[go: up one dir, main page]

JPH04209790A - Apparatus for pulling up silicon single crystal - Google Patents

Apparatus for pulling up silicon single crystal

Info

Publication number
JPH04209790A
JPH04209790A JP40540190A JP40540190A JPH04209790A JP H04209790 A JPH04209790 A JP H04209790A JP 40540190 A JP40540190 A JP 40540190A JP 40540190 A JP40540190 A JP 40540190A JP H04209790 A JPH04209790 A JP H04209790A
Authority
JP
Japan
Prior art keywords
partition wall
raw material
crucible
single crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40540190A
Other languages
Japanese (ja)
Inventor
Masakatsu Kojima
児島 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP40540190A priority Critical patent/JPH04209790A/en
Publication of JPH04209790A publication Critical patent/JPH04209790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the formation of polycrystalline crystal caused by the splashing of molten liquid of raw material and to improve the yield of acceptable product by dividing the space in a crucible with upper and lower divided partition walls and making the wall thickness of the upper partition wall to be thinner than that of the lower partition wall. CONSTITUTION:A crucible 3 placed in a single crystal pull-up apparatus is divided into an inner chamber and an outer chamber with a cylindrical partition wall placed concentric to the crucible. The cylindrical partition wall is divided into a lower partition wall 4 for holding an inner chamber molten liquid 1 and an upper partition wall 5 placed immediately above the lower partition wall. The wall thickness of the upper partition wall 5 is made to be thinner than that of the lower partition wall 4. Intrusion of raw material splash generated in the charging and melting of silicon raw material into the inner chamber acting as a pull-up chamber can be prevented by the above construction to completely eliminate the trouble of the formation of polycrystalline crystal on the pulled-up crystal.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、2重構造ルツボを用い
たシリコン単結晶の引上装置に関するもので、特にシリ
コン原料を投入溶解しながら所望の単結晶を連続的に、
あるいは繰り返し引き上げるのに使用されるものである
。 [0002] 【従来の技術】従来シリコン単結晶の引き上げに対して
、その生産性向上及び価格低減の方法として、シリコン
原料を石英ルツボに連続的に投入溶解しながら単結晶を
引き上げる技術が提案されている(例えば特開昭56−
88896号、特開昭57−183392号、特開昭5
8−36,997号、特開昭62−278188号、特
開昭63−319287号、特開平1−294589号
、特開平2−83292号等)。 [0003]このような単結晶引上装置の従来例につい
て図4を参照して説明する。石英ルツボ3は、内部に設
けた円筒隔壁14により区分される内室原料融液1及び
外室原料融液2を収納する。原料投入管9を介して粒状
のシリコン原料8は外室に投入溶解され、それを前記隔
壁14に設けた開孔6を通して内室内に供給しながら、
内室原料融液1からシリコン単結晶10を連続的に引き
上げる。ルツボ3はカーボンルツボ7の中にセットされ
、ルツボ軸13により上下動及び回転可能に支持されて
いる。単結晶10は、引上ワイヤ12により保持され、
回転しながら引き上げられる。11はシードチャックで
ある。 [0004]シリコン原料を投入溶解しながら単結晶を
引き上げる上記従来技術においては、その投入原料とし
て流動床法によって製造された粒状のシリコン多結晶原
料が広く適用されている。 [0005]この原料には、その製法上、1〜25pp
bw%程度の水素が含まれており(レアメタルニュース
、N01528.1990年1月、ps参照)、これが
原料の溶融加熱時に破裂し、シリコン融液の跳ね現象を
引き起こし、炉内を汚したり、あるいは引き上げつつあ
る結晶界面に付着する。 [0006]このために引上結晶の多結晶化が起り、引
上良品歩留り (良品重量/チャージ重量)が例えば約
40%程度に低下するという大きな問題が存在している
。 実際に水素含有量が1 ppbw%(10−9w%)程
度の低水素シリコン原料を使用した場合においても、前
述の融液の跳ねに起因する引上単結晶の多結晶化がとき
どき起こる。例えば通常の単結晶の引上状態下で、約1
時間に1回ぐらいの割合いで融液の跳ね現象が起こる。 [0007]引上装置の工夫なしでは、シリコン原料を
投入溶解しながらの単結晶引上方法の実用化は、はど遠
い現状である。 [0008]
[Industrial Application Field] The present invention relates to a silicon single crystal pulling device using a double structure crucible.
Or it is used for repeated lifting. [0002] [0002] Conventionally, a technique for pulling a single crystal while continuously charging and melting a silicon raw material into a quartz crucible has been proposed as a method for improving productivity and reducing costs for pulling silicon single crystals. (For example, Japanese Patent Application Laid-Open No. 1986-
No. 88896, JP-A-57-183392, JP-A-5
8-36,997, JP-A-62-278188, JP-A-63-319287, JP-A-1-294589, JP-A-2-83292, etc.). [0003] A conventional example of such a single crystal pulling apparatus will be explained with reference to FIG. The quartz crucible 3 stores an inner raw material melt 1 and an outer raw material melt 2, which are separated by a cylindrical partition wall 14 provided inside. The granular silicon raw material 8 is introduced into the outer chamber through the raw material input pipe 9 and melted, and while being supplied into the inner chamber through the opening 6 provided in the partition wall 14,
A silicon single crystal 10 is continuously pulled up from an internal raw material melt 1. The crucible 3 is set in a carbon crucible 7 and supported by a crucible shaft 13 so as to be movable up and down and rotatable. The single crystal 10 is held by a pulling wire 12,
It is pulled up while rotating. 11 is a seed chuck. [0004] In the above-mentioned conventional technique in which a single crystal is pulled up while charging and melting a silicon raw material, a granular polycrystalline silicon raw material produced by a fluidized bed method is widely used as the input raw material. [0005] This raw material contains 1 to 25 ppp due to its manufacturing method.
bw% of hydrogen (see Rare Metal News, No. 1528, January 1990, ps), which ruptures when the raw material is melted and heated, causing splashing of the silicon melt and polluting the inside of the furnace. It attaches to the crystal interface that is being pulled up. [0006] This causes a serious problem in that the pulled crystal becomes polycrystallized, and the yield of good quality products (weight of non-defective product/weight of charge) decreases to, for example, about 40%. Even when a low hydrogen silicon raw material with a hydrogen content of about 1 ppbw% (10-9w%) is actually used, polycrystallization of the pulled single crystal due to the above-mentioned melt splashing sometimes occurs. For example, under normal single crystal pulling conditions, approximately 1
The melt splash phenomenon occurs about once per hour. [0007] Without devising a pulling device, it is far from practical use of a method for pulling a single crystal while charging and melting a silicon raw material. [0008]

【発明が解決しようとする課題1粒状のシリコン原料を
ルツボに投入溶解しながら、単結晶を引き上げる従来の
引上装置では、これまで述べたよう(二投入されたシリ
コン原料が溶解するとき、融液の飛び跳ね現象が発生し
、これにより引上結晶の多結晶化が起こり、良品歩留り
を低下するという課題がある。 [00091本発明の目的は、粒状のシリコン原料を投
入溶解するときに起こる原料融液の飛び跳ねに起因する
引上結晶の多結晶化をなくし、引上結晶の良品歩留りを
向上できるシリコン単結晶の引上装置を提供することで
ある。 [00101 【課題を解決するための手段]本発明は、シリコン原料
融液を収納するルツボ内に、該ルツボ内を内室と外室と
に区分するため円筒状の隔壁を設け、かつ該隔壁に原料
融液が移動できる開孔を設け、シリコン原料を外室内に
投入溶解しながら内室内の融液からシリコン単結晶を引
き上げる装置において、 前記円筒状隔壁が、原料融液
を収納する下部隔壁と該下部隔壁の上部に重ねて配置さ
れる少なくとも1つ以上の上部隔壁(融液飛込防止隔壁
とも呼ぶ)とに分割され、該上部隔壁の肉厚が下部隔壁
の肉厚よりも薄いことを特徴とするシリコン単結晶の引
上装置である。 [00111 【作用]本発明の引上装置では、円筒状の隔壁の高さを
、収納されているシリコン原料融液面の高さ(ルツボの
外室及び内室の融液面の高さはほぼ等しい)より十分高
くし、融液の飛び跳ねが結晶の引上室である内室内に入
るのを防止した。 [0012]Lかしながら同じ肉厚で隔壁の高さを高く
すると、その自重で隔壁の下部領域の軟化変形が顕著に
なり、かつ原料融液の通路である開孔あるいはパイプ状
通路(特開昭63−79790号参照)がつぶれてしま
うという問題が起こる。これを防ぐため前記円筒状隔壁
を複数に分割し、原料融液を収納する下部隔壁は変形し
ない肉厚とし、前記飛込防止用の上部隔壁の肉厚は可能
な限り薄くし軽量化した。 [0013]このようにして、融液の飛び跳ねによる引
上結晶の多結晶化及び下部隔壁の軟化変形を防止するこ
とができた。 [001’4] 【実施例】図1は、本発明の単結晶引上装置の構成の一
例を示す要部断面図である。ルツボ3は、同心軸状に配
置される円筒状の隔壁によって内室及び外室に区分され
、内室融液1及び外室融液2からなるシリコン原料融液
を収納する。円筒状隔壁は、内室融液1を収納する下部
隔壁4と、隔壁4の上部に重ねて配置される上部隔壁5
とに分割され、上部隔壁5の肉厚(例えば2 mm)は
下部隔壁4の肉厚(例えば6 mm)より薄くなってい
る。なお図1において図4と同符号は同一部分または対
応する部分をあられすので説明を省略する。 [0015]次に図1に示す単結晶引上装置と同じ構成
の装置の実施例について、以下説明する。 [00161図2において、18インチ径の石英ルツボ
3内に、15インチ径で肉厚約6Mの下部隔壁(石英リ
ング)4を同心軸状に配置、かつこの下部隔壁4の上に
、15インチ径で肉厚約2mmの上部隔壁(石英リング
)5を重ねて設置し、2重構造ルツボとする。下部隔壁
4の下方に約3關φの開孔6をルツボ軸13に対称に4
箇所設けである。 [0017]この石英ルツボ3に約25kgのシリコン
原料を収納溶解し、粒状のシリコン原料8を約31gr
/minの速度で外室融液2に投入溶解しながら、内室
融液1から約5インチ径のシリコン単結晶10を、約1
mm/minの速度で引き上げる。石英ルツボ3の上端
と上部隔壁5の上端との距離H(mm)をパラメータと
して、この試行を繰り返し、引上単結晶良品化率を調べ
た。その結果を図3に示す。なおシリコン原料融液面と
下部隔壁4の上端との距離h1 は約20mm、石英ル
ツボ3の高さh2は350Mである。 [0018]図3において、横軸は図2に示すH(in
)で、上部隔壁5の高さを変化させたときの値で、縦軸
は引上単結晶良品化率(結晶良品/チャージ量×100
%)をあられす。この第1の試行結果により、次のこと
がわかる。 [00191(イ)上部隔壁5の高さが、ルツボ3の上
端より低いとき即ちH(mm)が負数のときには、原料
投入溶解時の融液の跳ねが内室内に飛び込み、引上結晶
の多結晶化現象が見られ、引上単結晶良品化率が大幅に
低下し、Hが一50mm以下になるとほぼ0%になる。 (00201(ロ)上部隔壁5の高さをルツボ3の上端
より50〜150M高くしたときには、前記融液の跳ね
の内室内への飛び込みが上部隔壁5により防止され、引
上結晶の多結晶化が見られず、引上単結晶良品化率が約
80%と良好である。 [00211(ハ)さらに上部隔壁5の高さを増加し、
Hが150mmを越えると、逆に引上単結晶良品化率が
低下してくる。これは単結晶引き上げの固液界面の温度
環境が悪くなり、単結晶を引き上げることができないた
めである。なお、この引き上げでは約40kgの結晶を
引き上げた。 [00221次に上部隔壁5の肉厚をパラメータとし、
下部隔壁4の変形及び開孔6のふさがりについて調べた
。この第2の試行は、図2に示す引上装置を使用し、単
結晶引上方法及び主な条件は前記第1の試行と同じで、
下部隔壁4の肉厚6M、上部隔壁5の高さをH=100
mmとし、その肉厚を6mm、  4mm、  3mm
、  2mm、及び1mmとする。それぞれの肉厚につ
いて、下部隔壁4の変形及び開孔6のふさがりの有無を
調べ、また引上単結晶良品化率を求めた。結果は表1の
ようになった。 [0023]
Problems to be Solved by the Invention In the conventional pulling device that pulls up a single crystal while charging a granular silicon raw material into a crucible and melting it, as described above (2) There is a problem in that the splashing phenomenon of the liquid occurs, which causes polycrystallization of the pulled crystal and reduces the yield of good products. An object of the present invention is to provide a silicon single crystal pulling device that can eliminate polycrystallization of pulled crystals caused by splashing of melt and improve the yield of good quality pulled crystals. ] The present invention provides a cylindrical partition wall in a crucible for storing a silicon raw material melt in order to divide the inside of the crucible into an inner chamber and an outer chamber, and an opening in the partition wall through which the raw material melt can move. In the apparatus for pulling silicon single crystals from a melt in an inner chamber while introducing and melting a silicon raw material into an outer chamber, the cylindrical partition wall is arranged to overlap a lower partition wall for storing the raw material melt and an upper part of the lower partition wall. pulling of a silicon single crystal characterized in that the upper partition wall is divided into at least one upper partition wall (also referred to as a melt splash prevention partition wall), and the thickness of the upper partition wall is thinner than the thickness of the lower partition wall. [00111] [Operation] In the pulling device of the present invention, the height of the cylindrical partition wall is determined by the height of the stored silicon raw material melt surface (the melt surface of the outer chamber and inner chamber of the crucible). The height of the partition wall was made sufficiently higher than the height of the partition wall (the height of the partition wall is almost the same) to prevent splashing of the melt from entering the inner chamber which is the crystal pulling chamber. Then, due to its own weight, the lower region of the partition wall becomes noticeably softened and deformed, and the problem arises that the opening or pipe-like passage (see Japanese Patent Application Laid-open No. 79790/1983), which is the passage for the raw material melt, collapses. In order to prevent this, the cylindrical partition wall was divided into a plurality of parts, the lower partition wall for storing the raw material melt was made thick enough not to deform, and the thickness of the upper partition wall for preventing flying in was made as thin as possible to reduce weight. [0013] In this way, it was possible to prevent polycrystallization of the pulled crystal and softening deformation of the lower partition wall due to splashing of the melt. [001'4] [Example] FIG. 2 is a cross-sectional view of a main part showing an example of the configuration of a single crystal pulling device. The crucible 3 is divided into an inner chamber and an outer chamber by a cylindrical partition wall arranged concentrically, and the melt 1 in the inner chamber and the outer chamber are divided into an inner chamber and an outer chamber. The cylindrical partition wall contains a silicon raw material melt consisting of an inner chamber melt 2. The cylindrical partition wall includes a lower partition wall 4 that accommodates the inner chamber melt 1, and an upper partition wall 5 that is placed over the top of the partition wall 4.
The wall thickness of the upper partition wall 5 (for example, 2 mm) is thinner than the wall thickness of the lower partition wall 4 (for example, 6 mm). Note that in FIG. 1, the same reference numerals as in FIG. 4 indicate the same or corresponding parts, so the explanation will be omitted. [0015] Next, an embodiment of an apparatus having the same configuration as the single crystal pulling apparatus shown in FIG. 1 will be described below. [00161 In FIG. 2, a lower partition wall (quartz ring) 4 with a diameter of 15 inches and a wall thickness of about 6M is arranged concentrically in a quartz crucible 3 with a diameter of 18 inches, and on top of this lower partition wall 4, a ring of 15 inches is placed. Upper partition walls (quartz rings) 5 having a diameter and wall thickness of about 2 mm are placed one on top of the other to form a double structure crucible. An opening 6 with a diameter of approximately 3 mm is formed below the lower partition wall 4 symmetrically with respect to the crucible axis 13.
There are several locations. [0017] Approximately 25 kg of silicon raw material is stored and melted in this quartz crucible 3, and approximately 31 gr of granular silicon raw material 8 is obtained.
A silicon single crystal 10 with a diameter of about 5 inches is poured from the inner chamber melt 1 into the outer chamber melt 2 at a rate of about 1/min.
Pull up at a speed of mm/min. This trial was repeated using the distance H (mm) between the upper end of the quartz crucible 3 and the upper end of the upper partition wall 5 as a parameter, and the yield rate of pulled single crystals was examined. The results are shown in FIG. Note that the distance h1 between the silicon raw material melt surface and the upper end of the lower partition wall 4 is about 20 mm, and the height h2 of the quartz crucible 3 is 350 m. [0018] In FIG. 3, the horizontal axis represents H(in
) is the value when the height of the upper partition wall 5 is changed, and the vertical axis is the pulling single crystal quality rate (crystal quality product/charge amount x 100
%) hail. The results of this first trial reveal the following. [00191 (a) When the height of the upper partition wall 5 is lower than the upper end of the crucible 3, that is, when H (mm) is a negative number, the splash of the melt when the raw materials are introduced and melted jumps into the inner chamber, and the polymorphism of the pulled crystal is A crystallization phenomenon is observed, and the yield rate of pulled single crystals is significantly reduced, becoming almost 0% when H is less than 150 mm. (00201(b) When the height of the upper partition wall 5 is set 50 to 150M higher than the upper end of the crucible 3, the upper partition wall 5 prevents the splashing of the melt from jumping into the inner chamber, and the pulled crystal becomes polycrystallized. is not observed, and the pulled single crystal yield rate is good at about 80%. [00211 (c) Furthermore, the height of the upper partition wall 5 is increased,
When H exceeds 150 mm, the rate of producing good quality pulled single crystals decreases. This is because the temperature environment at the solid-liquid interface for single crystal pulling becomes poor, making it impossible to pull the single crystal. In addition, about 40 kg of crystals were pulled up in this pulling process. [00221 Next, the thickness of the upper partition wall 5 is taken as a parameter,
The deformation of the lower partition wall 4 and the closing of the openings 6 were investigated. This second trial used the pulling apparatus shown in FIG. 2, and the single crystal pulling method and main conditions were the same as the first trial.
The thickness of the lower partition wall 4 is 6M, and the height of the upper partition wall 5 is H=100.
mm, and the wall thickness is 6mm, 4mm, 3mm
, 2mm, and 1mm. For each wall thickness, the deformation of the lower partition wall 4 and the presence or absence of blockage of the opening 6 were examined, and the yield rate of the pulled single crystal was determined. The results are shown in Table 1. [0023]

【表1】 [0024]この結果より上部隔壁5の肉厚が厚いと、
その鳳みで下部隔壁4の変形が大きく、また融液通路で
ある開孔6がふさがるという現象が起こり、単結晶の引
き上げが不能になることがわかった。本実施例によれば
、上部隔壁5の肉厚を、少なくとも下部隔壁4の肉厚の
約1/2以下にし、良好な結果が得られた。 [0025]上記実施例の引上装置においては、円筒状
隔壁を2分割して上部隔壁5を設け、その高さをルツボ
3の上端より高くし、融液飛込防止隔壁としたので、従
来技術でシリコン原料投入溶解時に起きる原料融液の飛
び跳ねに起因する引上結晶の多結晶化が皆無となった。 [0026]また円筒状隔壁の長尺化によって新たに発
生した円筒状隔壁の変形あるいは開孔の変形による穴ふ
さがりの問題に対しては、円筒状隔壁を上下に2分割し
、上部隔壁の肉厚を可能な限り薄くし軽量化することに
より、この問題を解消した。 [0027]これらにより、従来技術の問題点が解決で
き、引上結晶の単結晶良品化率が、従来は約40%ぐら
いであったものが80%以上と大幅に向上した。 [0028]また原料を投入溶解しながら複数本の単結
晶を引き上げる方法では、円筒状隔壁の変形がネックと
なっているが、この方法に対し、明るい見通しが得られ
た。さらに本発明における上部隔壁は繰り返し使用可能
であり、経費の削減効果も期待される。 [0029]上記実施例では、円筒状隔壁は、上、下1
つずつの2つの隔壁に分割されるが、所望により、上部
隔壁をさらに複数個に分割しても差し支えないし、また
上部隔壁と下部隔壁とを同体に形成してもよい。 [00303 【発明の効果]これまで述べたように、本発明により、
粒状シリコン原料を投入溶解するときに起こる原料融液
の飛び跳ねに起因する引上結晶の多結晶化がなくなり、
引上結晶の良品歩留りを向上できるシリコン単結晶の引
上装置を提供することができた。
[Table 1] [0024] From this result, if the thickness of the upper partition wall 5 is thick,
It was found that the forging greatly deformed the lower partition wall 4 and also caused the apertures 6, which were melt passages, to be blocked, making it impossible to pull the single crystal. According to this example, the thickness of the upper partition wall 5 was set to at least about 1/2 or less of the thickness of the lower partition wall 4, and good results were obtained. [0025] In the pulling device of the above embodiment, the cylindrical partition wall is divided into two and the upper partition wall 5 is provided, and the height thereof is made higher than the upper end of the crucible 3 to serve as a partition wall to prevent melt from entering. This technology has completely eliminated polycrystallization of pulled crystals caused by splashing of the raw material melt when silicon raw materials are introduced and melted. [0026] In addition, to deal with the problem of hole blocking caused by the deformation of the cylindrical partition wall or the deformation of the opening that has newly occurred due to the lengthening of the cylindrical partition wall, the cylindrical partition wall is divided into upper and lower halves, and the thickness of the upper partition wall is reduced. This problem was solved by reducing the thickness and weight as much as possible. [0027] With these, the problems of the prior art can be solved, and the rate of single crystal quality of the pulled crystal has been significantly improved from about 40% in the past to more than 80%. [0028]Also, in the method of pulling a plurality of single crystals while charging and melting raw materials, deformation of the cylindrical partition wall is a bottleneck, but a bright prospect has been obtained for this method. Furthermore, the upper partition wall of the present invention can be used repeatedly, and a cost reduction effect is also expected. [0029] In the above embodiment, the cylindrical partition wall has upper and lower parts.
However, if desired, the upper partition wall may be further divided into a plurality of partitions, or the upper partition wall and the lower partition wall may be formed integrally. [00303] [Effect of the invention] As described above, the present invention provides
This eliminates polycrystallization of pulled crystals caused by splashing of the raw material melt when granular silicon raw materials are introduced and melted.
It was possible to provide a silicon single crystal pulling device that can improve the yield of good quality pulled crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のシリコン単結晶引上装置の構成の一例
を示す要部断面図である。
FIG. 1 is a cross-sectional view of essential parts showing an example of the configuration of a silicon single crystal pulling apparatus of the present invention.

【図2】本発明のシリコン単結晶引上装置の構成の一実
施例を示す要部断面図である。
FIG. 2 is a cross-sectional view of essential parts showing an embodiment of the structure of a silicon single crystal pulling apparatus of the present invention.

【図3】図2に示す引上装置を使用して行なった第1の
試行結果を示すグラフである。
FIG. 3 is a graph showing the results of a first trial conducted using the lifting device shown in FIG. 2;

【図4】従来のシリコン単結晶引上装置の構成の一例を
示す要部断面図である。
FIG. 4 is a sectional view of a main part showing an example of the configuration of a conventional silicon single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

1 内室シリコン原料融液 2 外室シリコン原料融液 3 ルツボ 4 下部隔壁 5 上部隔壁 6 開孔 7 カーボンルツボ 8 投入原料 10 引上単結晶 1 Inner chamber silicon raw material melt 2 Outer chamber silicon raw material melt 3 Crucible 4 Lower bulkhead 5 Upper bulkhead 6 Opening 7 Carbon crucible 8 Input raw materials 10 Pulled single crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン原料融液を収納するルツボ内に、
該ルツボ内を内室と外室とに区分するため円筒状の隔壁
を設け、かつ該隔壁に原料融液が移動できる開孔を設け
、シリコン原料を外室内に投入溶解しながら内室内の融
液からシリコン単結晶を引き上げる装置において、前記
円筒状隔壁が、原料融液を収納する下部隔壁と該下部隔
壁の上部に重ねて配置される少なくとも1つ以上の上部
隔壁とに分割され、該上部隔壁の肉厚が下部隔壁の肉厚
よりも薄いことを特徴とするシリコン単結晶の引上装置
Claim 1: In a crucible containing a silicon raw material melt,
A cylindrical partition wall is provided to divide the inside of the crucible into an inner chamber and an outer chamber, and an opening is provided in the partition wall through which the raw material melt can move, and while the silicon raw material is introduced into the outer chamber and melted, the melt inside the inner chamber is In an apparatus for pulling silicon single crystals from a liquid, the cylindrical partition wall is divided into a lower partition wall that accommodates a raw material melt and at least one upper partition wall that is placed over the upper part of the lower partition wall; A silicon single crystal pulling device characterized in that the thickness of the partition wall is thinner than the thickness of the lower partition wall.
JP40540190A 1990-12-05 1990-12-05 Apparatus for pulling up silicon single crystal Pending JPH04209790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40540190A JPH04209790A (en) 1990-12-05 1990-12-05 Apparatus for pulling up silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40540190A JPH04209790A (en) 1990-12-05 1990-12-05 Apparatus for pulling up silicon single crystal

Publications (1)

Publication Number Publication Date
JPH04209790A true JPH04209790A (en) 1992-07-31

Family

ID=18514999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40540190A Pending JPH04209790A (en) 1990-12-05 1990-12-05 Apparatus for pulling up silicon single crystal

Country Status (1)

Country Link
JP (1) JPH04209790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326730A (en) * 2006-06-07 2007-12-20 Tokuyama Corp Single crystal pulling equipment for metal fluoride
CN104685113A (en) * 2012-09-10 2015-06-03 Gtatip控股有限责任公司 Continuous CZ method and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326730A (en) * 2006-06-07 2007-12-20 Tokuyama Corp Single crystal pulling equipment for metal fluoride
CN104685113A (en) * 2012-09-10 2015-06-03 Gtatip控股有限责任公司 Continuous CZ method and apparatus
KR20150086468A (en) * 2012-09-10 2015-07-28 지티 어드밴스드 씨제트 엘엘씨 Continuous czochralski method and apparatus
JP2015527295A (en) * 2012-09-10 2015-09-17 ジーティーエイティー アイピー ホールディング エルエルシーGtat Ip Holding Llc Continuous Czochralski method and equipment
EP2893057A4 (en) * 2012-09-10 2016-06-15 Gtat Ip Holding Llc Continuous czochralski method and apparatus
US9745666B2 (en) 2012-09-10 2017-08-29 Gtat Ip Holding Llc Continuous czochralski method and apparatus
JP2018168060A (en) * 2012-09-10 2018-11-01 ジーティーエイティー アイピー ホールディング エルエルシーGtat Ip Holding Llc Continuous czochralski method and apparatus

Similar Documents

Publication Publication Date Title
US4203951A (en) Apparatus for growing single crystals from melt with additional feeding of comminuted charge
EP1026289B1 (en) Quartz glass crucible for pulling up silicon single crystal and process for producing the same
JP2001010810A (en) Production of crystal silicon
US6607594B2 (en) Method for producing silicon single crystal
JPH06227891A (en) Crucible for pulling silicon single crystal
JPH04209790A (en) Apparatus for pulling up silicon single crystal
JPS647040B2 (en)
US6755910B2 (en) Method for pulling single crystal
JP3011114B2 (en) Silicon melting crucible
JP2528309B2 (en) Single crystal growth equipment
JP2952733B2 (en) Silicon single crystal manufacturing method
JPH07118089A (en) Recharging device and recharging method for polycrystal
RU2231582C1 (en) Silicon monocrystal growing apparatus, screening device and crystal growing process by chokhralsky method
JPH11246294A (en) Single crystal pulling-up equipment
KR102678229B1 (en) The manufacturing apparatus of silicon ingot
JPH0825831B2 (en) Silicon single crystal manufacturing equipment
JP2816633B2 (en) Single crystal pulling apparatus and pulling method
WO1986006109A1 (en) Method and apparatus for growing single crystal bodies
JP2003137525A (en) Production apparatus for crystalline silicon
JP2672667B2 (en) Method and apparatus for pulling semiconductor single crystal
JPH0711177Y2 (en) Raw material supply mechanism for semiconductor single crystal manufacturing equipment
JPH05132389A (en) Apparatus for producing semiconductor single crystal by fz method
JPH04219387A (en) Draw-up of silicon single crystal
JPH022839B2 (en)
CN113584584A (en) Method for producing silicon core rod by casting