸送配管および
羽口の摩耗もなく安定な操業が継続され、また溶銑中の
Si、S濃度も低下した。Table 2 summarizes the operational results of the example shown in FIG. 2 when fine ore and pulverized coal are injected into blast furnace A. In the case of floating transportation as in Comparative Example 3, piping wear is reduced. The wind was so severe that a sudden shutdown was forced, making it impossible to continue stable operations. In addition, when blowing in the plug state as in Comparative Example 4, piping wear is reduced, but the inner surface of the tuyere wears out and the number of slips increases, resulting in sudden wind shutdowns and unstable operation. It was difficult to continue. On the other hand, in the second invention, stable operation was continued with no wear on the transport piping and tuyere until the injection amount of fine ore was 200 kg/pt, and the Si and S concentrations in the hot metal were also reduced.
【0026】[0026]
【表2】[Table 2]
【0027】[0027]
【発明の効果】以上述べたように本発明によれば、高炉
羽口から酸化鉄及び/又は微粉炭をプラグ輸送にて吹き
込む方法において、吹き込み前にプラグを壊し、吹き込
み量の時間変化を軽減させることで、羽口の損傷(摩耗
、スラグ、アッシュ等の付着など)を低減でき、また送
風圧力の変動、未燃粉の多量発生などの高炉への悪影響
を防止し、粉粒体の多量吹き込み操業を長期間安定継続
することが可能となった。加えて第2の本発明によれば
、CaO 源及び/又はMgO 源を含有する造滓剤粉
をブースターガスと共に導入するので、溶銑中のSi、
S濃度の低減が図れる。Effects of the Invention As described above, according to the present invention, in the method of injecting iron oxide and/or pulverized coal from the blast furnace tuyeres by transporting the plug, the plug is broken before blowing, thereby reducing changes in the amount of blowing over time. This reduces damage to the tuyere (abrasion, adhesion of slag, ash, etc.), prevents negative effects on the blast furnace such as fluctuations in blowing pressure, and generates a large amount of unburned powder, and reduces the amount of powder and granules produced. It has become possible to continue stable blowing operations for a long period of time. In addition, according to the second invention, since the slag-forming agent powder containing the CaO 2 source and/or the MgO 2 source is introduced together with the booster gas, Si in the hot metal,
S concentration can be reduced.
【図1】プラグ輸送にて製鉄高炉の羽口から粉粒体を吹
き込んだ第1の本発明の実施例における装置構成の模式
図である。FIG. 1 is a schematic diagram of an apparatus configuration in a first embodiment of the present invention in which powder and granules are blown into a tuyere of a steelmaking blast furnace by plug transportation.
【図2】プラグ輸送にて製鉄高炉の羽口から粉粒体を吹
き込んだ第2の本発明の実施例における装置構成の模式
図である。FIG. 2 is a schematic diagram of an apparatus configuration in a second embodiment of the present invention, in which powder and granules are blown from the tuyere of a steelmaking blast furnace by plug transportation.
【図3】プラグを壊すためのブースターガス導入部の第
1の例である。FIG. 3 is a first example of a booster gas introduction part for breaking a plug.
【図4】プラグを壊すためのブースターガス導入部の第
2の例である。FIG. 4 is a second example of a booster gas introduction part for breaking a plug.
【図5】プラグを壊すためのブースターガス導入部の第
3の例である。FIG. 5 is a third example of a booster gas introduction part for breaking a plug.
【図6】プラグを壊すためのブースターガス導入部の第
4の例である。FIG. 6 is a fourth example of a booster gas introduction part for breaking a plug.
【図7】プラグのまま粉粒体を吹き込んだときの送風圧
の変化を示した図である。FIG. 7 is a diagram showing changes in air blowing pressure when powder and granular material is blown into the plug.
【図8】プラグを壊して粉粒体を分散させて吹き込んだ
ときの送風圧の変化を示した図である。FIG. 8 is a diagram showing the change in air blowing pressure when the plug is broken and powder particles are dispersed and blown into the plug.
1 吹き込みタンク 2、5 輸送配管 3 ブースターガス導入部 4 タンク 6 吹き込みノズル 8 羽口 9 高炉 1 Blow tank 2, 5 Transport piping 3 Booster gas introduction part 4 Tank 6 Blow nozzle 8 Tuyere 9 Blast furnace
Claims (2)
及び/又は酸化鉄粉を吹き込む高炉操業において、吹き
込みノズル直前でブースターガスを導入することにより
プラグを壊し、粉粒体を分散させた均一かつ連続的な状
態で高炉内に吹き込むことを特徴とする高炉羽口粉粒体
吹き込み方法。Claim 1: In blast furnace operation in which pulverized coal and/or iron oxide powder is injected from the blast furnace tuyere by plug transportation, booster gas is introduced just before the blowing nozzle to break the plug and disperse the powder. A method for blowing powder into a blast furnace tuyere, which is characterized by blowing uniformly and continuously into a blast furnace.
/又はMgO 源を含有する造滓剤粉を導入することを
特徴とする請求項1記載の高炉羽口粉粒体吹き込み方法
。2. The method for blowing powder into a blast furnace tuyere according to claim 1, characterized in that slag-forming agent powder containing a CaO 2 source and/or an MgO 2 source is introduced together with the booster gas.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40992090 | 1990-12-10 | ||
JP2-409920 | 1990-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04214808A true JPH04214808A (en) | 1992-08-05 |
Family
ID=18519171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3181691A Pending JPH04214808A (en) | 1990-12-10 | 1991-01-30 | Blast furnace tuyere powder injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04214808A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235105A (en) * | 2001-02-07 | 2002-08-23 | Kobe Steel Ltd | METHOD FOR OPERATING LOW Si MOLTEN IRON BY INJECTION OF PULVERIZED FINE COAL AT HIGH RATIO IN BLAST FURNACE |
JP2007239014A (en) * | 2006-03-08 | 2007-09-20 | Nippon Steel Corp | Blast furnace operation method |
-
1991
- 1991-01-30 JP JP3181691A patent/JPH04214808A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235105A (en) * | 2001-02-07 | 2002-08-23 | Kobe Steel Ltd | METHOD FOR OPERATING LOW Si MOLTEN IRON BY INJECTION OF PULVERIZED FINE COAL AT HIGH RATIO IN BLAST FURNACE |
JP2007239014A (en) * | 2006-03-08 | 2007-09-20 | Nippon Steel Corp | Blast furnace operation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0178445B1 (en) | Manufacturing method and apparatus for molten pig iron | |
CA2261501C (en) | Process and apparatus for producing metal from metal ores | |
JPH04214808A (en) | Blast furnace tuyere powder injection method | |
JP2612162B2 (en) | Blast furnace operation method | |
JPH05239516A (en) | Operation of injection of powder from tuyere in blast furnace | |
KR100340501B1 (en) | A Method for Preventing Slopping Phenomina in Converter by Injection of Cokes and a Apparatus therefor | |
JPH04202708A (en) | Method of injecting powdered fuel into blast furnace | |
KR920005442B1 (en) | Melting Furnace | |
JPH05125411A (en) | Method and device for injecting powdery material from tuyere in vertical type furnace | |
JPS62112712A (en) | How to operate a blast furnace | |
JP2001131619A (en) | Reduction device and reduction method | |
JPS5856721B2 (en) | Low-Si operation method for blast furnace in pulverized coal injection | |
JPS62142707A (en) | Method for blowing granular particle into blast furnace | |
JPH0598323A (en) | Method for activating furnace core in blast furnace | |
JPH0314888B2 (en) | ||
JPH1150113A (en) | Method of injecting pulverized coal into blast furnace | |
JP2003096511A (en) | Method for operating blast furnace | |
KR20010034175A (en) | Method for producing hot metal | |
JPS63176405A (en) | Method of supplying solid fuel into blast furnace | |
JPH01195229A (en) | Method for charging raw material in smelting reduction of iron ore | |
JPH03215619A (en) | Method for blowing flux into blast furnace | |
JPS59140313A (en) | Transporting equipment of granular ore in melting and reducing apparatus | |
JPH05125412A (en) | Method for injecting powdery and granular materials from tuyere in vertical type furnace | |
JPH04176809A (en) | Blast furnace tuyere powder injection operation method | |
JPS6280234A (en) | Blowing lance for zinc smelting |