JPH04212706A - Magnetic head - Google Patents
Magnetic headInfo
- Publication number
- JPH04212706A JPH04212706A JP212791A JP212791A JPH04212706A JP H04212706 A JPH04212706 A JP H04212706A JP 212791 A JP212791 A JP 212791A JP 212791 A JP212791 A JP 212791A JP H04212706 A JPH04212706 A JP H04212706A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- gap
- thin film
- plane
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/187—Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
- G11B5/1875—"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers
- G11B5/1877—"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film
- G11B5/1878—"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film disposed immediately adjacent to the transducing gap, e.g. "Metal-In-Gap" structure
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はVTR(ビデオテープレ
コーダ)、DAT(デジタルオーディオテープレコーダ
)、HDD(ハードデスクドライブ装置)等の高密度の
磁気記録再生装置に用いられる磁気ヘッドに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used in high-density magnetic recording and reproducing devices such as VTRs (video tape recorders), DATs (digital audio tape recorders), and HDDs (hard disk drives).
【0002】0002
【従来の技術】近年、VTR、DAT等の磁気記録再生
装置においては、時間的な記録密度の向上(周波数の高
帯域化)や空間的な記録密度の向上(狭トラック化、短
波長化)が進められている。[Background Art] In recent years, in magnetic recording and reproducing devices such as VTRs and DATs, improvements in temporal recording density (higher frequency band) and spatial recording density (narrower tracks, shorter wavelengths) is in progress.
【0003】このうち短波長化という点に注目すると、
短波長磁気記録を行うためには高抗磁力の磁気媒体を用
いることが望ましく、そのような媒体に対する磁気ヘッ
ドとしては、通常磁気コアの高周波特性や耐摩耗性の他
に、記録時に磁束が集中するギャップ近傍部が磁気的に
飽和しにくいという特性が要求される。[0003] Focusing on the shortening of the wavelength,
In order to perform short-wavelength magnetic recording, it is desirable to use magnetic media with high coercive force, and magnetic heads for such media usually have high frequency characteristics and wear resistance of the magnetic core, as well as magnetic flux concentration during recording. A property is required that the area near the gap where the magnetic field is formed is unlikely to be magnetically saturated.
【0004】このような要求を満たす磁気ヘッドとして
は、図4に示すように、Mn−Znフェライト等の高周
波特性に優れた強磁性酸化物からなる一対の磁気コア半
体1a,1bが非磁性材料を介して突き合わせられて構
成される磁気ギャップ2の近傍部に、センダスト等の高
飽和磁束密度の強磁性金属薄膜3a,3bが形成されて
いる。尚 磁気コア半体1a、1bはガラス4によって
接合される。5は巻線溝である。[0004] As shown in FIG. 4, a magnetic head that satisfies these requirements has a pair of magnetic core halves 1a and 1b made of a ferromagnetic oxide with excellent high frequency characteristics, such as Mn--Zn ferrite, which is non-magnetic. Ferromagnetic metal thin films 3a and 3b, such as sendust, having a high saturation magnetic flux density are formed near the magnetic gap 2 formed by abutting materials. Note that the magnetic core halves 1a and 1b are joined by a glass 4. 5 is a winding groove.
【0005】上述のような強磁性酸化物と強磁性金属薄
膜3a,3bとの境界面6a,6bが、磁気ギャップ2
に対して平行な所謂平行型MIG(Metal in
Gap)構造の複合型磁気ヘ ッドの場合、該境界面6
a,6bが疑似ギャップとして作用し、その記録再生出
力の 周波数特性曲線は図5に示すようにうねり現象が
現れS/N比の劣化の原因となり問題となっていた。The boundary surfaces 6a and 6b between the ferromagnetic oxide and the ferromagnetic metal thin films 3a and 3b as described above form the magnetic gap 2.
The so-called parallel type MIG (Metal in
In the case of a composite magnetic head with a Gap) structure, the boundary surface 6
a and 6b act as pseudo gaps, and the frequency characteristic curve of the recording/reproduction output exhibits a waviness phenomenon as shown in FIG. 5, causing a problem of deterioration of the S/N ratio.
【0006】この疑似ギャップ問題の解決手段として、
特開平01−133204号 G11B 5/127
( 以下第1引例と称する)公報では、磁気コア半体1
a,1bの磁気ギャップ2形成面に鏡面研摩、リン酸エ
ッチング、逆スパッタリング等の処理を施すことによっ
て完全結晶面を露出させた後、厚さ1nm以上でギャッ
プ長の1/10以下の耐熱性薄膜7a,7bを介して強
磁性金属薄膜3a,3bを形成することが開示されてい
る(図6参照)。[0006] As a solution to this pseudo gap problem,
JP 01-133204 G11B 5/127
In the publication (hereinafter referred to as the first reference), the magnetic core half 1
After exposing the perfect crystal plane by performing treatments such as mirror polishing, phosphoric acid etching, and reverse sputtering on the magnetic gap 2 forming surfaces of a and 1b, the heat resistance is 1 nm or more and 1/10 or less of the gap length. It is disclosed that ferromagnetic metal thin films 3a and 3b are formed via thin films 7a and 7b (see FIG. 6).
【0007】更に、上記第1引例においては、前記強磁
性酸化物コア材として単結晶フェライトを採用する場合
、上述の疑似ギャップ問題解決手段の効果がフェライト
コアの結晶方位に依存し、磁気ギャップ形成面がフェラ
イト単結晶の{111}結晶面である場合に比べて{1
00}結晶面である場合の方が有利である旨の記載があ
るが、ギャップ形成面及び主磁路構成面の結晶方位に関
しては種々の組み合わせが考えられ、この結晶方位が平
行型MIGヘッドの記録再生出力と疑似ギャップ出力と
の関係にどのように影響を及ぼすものであるか容易に予
測できるものでなく、また実験的にも未だ報告例が少な
い。Furthermore, in the first cited example, when single crystal ferrite is used as the ferromagnetic oxide core material, the effect of the above-mentioned means for solving the pseudo gap problem depends on the crystal orientation of the ferrite core, and the magnetic gap formation {1} compared to the case where the plane is the {111} crystal plane of the ferrite single crystal.
00} crystal plane is more advantageous, but various combinations of the crystal orientations of the gap forming plane and the main magnetic path forming plane can be considered, and this crystal orientation is suitable for parallel type MIG heads. It is not easy to predict how this will affect the relationship between the recording/reproducing output and the pseudo-gap output, and there are still few experimental reports.
【0008】一方、特開平02−98803号 G11
B 5/127 (以下第2引例と称する)公報によれ
ば強磁性酸化物コア材として単結晶フェライトを用いた
平行型MIGヘッドにおける記録再生出力に関して、磁
気ヘッドコア半体1a,1bとしてのフェライトコア部
の結晶方位を透磁率の小さい方位に設定することによ
って強磁性金属薄膜部の透磁率が大きくなり、磁気ヘッ
ド全体としての記録再生特性が向上することが記載され
ているが、この議論は図7(b)に示すように強磁性金
属薄膜8a,8bが単独 で巻線溝5を周回する磁路を
構成した磁気ヘッドに関するもであり、図7(a) に
示すような強磁性金属薄膜9a,9bが巻線溝5内で削
除された即ち強磁性金属薄 膜9a,9bが単独で巻線
溝5を周回した磁路を構成しない磁気ヘッドに関しては
、必ずしもあてはまらない。On the other hand, Japanese Patent Application Laid-Open No. 02-98803 G11
According to the publication B 5/127 (hereinafter referred to as the second reference), regarding the recording and reproducing output in a parallel type MIG head using single crystal ferrite as the ferromagnetic oxide core material, ferrite cores as magnetic head core halves 1a and 1b are used. It is stated that by setting the crystal orientation of the ferromagnetic metal thin film part in a direction with low magnetic permeability, the magnetic permeability of the ferromagnetic metal thin film part increases, and the recording and reproducing characteristics of the magnetic head as a whole improve. This relates to a magnetic head in which ferromagnetic metal thin films 8a and 8b independently constitute a magnetic path that goes around the winding groove 5, as shown in FIG. 7(b). This does not necessarily apply to a magnetic head in which the ferromagnetic metal thin films 9a and 9b are removed within the winding groove 5, that is, the ferromagnetic metal thin films 9a and 9b do not constitute a magnetic path that goes around the winding groove 5 alone.
【0009】[0009]
【発明が解決しようとする課題】本発明は上述の平行型
MIGヘッドにおける疑似ギャップ問題の解決及び記録
再生出力の向上を目的として、特に該磁気ヘッドの強磁
性酸化物コア材として単結晶フェライトを用いることを
前提とした場合に、上述の第1引例で推奨された主磁路
構成面{110}・ギャップ形成面{100}の組み合
わせに比べて、より好適な単結晶フェライト部の結晶方
位を明らかにする。Problems to be Solved by the Invention The present invention aims to solve the above-mentioned pseudo-gap problem and improve the recording and reproducing output in the parallel type MIG head, and in particular uses single crystal ferrite as a ferromagnetic oxide core material of the magnetic head. Assuming that it is used, the crystal orientation of the single crystal ferrite part is more suitable than the combination of main magnetic path forming plane {110} and gap forming plane {100} recommended in the first reference cited above. reveal.
【0010】0010
【課題を解決するための手段】本発明は、単結晶フェラ
イトからなる一対の磁気コア半体のうち少なくとも一方
の磁気コア半体のギャップ形成面上に耐熱性薄膜を介し
て強磁性金属薄膜を形成し、該強磁性金属薄膜と他方の
磁気コア半体とを磁気ギャップとなる非磁性材料を介し
て突き合わせてなる磁気ヘッドにおいて、前記強磁性金
属薄膜が形成された磁気コア半体の主磁路構成面の結晶
面を略{110}とし、該主磁路構成面内の<100>
結晶軸に平行で且つギャップ形成面から遠ざかる向きの
ベクトルと、主磁路構成面とギャップ形成面との交線に
平行で記録媒体対向面に近付くベクトルとのなす角θを
0°〜10°若しくは80°〜180°の範囲内にする
。[Means for Solving the Problems] The present invention provides a method for forming a ferromagnetic metal thin film on the gap forming surface of at least one of a pair of magnetic core halves made of single-crystal ferrite via a heat-resistant thin film. In a magnetic head in which the ferromagnetic metal thin film and the other magnetic core half are butted together with a non-magnetic material interposed therebetween to form a magnetic gap, the main magnet of the magnetic core half on which the ferromagnetic metal thin film is formed is The crystal plane of the path configuration plane is approximately {110}, and <100> in the main magnetic path configuration plane
The angle θ formed by the vector parallel to the crystal axis and moving away from the gap forming surface and the vector parallel to the intersection line of the main magnetic path forming surface and the gap forming surface and approaching the recording medium facing surface is 0° to 10°. Or within the range of 80° to 180°.
【0011】[0011]
【作用】上述の構成の磁気ヘッドでは、フェライトコア
部の磁路構成面が略{110}であり、立方晶系の主要
な対称軸<100>,<110>,<111>のいずれ
もが前記主磁路構成面内に存在するため、磁気特性の対
称性及び異方性を有効に活用し得ることが期待されるが
、更に、本願発明者は上述の構成の磁気ヘッドが、単結
晶フェライトコア部を有する平行型MIGヘッドにおけ
る疑似ギャップ問題の解決と記録再生出力の向上という
課題に対して、少なくとも前記第1引例で推奨された主
磁路構成面が{110}面であり、ギャップ形成面が{
100}面である平行型MIGヘッドに比べて、同等以
上の作用効果を呈することを実験的に見出した。[Operation] In the magnetic head configured as described above, the magnetic path forming plane of the ferrite core portion is approximately {110}, and all of the main symmetry axes <100>, <110>, and <111> of the cubic system are Since it exists in the main magnetic path configuration plane, it is expected that the symmetry and anisotropy of the magnetic properties can be effectively utilized. In order to solve the problem of pseudo-gap and improve the recording/reproduction output in a parallel MIG head having a ferrite core, at least the main magnetic path configuration plane recommended in the first reference is the {110} plane, and the gap The forming surface is {
It has been experimentally found that this head has an effect that is equivalent or superior to that of a parallel type MIG head with a 100} plane.
【0012】0012
【実施例】以下、本発明を生むに至った実験の経緯を表
及び図面を用いて具体的に説明する。本願発明者は、磁
気コア半体1a,1bとしての強磁性酸化物コア部が表
1に示 すような種々の結晶方位を有する単結晶フェラ
イトで構成され、前記図6及び図7(a)のような外観
及び断面形状を有する平行型MIGヘッドを、表2に示
す仕様に従って試作し、疑似ギャップ問題に起因する周
波数特性曲線のうねり(以下「F特うねり」と称する)
及び記録再生出力に関して表3に示すような測定結果を
得た。EXAMPLES The details of the experiments that led to the invention will now be explained in detail with reference to tables and drawings. The inventor of the present application has proposed that the ferromagnetic oxide core portions as the magnetic core halves 1a and 1b are composed of single crystal ferrite having various crystal orientations as shown in Table 1, and that A parallel type MIG head having an appearance and cross-sectional shape as shown in FIG.
The measurement results shown in Table 3 regarding the recording and reproducing output were obtained.
【0013】[0013]
【表1】[Table 1]
【0014】[0014]
【表2】[Table 2]
【0015】[0015]
【表3】[Table 3]
【0016】表2におけるギャップ形成面の処理条件、
耐熱性薄膜の形成条件等は前記第1引例で開示された疑
似ギャップ問題解決手段に従ったものである。表1にお
ける主磁路構成面・ギャップ形成面・記録媒体対向面と
いう語句の意味は当業者の慣例に従うものであり、それ
ぞれ図6における面103,101,102に対応する
が、更に 詳細に説明すると、ギャップ形成面101と
は、本発明の対象となるMIGヘッド において強磁性
金属薄膜が非磁性材を介して他方の磁気コア半体と付き
合わされる面に平行な面を意味し、主磁路構成面103
とは、該磁気ヘッドの巻線溝5を周回する最短磁路を含
む面で前記ギャップ形成面101に垂直な面を意味し、
記録媒体 対向面102とは、ギャップ形成面101に
垂直で主磁路構成面103に垂直な面を意味 する。尚
、主磁路構成面103・ギャップ形成面101・記録媒
体対向面102は互いに 直交する面である故、いずれ
か2面の結晶方位を定めれば他の1面の結晶方位は必然
的に決まる。[0016] Processing conditions for the gap forming surface in Table 2,
The conditions for forming the heat-resistant thin film are in accordance with the means for solving the pseudo gap problem disclosed in the first reference. In Table 1, the meanings of the words "main magnetic path forming surface," gap forming surface, and "recording medium facing surface" are in accordance with the conventions of those skilled in the art, and correspond to surfaces 103, 101, and 102 in FIG. 6, respectively, but they will be explained in more detail. Then, the gap forming surface 101 means a surface parallel to the surface where the ferromagnetic metal thin film is brought into contact with the other magnetic core half via a nonmagnetic material in the MIG head that is the object of the present invention, and is Road configuration surface 103
means a plane that includes the shortest magnetic path around the winding groove 5 of the magnetic head and is perpendicular to the gap forming surface 101;
The recording medium facing surface 102 means a surface perpendicular to the gap forming surface 101 and perpendicular to the main magnetic path forming surface 103. Furthermore, since the main magnetic path forming surface 103, the gap forming surface 101, and the recording medium facing surface 102 are surfaces that are orthogonal to each other, if the crystal orientation of any two surfaces is determined, the crystal orientation of the other one surface will inevitably be determined. It's decided.
【0017】表1における■は前記第1引例で推奨され
た結晶方位であり、本発明の基準比較例となるものであ
る。表1における■及び■は前記第1引例で開示された
実施例であるが、疑似ギャップ問題解決手段の効果が期
待できるかどうかという観点からみると、前記■に比べ
て好ましくないと考えられていた結晶方位である。[0017] In Table 1, ■ is the crystal orientation recommended in the first reference, and serves as a standard comparative example for the present invention. ■ and ■ in Table 1 are the embodiments disclosed in the first citation, but from the perspective of whether the effect of the pseudo gap problem solving means can be expected, they are considered to be less preferable than the above ■. This is the crystal orientation.
【0018】尚、前記第1引例では■と■とを区別して
いないが、前記第2引例等において指摘されているよう
に主磁路構成面が{110}結晶面であり、ギャップ形
成面が{111}結晶面である組み合わせでは、主磁路
構成面103内における磁路の 非対称性と{100}
面内における結晶軸の非対称性を反映して2種類の等価
でない組み合わせが考えられ、それらを区別するために
は、結晶方位の表現手段として図1に示すように主磁路
構成面103a,103bを構成する{110}結晶面
内の <100>結晶軸に平行でギャップ形成面から遠
ざかる向きのベクトルAと、主磁路構成面103a,1
03bとギャップ形成面との交線に平行で記録媒体対向
面に近付 く向きのベクトルBとを想定し、両ベクトル
A,Bのなす角θの値を用いる。Although the first reference does not distinguish between ■ and In the combination where is the {111} crystal plane, the asymmetry of the magnetic path within the main magnetic path constituting plane 103 and the {100}
Reflecting the asymmetry of the crystal axes in the plane, two types of non-equivalent combinations can be considered. A vector A in the {110} crystal plane that is parallel to the <100> crystal axis and directed away from the gap forming plane, and the main magnetic path forming plane 103a, 1
Assuming that a vector B is parallel to the line of intersection between 03b and the gap forming surface and approaches the surface facing the recording medium, the value of the angle θ formed by both vectors A and B is used.
【0019】表1における■,■,■は前記■,■,■
におけるギャップ形成面・記録媒体対向面の結晶方位の
組み合わせを入れ替えたものであり、■と■の区別は前
記■,■の区別と同様な考え方に基ずく。表3における
F特うねり及び記録再生出力の測定は、記録媒体として
抗磁力900Oeの酸化鉄系テープを用いてヘッド対テ
ープ相対走行速度5.8m/sの条件で行った。F特う
ねりの測定では、0.1〜10MHzの周波数スイープ
信号を記録し、再生出力をスペクトラムアナライザによ
って検出することによって得られる図5のような周波数
特性曲線の3〜7MHz付近における山と谷の出力比を
求めた。記 録再生出力の測定では、1MHz,5MH
z,8MHzの正弦波を無バイアス記録し、再 生出力
対記録電流曲線における最大再生出力値を求めた。[0019] ■, ■, ■ in Table 1 correspond to the above ■, ■, ■
The combination of the crystal orientations of the gap-forming surface and the surface facing the recording medium in (2) is switched, and the distinction between (1) and (2) is based on the same concept as the distinction between (2) and (2) above. The measurements of F characteristic waviness and recording/reproducing output in Table 3 were carried out using an iron oxide tape with a coercive force of 900 Oe as a recording medium and at a head-to-tape relative running speed of 5.8 m/s. In measuring F-specific waviness, we record the frequency sweep signal from 0.1 to 10 MHz, and detect the reproduced output using a spectrum analyzer to determine the peaks and valleys in the vicinity of 3 to 7 MHz of the frequency characteristic curve as shown in Figure 5. The output ratio was determined. In the measurement of recording and playback output, 1MHz and 5MHz
A sine wave of 8 MHz was recorded without bias, and the maximum reproduction output value in the reproduction output versus recording current curve was determined.
【0020】表3のデータは以下のように解釈される。
■を基準として他と比較すると、■はF特うねりは同等
であり、再生出力は高周波領域において僅かに高い。■
はF特うねりは同等であり、再生出力は低周波領域から
高周波領域にわたって1〜2dB程度高い。■はF特う
ねりは0.5dB程度大きいが、この程度のF特うねり
であれば実用上支障のないレベルであり、再生出力は低
周波領域から高周波領域にわたって2dB程度高い。即
ち、■,■,■は基準比較例■に比べて、疑似ギャップ
問題解決の程度及び記録再生出力に関して同等以上であ
り、特に■及び■が優れている。■及び■は基準比較例
■に比べてF特うねりが非常に大きく実用不可である。The data in Table 3 is interpreted as follows. Comparing (2) with the others using (2) as a reference, (2) has the same F-specific waviness, and the reproduction output is slightly higher in the high frequency region. ■
The F characteristic waviness is the same, and the reproduction output is about 1 to 2 dB higher from the low frequency region to the high frequency region. In case (2), the F characteristic waviness is large by about 0.5 dB, but this level of F characteristic waviness is at a level that does not pose a practical problem, and the reproduction output is about 2 dB higher from the low frequency region to the high frequency region. That is, ■, ■, and ■ are equivalent to or higher than standard comparative example ■ in terms of the degree of pseudo gap problem solving and recording/reproducing output, and ■ and ■ are particularly excellent. In cases ① and ②, the F characteristic waviness is extremely large compared to standard comparative example ②, making them impractical.
【0021】以上の実験結果から本願発明者は、「単結
晶フェライトからなる一対の磁気コア半体のうち、少な
くとも一方の磁気コア半体のギャップ形成面上に強磁性
金属薄膜を形成し、該強磁性金属薄膜と他方の磁気コア
半体とを磁気ギャップとなる非磁性材料を介して突き合
わせてなる磁気ヘッドにおいて、前記強磁性金属薄膜が
形成された磁気コア半体の結晶方位を前記■,■,■の
いずれかに設定することによって、前記第1引例で推奨
された■に設定する場合に比べて、疑似ギャップ問題の
解決及び記録再生出力の点で優れた効果が得られる。」
という本発明の主旨を導き出すに至った。Based on the above experimental results, the inventor of the present application has determined that ``a ferromagnetic metal thin film is formed on the gap forming surface of at least one magnetic core half of a pair of magnetic core halves made of single-crystal ferrite; In a magnetic head in which a ferromagnetic metal thin film and the other magnetic core half are butted together via a non-magnetic material that forms a magnetic gap, the crystal orientation of the magnetic core half on which the ferromagnetic metal thin film is formed is set to By setting either (2) or (2), superior effects can be obtained in terms of solving the pseudo gap problem and recording/reproducing output compared to setting (2) recommended in the first reference.
This led us to derive the gist of the present invention.
【0022】更に本願発明者は、前記表3におけるF特
うねりの値を前記θの値に対してプロットした図2をも
とに、物理量の連続性をも考慮して、「θが0°〜10
°若しくは80°〜180°の範囲内であればF特うね
りは実用レベルの2dB程度以下に抑えられる」と推定
するに至った。Furthermore, based on FIG. 2 in which the value of the F special waviness in Table 3 is plotted against the value of θ, the inventor of the present application also took into account the continuity of physical quantities, and determined that θ is 0°. ~10
It has been estimated that within the range of 80° to 180°, the F characteristic waviness can be suppressed to below the practical level of about 2 dB.
【0023】尚、上述のような本発明特有の効果は、両
側のコア半体を構成する単結晶フェライトの結晶方位が
同一であることによる相乗効果を反映したものではなく
、片側ずつのコア半体それぞれにおける作用効果の重ね
合わせによるものであると考えられるため、両側のコア
半体を構成する単結晶フェライトが互いに異なる結晶方
位を有する場合でも、少なくとも一方のコア半体に本発
明が適用されれば、該コア半体に対する本発明特有の作
用効果と他方のコア半体の特性とを重ね合わせただけの
効果は得られるはずである。Note that the above-described effects unique to the present invention do not reflect a synergistic effect due to the fact that the crystal orientations of the single crystal ferrite constituting the core halves on both sides are the same; It is thought that this is due to the superposition of effects in each core half, so even if the single crystal ferrite constituting the core halves on both sides have different crystal orientations, the present invention is applicable to at least one core half. If so, the effects obtained by simply superimposing the effects specific to the present invention on the core half and the characteristics of the other core half should be obtained.
【0024】尚、本発明の結晶方位は前記第2引例でク
レームされた結晶方位と一部重複すると考えられるが、
疑似ギャップ問題に対する配慮の有無、記録再生出力問
題に影響する前記図7(b)に示したような磁路構造の
違い等によっても本発明と前記第2引例とは区別される
べきものである。[0024]Although the crystal orientation of the present invention is considered to partially overlap with the crystal orientation claimed in the second reference,
The present invention should be distinguished from the second cited example by the presence or absence of consideration given to the pseudo gap problem and the difference in the magnetic path structure as shown in FIG. 7(b), which affects the recording/reproducing output problem. .
【0025】本発明が適用されるMIGヘッドは、図6
のような外観形状を有する磁気ヘッドに限られるもので
なく、例えば図3(a),(b),(c)に示すような
記録媒体対向面を有する磁気ヘッドも含まれる。ここで
図3(a)は片側の磁気コア半対1aのみに強磁性金属
薄膜9aが形成されたMIGヘッド、同(b)は両側の
磁気コア半対1a,1bにおける強磁性金属薄膜9a,
9bの膜厚が異なるMIGヘッド、同(c)は磁気コア
半対1a,1bのフェライトコア部と強磁性金属薄膜9
a,9bの境界面がギャップ付き合わせ面に対して不平
行なMIGヘッドを示している。The MIG head to which the present invention is applied is shown in FIG.
The magnetic head is not limited to a magnetic head having an external shape as shown in FIG. 3, but also includes a magnetic head having a recording medium facing surface as shown in FIGS. 3(a), 3(b), and 3(c), for example. Here, FIG. 3(a) shows an MIG head in which a ferromagnetic metal thin film 9a is formed only on one magnetic core half pair 1a, and FIG. 3(b) shows a ferromagnetic metal thin film 9a on both magnetic core half pairs 1a, 1b.
The MIG head 9b has different film thicknesses, and the same (c) shows the ferrite core part of the magnetic core half pair 1a, 1b and the ferromagnetic metal thin film 9.
The MIG head is shown in which the boundary surfaces of a and 9b are non-parallel to the gap mating surface.
【0026】[0026]
【発明の効果】以上のように、本発明に従った磁気ヘッ
ドは、単結晶フェライトコア部を有する平行型MIGヘ
ッドにおける疑似ギャップ問題の解決及び記録再生出力
の向上を計るという目的に対して、少なくとも前記第1
引例(特開平01−133204号公報 )で推奨され
た主磁路構成面が{110}結晶面であり、ギャップ形
成面が{100}結晶面である平行型MIGヘッドに比
べて同等以上の作用効果を呈する。As described above, the magnetic head according to the present invention has the following advantages: at least the first
The main magnetic path configuration plane recommended in the reference (Japanese Unexamined Patent Publication No. 01-133204) is a {110} crystal plane, and the effect is equivalent to or better than that of the parallel type MIG head whose gap forming plane is a {100} crystal plane. exhibits an effect.
【図1】本発明の磁気ヘッド主磁路構成面の結晶方位を
示す図である。FIG. 1 is a diagram showing the crystal orientation of a plane constituting the main magnetic path of a magnetic head according to the present invention.
【図2】F特うねりの振幅と結晶方位依存性を説明する
ための図である。FIG. 2 is a diagram for explaining the amplitude and crystal orientation dependence of F waviness.
【図3】本発明の磁気ヘッドの記録媒体対向面の他の実
施例を示す平面図である。FIG. 3 is a plan view showing another embodiment of the recording medium facing surface of the magnetic head of the present invention.
【図4】従来例の磁気ヘッドの外観斜視図である。FIG. 4 is an external perspective view of a conventional magnetic head.
【図5】磁気ヘッドの再生出力周波数特性を示す図であ
る。FIG. 5 is a diagram showing reproduction output frequency characteristics of a magnetic head.
【図6】従来及び本発明実施例を説明するための磁気ヘ
ッドの外観斜視図である。FIG. 6 is an external perspective view of a magnetic head for explaining a conventional magnetic head and an embodiment of the present invention.
【図7】従来及び本発明実施例を説明するための磁気ヘ
ッドの主磁路構成面の断面図である。FIG. 7 is a sectional view of a main magnetic path configuration surface of a magnetic head for explaining a conventional magnetic head and an embodiment of the present invention.
1a,1b 磁気コア半体
2 磁気ギャップ
3a,3b 強磁性金属薄膜7a,7b
耐熱性薄膜
9a,9b 強磁性金属薄膜103a,10
3b 主磁路構成面1a, 1b Magnetic core half 2 Magnetic gap 3a, 3b Ferromagnetic metal thin film 7a, 7b
Heat-resistant thin films 9a, 9b ferromagnetic metal thin films 103a, 10
3b Main magnetic path configuration surface
Claims (5)
コア半体のうち少なくとも一方の磁気コア半体のギャッ
プ形成面上に耐熱性薄膜を介して強磁性金属薄膜を形成
し、該強磁性金属薄膜と他方の磁気コア半体とを磁気ギ
ャップとなる非磁性材料を介して突き合わせてなる磁気
ヘッドにおいて、前記強磁性金属薄膜が形成された磁気
コア半体の主磁路構成面の結晶面を略{110}とし、
該主磁路構成面内の<100>結晶軸に平行で且つギャ
ップ形成面から遠ざかる向きのベクトルと、主磁路構成
面とギャップ形成面との交線に平行で且つ記録媒体対向
面に近付く向きのベクトルとのなす角θを0°〜10°
若しくは80°〜180°の範囲内にしたことを特徴と
する磁気ヘッド。1. A ferromagnetic metal thin film is formed on the gap forming surface of at least one of a pair of magnetic core halves made of single-crystal ferrite through a heat-resistant thin film, and the ferromagnetic metal thin film is In a magnetic head in which a magnetic core half is butted against the other magnetic core half through a non-magnetic material that forms a magnetic gap, the crystal plane of the main magnetic path constituting plane of the magnetic core half on which the ferromagnetic metal thin film is formed is abbreviated. {110} and
A vector parallel to the <100> crystal axis in the main magnetic path forming plane and oriented away from the gap forming surface, and a vector parallel to the intersection line between the main magnetic path forming plane and the gap forming surface and approaching the recording medium facing surface. The angle θ with the direction vector is 0° to 10°
or within the range of 80° to 180°.
する請求項1の磁気ヘッド。2. The magnetic head according to claim 1, wherein the angle θ is approximately 0°.
とする請求項1の磁気ヘッド。3. The magnetic head according to claim 1, wherein the angle θ is approximately 90°.
徴とする請求項1の磁気ヘッド。4. The magnetic head according to claim 1, wherein the angle θ is approximately 125°.
徴とする請求項1の磁気ヘッド。5. The magnetic head according to claim 1, wherein the angle θ is approximately 145°.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP212791A JPH04212706A (en) | 1990-05-23 | 1991-01-11 | Magnetic head |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13456290 | 1990-05-23 | ||
JP2-134562 | 1990-05-23 | ||
JP212791A JPH04212706A (en) | 1990-05-23 | 1991-01-11 | Magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04212706A true JPH04212706A (en) | 1992-08-04 |
Family
ID=26335447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP212791A Pending JPH04212706A (en) | 1990-05-23 | 1991-01-11 | Magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04212706A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01133204A (en) * | 1987-07-14 | 1989-05-25 | Sanyo Electric Co Ltd | Magnetic head and production |
JPH0298803A (en) * | 1988-10-05 | 1990-04-11 | Sharp Corp | Magnetic head |
JPH02252108A (en) * | 1989-03-24 | 1990-10-09 | Sharp Corp | Magnetic head |
-
1991
- 1991-01-11 JP JP212791A patent/JPH04212706A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01133204A (en) * | 1987-07-14 | 1989-05-25 | Sanyo Electric Co Ltd | Magnetic head and production |
JPH0298803A (en) * | 1988-10-05 | 1990-04-11 | Sharp Corp | Magnetic head |
JPH02252108A (en) * | 1989-03-24 | 1990-10-09 | Sharp Corp | Magnetic head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10320720A (en) | Magnetic head for perpendicular recording | |
JP2619017B2 (en) | Composite magnetic head | |
JPH04212706A (en) | Magnetic head | |
JPH04251408A (en) | Magnetic head | |
JPH05101328A (en) | Magnetic head | |
JP2509073Y2 (en) | Magnetic head | |
KR100244187B1 (en) | Composite magnetic head and its manufacturing method | |
JPS6238514A (en) | magnetic head | |
JPS60185214A (en) | Magnetic head | |
JPH03113812A (en) | Composite type magnetic head | |
JPH03176804A (en) | Magnetic recording and reproducing device | |
JPH02168404A (en) | Magnetic head | |
JPS62234215A (en) | Magnetic head | |
JPH01158608A (en) | Floating-type magnetic head | |
JPH07282414A (en) | Magnetic head and its production | |
JPS62285208A (en) | Magnetic head | |
JPH1049814A (en) | Magnetic head | |
JPH064816A (en) | Magnetic head | |
JPH01204202A (en) | Magnetic recording system | |
JPH0589423A (en) | Magnetic head | |
JPH03156709A (en) | Floating type magnetic head | |
JPS62165714A (en) | Magnetic head | |
JPS63231708A (en) | Magnetic head | |
JPH0438611A (en) | Composite magnetic head | |
JPS61229211A (en) | Magnetic head |