JPH04209773A - Method for manufacturing porous glassy carbon material - Google Patents
Method for manufacturing porous glassy carbon materialInfo
- Publication number
- JPH04209773A JPH04209773A JP40536590A JP40536590A JPH04209773A JP H04209773 A JPH04209773 A JP H04209773A JP 40536590 A JP40536590 A JP 40536590A JP 40536590 A JP40536590 A JP 40536590A JP H04209773 A JPH04209773 A JP H04209773A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- water
- binder
- weight
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
[00011 [00011
【産業上の利用分野]本発明は、良好な気孔性状と優れ
た骨格強度を備える多孔質ガラス状カーボン材を量産性
よく製造する方法に関し、
[0002]
【従来の技術】軽量、導電性、耐熱性および耐食性など
に優れた特性を示す多孔質カーボン材は、工業用のフィ
ルター、電池用電極、吸着材等の用途分野に有用されて
いる。
[0003]従来、多孔質カーボン材の製造技術として
は、粒度を揃えたコークス粉をタールピッチのような炭
化性バインダーとともに捏合したのち粉砕、成形および
焼成炭化処理するプロセスが典型的な製法手段とされて
いるが、均質で安定な気孔構造を付与するための条件設
定が難しいうえ、材質強度が低い欠点がある。
[0004]この点、炭素繊維をパルプおよびバインダ
ー成分とともに抄紙して得られる炭素繊維混合シートに
熱硬化性樹脂液を含浸させたのち焼成炭化処理する方法
(特開昭50−25808号公報)は、炭素繊維が補強
骨格を形成し、また熱硬化性樹脂がガラス状カーボン組
織に転化するため、材料強度を効果的に向上させること
ができる。ところが、この方法においては、嵩密度、気
孔径、気孔率などの制御に難点があり、加えて高価な炭
素繊維を原料とする関係で製造原価が高騰化する問題が
ある。
[0005] このため、炭素繊維に代えて炭素繊維
製造用の有機繊維を使用し、これにパルプ、炭素質粉末
などを配合して抄紙したシートに有機高分子物質あるい
は炭素質粉末を懸濁させた有機高分子物質を含浸したの
ち焼成処理する方法(特開昭61−236664号公報
、同61−236665号公報)が提案されている。し
かしながら、この方法では、組織内に局部的に閉塞され
た空隙部分が多く形成されるため、均質かつ制御された
気孔構造を得ることが困難となる。
[00061本発明者らは上記問題点の解消を図り、良
好な気孔性状と高強度特性を兼備するガラス状炭素質の
多孔質材を得るためのプロセスとして、α−セルロース
を主成分とする熱揮散性物質を抄紙してシート化する工
程と、シートに残炭率40重量%以上の熱硬化性樹脂溶
液を含浸する工程と、含浸処理後のシートを50〜15
0℃の温度で半硬化する工程と、半硬化シートを積層し
て全面を均一加熱しながらシート厚さが70〜20%に
なるように圧縮する工程と、圧縮シートを非酸化性雰囲
気下で800℃以上の温度により焼成炭化する工程から
なるポーラスカーボン材の製造方法を開発し、既に特願
平1−321729号として提案した。
[0007][Industrial Application Field] The present invention relates to a method for manufacturing a porous glassy carbon material having good pore properties and excellent skeletal strength with good mass productivity. [0002] [Prior Art] Lightweight, electrically conductive, Porous carbon materials exhibiting excellent properties such as heat resistance and corrosion resistance are useful in fields such as industrial filters, battery electrodes, and adsorbents. [0003] Conventionally, the typical manufacturing method for porous carbon materials has been a process of kneading coke powder with uniform particle size with a carbonizing binder such as tar pitch, followed by crushing, molding, and firing carbonization. However, it is difficult to set the conditions to provide a homogeneous and stable pore structure, and the material has the disadvantage of low strength. [0004] In this regard, a method (Japanese Unexamined Patent Publication No. 50-25808) in which a carbon fiber mixed sheet obtained by paper-making carbon fibers together with pulp and a binder component is impregnated with a thermosetting resin liquid and then subjected to firing carbonization treatment is proposed. Since the carbon fibers form a reinforcing skeleton and the thermosetting resin is converted into a glassy carbon structure, the material strength can be effectively improved. However, this method has difficulties in controlling bulk density, pore diameter, porosity, etc., and in addition, there is a problem in that the manufacturing cost increases because expensive carbon fiber is used as a raw material. [0005] For this reason, an organic polymer material or carbonaceous powder is suspended in a sheet made by using an organic fiber for manufacturing carbon fibers instead of carbon fibers and blending pulp, carbonaceous powder, etc. with this to make paper. A method has been proposed in which the material is impregnated with an organic polymeric material and then subjected to firing treatment (Japanese Patent Laid-Open Nos. 61-236664 and 61-236665). However, with this method, many locally occluded voids are formed within the tissue, making it difficult to obtain a homogeneous and controlled pore structure. [00061 The present inventors have attempted to solve the above-mentioned problems, and have developed a process for obtaining a glassy carbonaceous porous material that has both good pore properties and high strength properties. A process of paper-making volatile substances into a sheet, a process of impregnating the sheet with a thermosetting resin solution with a residual carbon content of 40% by weight or more, and a process of converting the sheet after the impregnation treatment into a sheet of 50 to 15% by weight.
A process of semi-curing at a temperature of 0℃, a process of laminating semi-cured sheets and compressing them to a sheet thickness of 70 to 20% while uniformly heating the entire surface, and a process of compressing the compressed sheets in a non-oxidizing atmosphere. We have developed a method for producing porous carbon material that involves a process of firing and carbonizing at a temperature of 800° C. or higher, and have already proposed it in Japanese Patent Application No. 1-321729. [0007]
【発明が解決しようとする課題】しかし、引き続く研究
において、前記の先行技術には量産化を目的として連続
的な処理工程を実施しようとする際に解決しなければな
らない幾つかの新たな課題が発生した。すなわち、シー
ト化の工程に産業用ペーパーの製造ラインとされている
連続抄紙法を適用しようとすると、製造ラインの途中で
シートの破断トラブルが多発し、その都度ラインを停止
する必要がある。シート破断の原因は、抄紙直後のシー
トには多量の水が含まれており、使用バインダーも水溶
性である関係で抄紙段階で適度なシート強度を確保でき
ず、このためロール移動(特に乾燥段階)の際に僅かな
テンションの変動によって容易に組織破壊につながる現
象に基づいている。このような現象は抄紙条件を制御し
、シート密度を高めることで軽減化することも可能であ
るが、この場合には均質な気孔組織の形成化を損ねるた
め、後工程で連続的な樹脂液含浸処理を施すと含浸樹脂
の偏在が生じて良好な気孔性状を得ることができなくな
る。
[0008]本発明の目的は、先行技術における上記の
問題点を解消し、連続工程によってもシートの破断現象
を起こすことなく、常に良好な気孔性状と優れた骨格強
度を備える多孔質ガラス状カーボン材を量産性よく製造
する方法を提供することにある。
[0009][Problems to be Solved by the Invention] However, in subsequent research, it was discovered that the above-mentioned prior art has several new problems that must be solved when attempting to implement continuous processing steps for the purpose of mass production. Occurred. That is, when attempting to apply the continuous papermaking method used in industrial paper production lines to the sheeting process, problems with sheet breakage occur frequently during the production line, and the line must be stopped each time. The cause of sheet breakage is that the sheet immediately after papermaking contains a large amount of water, and the binder used is also water-soluble, making it impossible to ensure adequate sheet strength during the papermaking stage. ), a slight change in tension can easily lead to tissue destruction. This phenomenon can be alleviated by controlling the papermaking conditions and increasing the sheet density, but in this case, the formation of a homogeneous pore structure is impaired, so continuous resin liquid is added in the post-process. If the impregnation treatment is performed, the impregnated resin will be unevenly distributed, making it impossible to obtain good pore properties. [0008] The object of the present invention is to solve the above-mentioned problems in the prior art, and to create a porous glassy carbon that does not cause sheet breakage even in continuous processes and always has good pore properties and excellent skeletal strength. The purpose of the present invention is to provide a method for mass-producing materials. [0009]
【課題を解決するための手段】上記の目的を達成するた
めの本発明による多孔質ガラス状カーボン材の製造方法
は、α−セルロースを主成分とする有機物質60〜90
重量部、水溶性抄紙バインダー10〜40重量部および
水不溶性で且つ熱揮散性のバインダー1〜10重量部か
らなる原料組成の分散水を連続抄紙してシートに成形し
、該シートを残炭率40%以上の熱硬化性樹脂溶液に連
続的に浸漬したのちロール絞り処理を施し、処理後のシ
ートを半硬化して積層成形し、成形体を非酸化性雰囲気
下で800℃以上の温度により焼成炭化することを構成
上の特徴とし、
[00101本発明の主要な原料物質となるα−セルロ
ースを主成分とする有機物質は抄紙時にシートのフィラ
ー成分となるもので、通常のパルプのほか、α−セルロ
ース分90%を含むレーヨンパルプを用いることができ
る。パルプ性状としては、抄紙成形性および高気孔構造
を確保する面から太さ3〜10デニール、長さ5〜10
mmの繊維形状を有するものを選択することが好ましい
。
[00111水溶性抄紙バインダーは、抄紙工程でシー
ト成形の結合材として機能する成分で、例えばアカマツ
、ニジマツ、トドマツ、カラマ゛人モミ、ツガ等の針葉
樹系パルプが好適に使用される。
[0012]水不溶性で且つ熱揮散性のバインダーは、
前記の水溶性バインダーの機能を補強してシートがウェ
ット状態にあるときに十分な強度を付与するために添加
される第三成分で、ポリビニールアルコール(ビニロン
)、不溶性澱粉、ミクロフィブリル化パルプなどを用い
ることができる。これらのバインダーを併用することに
よりウェット時における抄紙シートの強度が増大し、連
続抄紙操作を適用してもシートの破断現象が生じること
がなくなる。
[0013]原料物質の配合比率は、α−セルロースを
主成分とする有機物質60〜90重量部、水溶性抄紙バ
インダー10〜40重量部および水不溶性で且つ熱揮散
性のバインダー1〜10重量部に設定し、有機物質に対
するバインダー成分の配合量が前記の範囲を下廻る場合
には抄紙成形性が悪くなり、他方、前記範囲を越えるバ
インダー成分の配合では多孔質組織の形成が困難となる
。とくに第三成分として添加する水不溶性で熱揮散性の
バインダーの配合量は重要で、これが1重量部未満であ
ると湿潤状態における適度なシート強度を確保すること
ができなくなってシートの破断が起き易くなり、また1
0重量部を越えると気孔率、気孔径等が低下して目的と
する気孔分布が均一な多孔質組織を得ることが不可能と
なる。
[0014]上記の三成分系原料物質は混合して水に均
一分散させ、連続抄紙装置を用いて連続的に抄紙してシ
ートに成形し、乾燥ロールに巻き取る。
[0015]乾燥シートは、ついで案内ロールを介して
残炭率40%以上の熱硬化性樹脂溶液中に連続的に浸漬
する機構の処理装置にセットし、浸漬処理をおこなう。
熱硬化性樹脂の残炭率とは、樹脂を非酸化性雰囲気下で
800℃の温度に焼成したときに残留する炭素分の重量
を指し、この残炭率が40%を下廻るときには、得られ
る多孔質ガラス状カーボン材の強度を実用水準まで向上
させることが極めて困難となる。40重量%以上の残炭
率を有する熱硬化性樹脂の例としては、フェノール系樹
脂、フラン系樹脂、ポリイミド樹脂などが挙げられ、い
ずれも焼成炭化後にガラス状カーボンに転化し、これら
熱硬化性樹脂の溶液化に用いられる有機溶媒は樹脂の種
類によって選定されるが、通常、メタノール、エタノー
ル、アセトン、メチルエチルケトンのような低粘度で浸
透性が高く、容易に熱揮散する性質の有機溶媒が選定さ
れる。
溶液に樹脂濃度は、5重量%未満であると強度特性が減
退し、40M量%を越すと粘度が増大して含浸性を損ね
るうえ、気孔の閉塞を生じて気孔率および気孔径の調整
が困難となる。したがって、5〜40重量%の範囲の樹
脂濃度に設定することが好適である。
[0016]浸漬処理したシートは、引き続き所定間隙
の2本ロール間を通過させてロール絞り処理を施し、余
剰な樹脂溶液を除去するとともに含浸組織を均質化し、
[0017]処理後のシートは、50〜150℃の温度
に保持された乾燥器を通して水分等の未反応物や反応生
成物を有機溶媒成分とともに揮散除去し、同時にシート
に担持された樹脂成分を半硬化し、次に、半硬化シート
を所要枚数に積層して全面を均一に加熱しながら、シー
ト厚さが圧縮前に比べて70〜20%の範囲まで薄くな
るような条件で圧縮し積層成形し、該圧縮比率が70%
を下廻る程度の低圧縮率では実用的な強度性能が得られ
難く、20%を下廻るような高圧縮率になると組織が緻
密化して気孔率の大幅低下を招く。また、均質加熱には
ヒーターを内蔵した平面加熱盤を用い、圧縮手段には油
圧プレスまたは空圧プレスを用いることが工業的である
。成形時の温度は樹脂の性状によって若干の差異はある
が、概ね80〜200℃の範囲で円滑に成形され、同時
に樹脂が完全硬化し、
[0018]このようにして積層成形された成形体は、
非酸化性雰囲気中で800℃以上の温度により焼成し、
熱揮散性の成分を揮散させるとともに熱硬化性樹脂成分
を炭化してガラス状カーボン材に転化させる。この炭化
工程は、成形体を平滑表面を有する黒鉛板で挟み込んだ
形態でおこなうと反り等の変形を防止する効果がある。
[0019][Means for Solving the Problems] A method for producing a porous vitreous carbon material according to the present invention to achieve the above-mentioned object comprises a method for producing a porous glassy carbon material containing 60 to 90% of an organic material containing α-cellulose as a main component.
A dispersion water having a raw material composition of 10 to 40 parts by weight of a water-soluble papermaking binder and 1 to 10 parts by weight of a water-insoluble and heat-volatile binder is continuously formed into a sheet, and the sheet is formed into a sheet with a residual carbon content. After continuous immersion in a thermosetting resin solution of 40% or more, the sheet is subjected to roll drawing treatment, the treated sheet is semi-cured and laminated, and the molded product is heated at a temperature of 800°C or more in a non-oxidizing atmosphere. [00101 The organic material mainly composed of α-cellulose, which is the main raw material of the present invention, is a filler component of the sheet during paper making, and can be used in addition to ordinary pulp. Rayon pulp containing 90% α-cellulose can be used. In terms of pulp properties, the thickness should be 3 to 10 deniers and the length should be 5 to 10 deniers in order to ensure paper formability and high pore structure.
It is preferable to select one having a fiber shape of mm. [00111 The water-soluble papermaking binder is a component that functions as a binding material for forming sheets in the papermaking process, and for example, softwood pulps such as Japanese red pine, rainbow pine, Sakhalin fir, Japanese fir, and hemlock are preferably used. [0012] The water-insoluble and heat-volatile binder is
A third component added to reinforce the function of the water-soluble binder and provide sufficient strength when the sheet is wet, such as polyvinyl alcohol (vinylon), insoluble starch, microfibrillated pulp, etc. can be used. By using these binders in combination, the strength of the papermaking sheet when wet is increased, and even if continuous papermaking operation is applied, the phenomenon of sheet breakage does not occur. [0013] The blending ratio of the raw materials is 60 to 90 parts by weight of an organic substance mainly composed of α-cellulose, 10 to 40 parts by weight of a water-soluble papermaking binder, and 1 to 10 parts by weight of a water-insoluble and heat-volatile binder. If the blending amount of the binder component with respect to the organic substance is below the above range, paper formability will deteriorate, while if the binder component blend exceeds the above range, it will be difficult to form a porous structure. In particular, the amount of the water-insoluble, heat-volatile binder added as the third component is important; if it is less than 1 part by weight, it will not be possible to secure adequate sheet strength in a wet state, resulting in sheet breakage. It becomes easier and 1 again
If the amount exceeds 0 parts by weight, the porosity, pore diameter, etc. will decrease, making it impossible to obtain the desired porous structure with uniform pore distribution. [0014] The above three-component raw materials are mixed and uniformly dispersed in water, and then continuously formed into a sheet using a continuous paper machine and wound onto a drying roll. [0015] The dry sheet is then set in a processing device having a mechanism for continuously immersing it in a thermosetting resin solution having a residual carbon content of 40% or more via a guide roll, to perform an immersion treatment. The residual carbon content of a thermosetting resin refers to the weight of carbon that remains when the resin is fired at a temperature of 800°C in a non-oxidizing atmosphere. It becomes extremely difficult to improve the strength of the porous glassy carbon material to a practical level. Examples of thermosetting resins having a residual carbon content of 40% by weight or more include phenolic resins, furan resins, polyimide resins, etc. All of these resins are converted into glassy carbon after firing and carbonization, and these thermosetting resins The organic solvent used to make the resin into a solution is selected depending on the type of resin, but organic solvents such as methanol, ethanol, acetone, and methyl ethyl ketone, which have low viscosity, high permeability, and are easily vaporized by heat, are usually selected. be done. If the resin concentration in the solution is less than 5% by weight, the strength properties will deteriorate, and if it exceeds 40% by weight, the viscosity will increase and impregnating properties will be impaired, and pores will be blocked, making it difficult to adjust the porosity and pore diameter. It becomes difficult. Therefore, it is preferable to set the resin concentration in the range of 5 to 40% by weight. [0016] The sheet subjected to the immersion treatment is then passed between two rolls with a predetermined gap and subjected to a roll squeezing treatment to remove excess resin solution and homogenize the impregnated structure. [0017] The sheet after the treatment is Unreacted substances such as moisture and reaction products are volatilized and removed together with the organic solvent component through a dryer maintained at a temperature of 50 to 150°C, and at the same time the resin component supported on the sheet is semi-cured, and then semi-cured. The required number of sheets are laminated, the entire surface is heated uniformly, and the sheets are compressed and laminated under conditions such that the sheet thickness becomes 70 to 20% thinner than before compression, and the compression ratio is 70%.
If the compression ratio is as low as 20%, it is difficult to obtain practical strength performance, and if the compression ratio is as high as 20%, the structure becomes dense and the porosity significantly decreases. Further, it is industrially possible to use a flat heating plate with a built-in heater for homogeneous heating, and to use a hydraulic press or a pneumatic press for the compression means. Although the temperature during molding varies slightly depending on the properties of the resin, it is generally smoothly molded within the range of 80 to 200°C, and at the same time the resin is completely cured. [0018] The molded product laminated in this way is ,
Calcined at a temperature of 800°C or higher in a non-oxidizing atmosphere,
The heat-volatile component is volatilized, and the thermosetting resin component is carbonized and converted into a glassy carbon material. This carbonization process is effective in preventing deformation such as warping when the compact is sandwiched between graphite plates having smooth surfaces. [0019]
【作用】本発明によれば、原料物質の第三成分である水
不溶性で熱揮散性のバインダーが、抄紙段階においては
主原料相互の接着力を高めて連続抄紙工程のロールテン
ションに耐えるシート強度を付与し、焼成段階では熱分
解を起こして完全に揮散し、良好な多孔質組織を確保す
るために機能し、また、抄紙シートに熱硬化性樹脂溶液
を連続的に浸漬した後の工程として施されるロール絞り
処理は、余剰樹脂を除去してシート組織内に樹脂を均一
に担持させる機能を営む。
[00201これらの機能が、α−セルロースを主成分
とする有機物質による均質な気孔と骨格の形成、熱硬化
性樹脂の炭化によるガラス状カーボン組織の形成化とい
う本来的な作用と相俟って、均一微細な通気性気孔性状
を備えながら材質強度に優れる多孔質ガラス状カーボン
材の連続生産を可能にし、
[00213[Function] According to the present invention, the water-insoluble and heat-volatile binder, which is the third component of the raw material, increases the adhesive strength between the main raw materials during the papermaking stage and strengthens the sheet to withstand the roll tension of the continuous papermaking process. It completely volatilizes through thermal decomposition during the baking stage, and functions to ensure a good porous structure. The roll squeezing process performed functions to remove excess resin and uniformly support the resin within the sheet structure. [00201 These functions are combined with the inherent effects of forming homogeneous pores and skeletons by organic substances mainly composed of α-cellulose, and forming a glassy carbon structure by carbonizing the thermosetting resin. [00213
【実施例]以下、本発明の実施例と比較例について説明
し、
[0022]実施例1
α−セルロース分90%以上、太さ5デニール、長さ2
5市のレーヨンパルプ〔大和紡績(株)製〕80重量部
、水溶性抄紙バインダーとして晒し針葉樹パルプ(NB
KP)20重量部および水不溶性で熱揮散性のバインダ
ーとしてビニロンバインダー〔(株)クラレ製、VPB
105) 1重量部を混合し、水中で撹拌混合して均
質に分散させたのち連続抄紙装置を用いて平均気孔径1
10μm、厚さ0゜23mm、幅1300uの連続シー
トを成形した。乾燥前の湿潤シートの強度は45kgf
/cm2で、連続抄紙は円滑に進行しシートの破断現象
は生じなかった。
[0023]乾燥シートを連続樹脂浸漬装置にセットし
、案内ロールを介して残炭率45%のフェノール樹脂[
住友デュレズ(株)製、スミライトレジンPR940]
の20重量%アセトン溶液を満たした槽に連続的に通過
させて浸漬処理し、引き続き0.2mmの間隙に調整さ
れた2本ロール間を通してロール絞り処理を施した。
[00241ついで、シートを100℃に保持された乾
燥器を通過させて半硬化したのち1辺1300mmの正
方形に裁断し、これを14枚積層して120℃に調整さ
れた均熱平面盤の上に置いた状態で上部から平面盤で圧
縮率65%になるまで圧縮成形して樹脂を完全に硬化さ
せた。
[0025]得られた成形体を平滑表面をもつ黒鉛板に
挟み付けて電気焼成炉に移し、周囲をコークスバッキン
グ材で被包してから1000℃の温度で焼成炭化処理を
した。
[0026]このようにして製造した多孔質ガラス状カ
ーボン材について各種の特性を測定したところ、嵩密度
0.49g/cc、気孔率(水銀圧入法、以下同様)6
7%、平均気孔径(水銀圧入法、以下同様)55μm、
曲げ強度270kgf/cm2と良好な気孔性状ならび
に材質強度を示し、走査型電子顕微鏡による観察で均質
な多孔質組織であることが確認された。また、本例によ
る10回試作時の製品収率は100%であった。
[0027]実施例2
ビニロンバインダーの配合量を3重量部に変えたほかは
、全て実施例1と同一のプロセス条件により多孔質ガラ
ス状カーボン材を製造した。この場合の湿潤シートの強
度は49kgf/cm2で、連続抄紙工程でシート破断
は認められなかった。
[0028]得られた材料の特性は、嵩密度0.48g
/c c、気孔率65%、平均気孔径54μm、曲げ強
度250kgf/cm2と気孔組織、材質強度ともに良
好で、実施例1と同一の顕微鏡観察結果が得られた。ま
た、10回試作時の製品収率は100%であった。
[0029]実施例3
ビニロンバインダーの配合量を10重量部に変えたほか
は、全て実施例1と同一のプロセス条件により多孔質ガ
ラス状カーボン材を製造した。この場合の湿潤シートの
強度は53kgf/c+++2 と高く、連続抄紙工程
でのトラブルは全くなかった。
[00301得られた材料の特性は、嵩密度0.49g
/CC1気孔率68%、平均気孔径567B、曲げ強度
260kgf/cm2と気孔組織、材質強度ともに良好
で、実施例1と同様に均質多孔組織であることが顕微鏡
観察で確認された。また、10回試作時の製品収率は1
00%であった。
[0031]比較例1
水不溶性で且つ熱揮散性のバインダーとしてのビニロン
バインダーを配合せずに実施例1と同一プロセスで連続
抄紙をおこなったところ、シートの破断が多発して$造
不能となった。この場合における湿潤シートの強度を測
定したところ、21kgf/cm2 と低いものであっ
た。
[0032]比較例2
ビニロンバインダーの配合量を0.5重量部としたは力
は、実施例1と同一条件で連続抄紙をおこなったところ
、シートの破断が生じて製造が困難となった。この場合
における湿潤シートの強度を測定したところ、27kg
f。
Cm2であった。
[0033]比較例3
ビニロンバインダーの配合量を13重量部とし、ロール
絞り処理を適用しないほかは全て実施例1と同一のプロ
セスと条件により多孔質ガラス状カーボン材を製造した
。この場合の湿潤シートの強度は57kgf/cm2
と高い寺ので、連続抄紙工程は円滑に進行した。
[0034]得られた材料の特性を測定した結果、嵩替
度0.51g/cc、気孔率55%、平均気孔径45μ
m、曲げ強用230kgf/cm2と実施例に比べて気
孔率および材質強度が但下し、走査型電子顕微鏡による
組織観察では気孔の目配まりが多く発生していて組織が
不均質であることが確ρされた。
[0035]比較例4
ビニロンバインダーの配合量を3重量部とし、ロール絞
り処理を適用しないほかは全て実施例1と同一のプロセ
スと条件を用いて多孔質ガラス状カーボン材を製造した
。この場合の湿潤シートの強度は46kgf/cm2で
、連続抄紙工程にトラブルはなかった。
[0036]得られた材料は、嵩密度0.49g/CC
1気孔摩67%、平均気孔径53μm、曲げ強度270
kgf/cn+2と特性屹には実施例と同等の測定結果
を示したが、走査型電子ぼ微鏡による組織観察では気孔
の目詰まりが多く、局部的に気孔率が40%程度を示す
ところがあって明らかな粗細の不均質性が認められた。
[0037]
【発明の効果】以上のとおり、本発明によれば良好な気
孔性状と優れた材質強度を兼備する高品質の多孔質ガラ
ス状カーボン材を連続的な抄紙および浸漬工程を介して
トラブルなく製造することができる。
[0038]したがって、量産効果による製造原価の低
減化が図れるため、耐熱耐食性のほかに低コスト化が要
求される燃料電池、二次電池用の部材を製造するために
極めて有効となる。[Example] Examples and comparative examples of the present invention will be described below. [0022] Example 1 α-cellulose content 90% or more, thickness 5 denier, length 2
80 parts by weight of 5-city rayon pulp (manufactured by Daiwabo Co., Ltd.), bleached softwood pulp (NB) as a water-soluble papermaking binder
KP) 20 parts by weight and vinylon binder (manufactured by Kuraray Co., Ltd., VPB) as a water-insoluble and heat-volatile binder.
105) Mix 1 part by weight, stir and mix in water to homogeneously disperse, and then use a continuous paper machine to reduce the average pore size to 1.
A continuous sheet with a diameter of 10 μm, a thickness of 0°23 mm, and a width of 1300 μm was molded. The strength of the wet sheet before drying is 45kgf
/cm2, continuous paper making progressed smoothly and no sheet breakage occurred. [0023] The dry sheet is set in a continuous resin dipping device, and a phenol resin with a residual carbon content of 45% is applied via a guide roll.
Sumitomo Durez Co., Ltd., Sumilight Resin PR940]
The sample was continuously passed through a tank filled with a 20% by weight acetone solution for immersion treatment, and then passed between two rolls with a gap of 0.2 mm, and subjected to roll squeezing treatment. [00241Next, the sheet was passed through a dryer kept at 100°C to semi-cure, cut into squares of 1300mm on each side, and 14 sheets were stacked on top of a uniform heating plate adjusted to 120°C. The resin was compression-molded from above using a flat plate until the compression rate reached 65%, and the resin was completely cured. [0025] The obtained molded body was sandwiched between graphite plates having smooth surfaces, transferred to an electric firing furnace, and the surrounding area was covered with a coke backing material, and then fired and carbonized at a temperature of 1000°C. [0026] Various properties of the porous glassy carbon material produced in this way were measured, and the bulk density was 0.49 g/cc, and the porosity (mercury intrusion method, the same hereinafter) was 6.
7%, average pore diameter (mercury intrusion method, the same applies hereinafter) 55 μm,
It exhibited good pore properties and material strength with a bending strength of 270 kgf/cm2, and observation with a scanning electron microscope confirmed that it had a homogeneous porous structure. Further, the product yield in the 10th trial production according to this example was 100%. [0027] Example 2 A porous glassy carbon material was produced under the same process conditions as in Example 1, except that the amount of vinylon binder was changed to 3 parts by weight. The strength of the wet sheet in this case was 49 kgf/cm2, and no sheet breakage was observed during the continuous papermaking process. [0028] The properties of the obtained material are that the bulk density is 0.48 g
/c c, porosity 65%, average pore diameter 54 μm, bending strength 250 kgf/cm2, both the pore structure and material strength were good, and the same microscopic observation results as in Example 1 were obtained. Furthermore, the product yield during the 10th trial production was 100%. [0029] Example 3 A porous glassy carbon material was manufactured under the same process conditions as in Example 1, except that the amount of vinylon binder was changed to 10 parts by weight. The strength of the wet sheet in this case was as high as 53 kgf/c+++2, and there were no troubles during the continuous papermaking process. [00301 The properties of the obtained material are that the bulk density is 0.49g
/CC1 porosity 68%, average pore diameter 567B, bending strength 260 kgf/cm2, both the pore structure and material strength were good, and it was confirmed by microscopic observation that it was a homogeneous porous structure similar to Example 1. In addition, the product yield after 10 trials was 1
It was 00%. [0031] Comparative Example 1 When continuous paper making was carried out in the same process as in Example 1 without blending vinylon binder as a water-insoluble and heat-volatile binder, sheet breakage occurred frequently and paper production became impossible. Ta. When the strength of the wet sheet in this case was measured, it was as low as 21 kgf/cm2. [0032] Comparative Example 2 When the vinylon binder was blended in an amount of 0.5 parts by weight, continuous papermaking was carried out under the same conditions as in Example 1, but the sheet broke and production became difficult. When the strength of the wet sheet in this case was measured, it was 27 kg.
f. It was Cm2. [0033] Comparative Example 3 A porous glass-like carbon material was produced using the same process and conditions as in Example 1, except that the vinylon binder was blended in an amount of 13 parts by weight and the roll drawing process was not applied. The strength of the wet sheet in this case is 57 kgf/cm2
As a result, the continuous paper making process proceeded smoothly. [0034] As a result of measuring the properties of the obtained material, the degree of bulking was 0.51 g/cc, the porosity was 55%, and the average pore diameter was 45 μm.
m, bending strength of 230 kgf/cm2, which shows that the porosity and material strength are lower than those of the examples, and when the structure is observed using a scanning electron microscope, the structure is non-uniform with many pores being crowded. was confirmed. [0035] Comparative Example 4 A porous glass-like carbon material was produced using the same process and conditions as in Example 1, except that the vinylon binder was blended in an amount of 3 parts by weight and the roll drawing process was not applied. The strength of the wet sheet in this case was 46 kgf/cm2, and there were no troubles in the continuous papermaking process. [0036] The obtained material has a bulk density of 0.49 g/CC
1 pore friction 67%, average pore diameter 53μm, bending strength 270
The measurement results for kgf/cn+2 and characteristics were similar to those in the example, but when the structure was observed using a scanning electron microscope, the pores were often clogged, and there were some areas where the porosity was about 40%. Obvious coarse-grained heterogeneity was observed. [0037] [Effects of the Invention] As described above, according to the present invention, a high quality porous vitreous carbon material having both good pore properties and excellent material strength can be produced without trouble through continuous paper making and dipping processes. It can be manufactured without any [0038] Therefore, manufacturing costs can be reduced due to the mass production effect, which is extremely effective for manufacturing members for fuel cells and secondary batteries, which require not only heat and corrosion resistance but also low cost.
Claims (1)
0〜90重量部、水溶性抄紙バインダー10〜40重量
部および水不溶性で且つ熱揮散性のバインダー1〜10
重量部からなる原料組成の分散水を連続抄紙してシート
に成形し、該シートを残炭率40%以上の熱硬化性樹脂
溶液に連続的に浸漬したのちロール絞り処理を施し、処
理後のシートを半硬化して積層成形し、成形体を非酸化
性雰囲気下で800℃以上の温度により焼成炭化するこ
とを特徴とする多孔質ガラス状カーボン材の製造方法。Claim 1: Organic substance 6 whose main component is α-cellulose
0 to 90 parts by weight, 10 to 40 parts by weight of a water-soluble papermaking binder, and 1 to 10 parts by weight of a water-insoluble and heat-volatile binder.
A dispersion water having a raw material composition of 2 parts by weight is continuously made into a sheet, and the sheet is continuously immersed in a thermosetting resin solution with a residual carbon content of 40% or more, and then subjected to a roll squeezing treatment. 1. A method for producing a porous glassy carbon material, which comprises semi-curing sheets, laminating them, and firing and carbonizing the molded product at a temperature of 800° C. or higher in a non-oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2405365A JP2607397B2 (en) | 1990-12-06 | 1990-12-06 | Method for producing porous glassy carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2405365A JP2607397B2 (en) | 1990-12-06 | 1990-12-06 | Method for producing porous glassy carbon material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04209773A true JPH04209773A (en) | 1992-07-31 |
JP2607397B2 JP2607397B2 (en) | 1997-05-07 |
Family
ID=18514969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2405365A Expired - Fee Related JP2607397B2 (en) | 1990-12-06 | 1990-12-06 | Method for producing porous glassy carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2607397B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188767A (en) * | 1995-08-03 | 1997-07-22 | Nippon Aramido Kk | Fluorocarbon resin sheet, sheet laminated composite, production method thereof and use thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025808A (en) * | 1973-07-10 | 1975-03-18 | ||
JPS6270215A (en) * | 1985-09-21 | 1987-03-31 | Showa Denko Kk | Production of molded carbon article |
JPH01320279A (en) * | 1988-06-23 | 1989-12-26 | Tokai Carbon Co Ltd | Method for manufacturing porous carbon material |
-
1990
- 1990-12-06 JP JP2405365A patent/JP2607397B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025808A (en) * | 1973-07-10 | 1975-03-18 | ||
JPS6270215A (en) * | 1985-09-21 | 1987-03-31 | Showa Denko Kk | Production of molded carbon article |
JPH01320279A (en) * | 1988-06-23 | 1989-12-26 | Tokai Carbon Co Ltd | Method for manufacturing porous carbon material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188767A (en) * | 1995-08-03 | 1997-07-22 | Nippon Aramido Kk | Fluorocarbon resin sheet, sheet laminated composite, production method thereof and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2607397B2 (en) | 1997-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2347432C (en) | Porous carbon electrode substrate and its production method and carbon fiber paper | |
US4064207A (en) | Fibrillar carbon fuel cell electrode substrates and method of manufacture | |
US4434206A (en) | Shaped articles of porous carbon fibers | |
DE3247799C2 (en) | Fuel cell electrode substrate and method for making the same | |
DE2724131C2 (en) | Plate-shaped carbon body and method for its manufacture | |
JPH0544779B2 (en) | ||
US4759977A (en) | Flexible carbon material | |
JP4187683B2 (en) | Porous carbon electrode substrate for fuel cells | |
JP4591128B2 (en) | Method for producing porous carbon plate | |
JPH04209773A (en) | Method for manufacturing porous glassy carbon material | |
JP3739819B2 (en) | Method for producing porous carbon material | |
US5026402A (en) | Method of making a final cell electrode assembly substrate | |
JP3131911B2 (en) | Method for producing thick porous carbon material | |
JPH03183672A (en) | Manufacturing method of porous carbon material | |
JPH0211546B2 (en) | ||
JPH04182307A (en) | Production of vetreous carbon material | |
JPH05194056A (en) | Production of porous carbon plate having high compression resistance | |
JP3166983B2 (en) | Method for producing tubular porous glassy carbon body | |
JP2011040386A (en) | Porous carbon electrode base material for fuel cell | |
CA2485232C (en) | Porous carbon electrode substrate | |
JP4080095B2 (en) | Manufacturing method of thick porous carbon material | |
JP3183681B2 (en) | Method for producing highly conductive porous carbon material | |
JPH0848577A (en) | Production of impermeable carbonaceous formed body | |
JPH0517258A (en) | Method for manufacturing porous carbon plate | |
JP2005302589A (en) | Method for producing porous carbon electrode substrate precursor sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080213 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090213 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100213 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |