JPH04209772A - Ceramic porous material - Google Patents
Ceramic porous materialInfo
- Publication number
- JPH04209772A JPH04209772A JP34057990A JP34057990A JPH04209772A JP H04209772 A JPH04209772 A JP H04209772A JP 34057990 A JP34057990 A JP 34057990A JP 34057990 A JP34057990 A JP 34057990A JP H04209772 A JPH04209772 A JP H04209772A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- particles
- layers
- pore diameter
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 74
- 239000011148 porous material Substances 0.000 title claims abstract description 42
- 239000002245 particle Substances 0.000 abstract description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 19
- 239000002002 slurry Substances 0.000 abstract description 17
- 238000009826 distribution Methods 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 4
- 238000001556 precipitation Methods 0.000 abstract 3
- 238000010030 laminating Methods 0.000 abstract 1
- 239000002244 precipitate Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 17
- 239000000843 powder Substances 0.000 description 15
- 239000011505 plaster Substances 0.000 description 13
- 239000006260 foam Substances 0.000 description 12
- 239000012528 membrane Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229940037003 alum Drugs 0.000 description 5
- 238000005187 foaming Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 229940088990 ammonium stearate Drugs 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical compound [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、異なる気孔径を有する複数のセラミック層か
ら構成されるセラミック多孔体に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ceramic porous body composed of a plurality of ceramic layers having different pore sizes.
[従来の技術]
周知の如く、セラミック多孔体は、連続した気孔を利用
したセラミックフィルターや、気孔を含んだ構造を利用
した断熱材等の分野で利用されている。[Prior Art] As is well known, porous ceramic bodies are used in fields such as ceramic filters that utilize continuous pores and heat insulating materials that utilize a structure that includes pores.
ところで、セラミックフィルターなどのセラミック膜は
透過抵抗を減少させるため、いわゆる非対称構造となっ
ているものが特性が良く、多用されている。また、気孔
径が小さい部分は透過抵抗が大きいため、この部分をで
きるだけ薄膜化するために非対称構造が採用されている
。ここで、非対称構造のセラミック膜は、一般に気孔径
の大きい支持体上に支持体気孔径よりも小さい気孔径を
もつ第1層を形成し、更にこの上に小さい気孔径をもつ
第2層を形成した複数層の構成となっており、膜厚方向
に非対称になっている。By the way, in order to reduce the permeation resistance of ceramic membranes such as ceramic filters, those having a so-called asymmetric structure have good characteristics and are often used. Furthermore, since the permeation resistance is high in the part with small pore diameter, an asymmetric structure is adopted to make this part as thin as possible. Here, in a ceramic membrane with an asymmetric structure, a first layer having a pore size smaller than that of the support is generally formed on a support having a large pore size, and a second layer having a small pore size is further formed on this. It has a structure of multiple layers formed and is asymmetrical in the film thickness direction.
一方、セラミック断熱材としては、セラミックファイバ
ーを成形したものや、発泡により気孔を形成した断熱煉
瓦が使用されているが、一つの製品としては気孔径の分
布は部分によって変化させであるものはなかった。On the other hand, as ceramic insulation materials, ceramic fiber molded materials and insulation bricks with pores formed by foaming are used, but none of them have pore size distribution that varies from part to part. Ta.
[発明が解決しようとする課題]
しかし、従来のセラミック多孔体においては、支持体、
中間層、膜と順次成形していく非対称構造となっている
ため、製造工程が複雑で、コストも高くつく。[Problems to be solved by the invention] However, in conventional ceramic porous bodies, supports,
Because it has an asymmetric structure in which the intermediate layer and membrane are formed in sequence, the manufacturing process is complicated and costs are high.
また、セラミック非対称膜を作る上で支持体気孔径に対
し次の層を形成するセラミック粒子径が小さいため、支
持体上に次層を形成するには次層粒子が支持体内に浸入
しないような手段を講じる必要があり、この点もセラミ
ック非対称膜を高価なものにしている理由の一つとなっ
ている。In addition, when creating a ceramic asymmetric membrane, the diameter of the ceramic particles forming the next layer is smaller than the pore diameter of the support, so in order to form the next layer on the support, it is necessary to prevent the next layer particles from penetrating into the support. This is one of the reasons why ceramic asymmetric membranes are expensive.
一方、多孔質セラミック断熱材については、熱伝導の理
論からすれば不十分なものであるといわざるを得ない。On the other hand, it must be said that porous ceramic heat insulating materials are insufficient in terms of heat conduction theory.
熱伝導率は、温度によって伝導メカニズムが異なり、高
温になると輻射による伝熱が増加するので、温度分布に
あわせて熱伝導率が最小になる構造となることが望まし
いが、断熱材−つの中にそのような構造をもったものは
なく、実際には十分な断熱効果が発現されていなかった
。Regarding thermal conductivity, the conduction mechanism differs depending on the temperature, and heat transfer by radiation increases at high temperatures, so it is desirable to have a structure that minimizes thermal conductivity according to the temperature distribution. There was no such structure, and in reality, sufficient heat insulation effect was not achieved.
本発明は上記事情に鑑みてなされたもので、使用目的に
応じて化学的成分や多孔構造の異なるものを簡単に作る
ことができ、かつコスト低減をなし得るセラミック多孔
体を提供することを目的とする。The present invention was made in view of the above circumstances, and an object of the present invention is to provide a ceramic porous body that can be easily manufactured with different chemical components and porous structures depending on the purpose of use, and that can reduce costs. shall be.
[課題を解決するための手段]
本発明は、気孔径の異なるセラミックスから構成される
複数のセラミック層を、気孔径の大きいセラミックスか
らなるセラミック層から気孔径の小さいセラミックスか
らなるセラミック層へ、順次厚さ方向に積層してなるこ
とを特徴とするセラミック多孔体である。[Means for Solving the Problems] The present invention provides a method in which a plurality of ceramic layers composed of ceramics having different pore diameters are sequentially changed from a ceramic layer containing a ceramic layer having a large pore diameter to a ceramic layer containing a ceramic layer having a small pore diameter. This is a ceramic porous body characterized by being laminated in the thickness direction.
本発明におけるセラミック多孔体は気孔径を傾斜的に分
布させることを特徴とするが、かかる多孔体は種々の方
法で製造される。The ceramic porous body according to the present invention is characterized by a gradient distribution of pore diameters, and such a porous body can be manufactured by various methods.
例えば、材料の厚さ方向に細孔径が分布したセラミック
フィルター(板形状のセラミック多孔体)は、下記の■
〜■の各工程を経て作られる。なお、フィルターの細孔
はセラミック粒子間の空隙によって造出され、大きさの
異なるセラミック粒子を傾斜的に充填し焼結することに
よって細孔が傾斜的に分布し、連続する気孔をもったセ
ラミック多孔体が得られる。For example, a ceramic filter (plate-shaped ceramic porous body) with pore diameters distributed in the thickness direction of the material is
It is made through each process of ~■. The pores of the filter are created by the voids between ceramic particles, and the pores are distributed in a gradient by filling and sintering ceramic particles of different sizes, creating a ceramic with continuous pores. A porous body is obtained.
■まず、粒度分布をもったセラミック粒子を水中に分散
し、スラリーとする。■次に、このスラリーを一定高さ
の水深をもったセラミック粒子を水中に静に投入する。■First, ceramic particles with a particle size distribution are dispersed in water to form a slurry. ■Next, this slurry is gently poured into water with ceramic particles at a certain depth.
投入されたスラリー中のセラミック粒子は、その粒径に
応じて沈降速度が異なり、径の大きい粒子が先に沈降し
、粒径に従って傾斜的に沈降層ができる。■この後、こ
の沈降層を乾燥すると、傾斜的に細孔分布をした細孔形
状のセラミック多孔体の成形体が得られた。The sedimentation speed of the ceramic particles in the slurry that has been added differs depending on their particle size, with particles with larger diameters settling first, forming a sedimentary layer in a gradient according to the particle size. (2) Thereafter, when this precipitated layer was dried, a molded ceramic porous body having a pore shape with a gradient pore distribution was obtained.
また、水中における沈降速度が粒径に比例するという原
理を利用してバイブ形状のセラミック非対称膜を形成す
ることも可能である。例えば、この非対称膜は次のよう
な工程を経て作られる。■まず、円筒形状の空間を有す
る石膏型中に水を充填する。■次に、この水柱中心部に
スラリーが充填された細いバイブを導入し、栓を外すこ
とにより水柱の中心部にスラリーを導入する。■つづい
て、石膏型を回転し、遠心力でスラリー中のセラミック
粒子を石膏型方向に移動させ沈着させる。It is also possible to form a vib-shaped ceramic asymmetric membrane using the principle that the sedimentation rate in water is proportional to the particle size. For example, this asymmetric membrane is produced through the following steps. ■First, a plaster mold with a cylindrical space is filled with water. ■Next, a thin vibrator filled with slurry is introduced into the center of the water column, and the slurry is introduced into the center of the water column by removing the stopper. ■Next, the plaster mold is rotated, and the centrifugal force moves the ceramic particles in the slurry toward the plaster mold and deposits them.
■次いで、沈降層形成の後排水し、乾燥後/くイブ形状
の成形体を石膏型より取り出し焼結して、セラミック非
対称膜を形成する。(2) Next, after forming the sediment layer, the water is drained, and after drying, the tube-shaped molded body is taken out of the plaster mold and sintered to form a ceramic asymmetric membrane.
断熱材等に使用されるセラミック多孔体は、発泡法、可
燃物の燃焼除去、ファイバーと粒子の配合など、種々な
方法で作ることができ、夫々の製法において、傾斜的に
気孔径を導入することが可能である。ここで、発泡法に
よるセラミック多孔体を成形する際に、傾斜的に気孔径
を分布させる方法は下記■〜■に示す通りである。■ま
ず、セラミック粉粒体に水などの分散剤を加えてスラリ
ー状とし、これを発泡剤2バインダーなどを添加し、加
熱するなどして発泡剤を分解してガスを発生させ、スラ
リーを発泡させる。■次に、泡状体を乾燥して水分を除
去することによって固化する。Ceramic porous bodies used for insulation materials can be made by various methods, such as foaming, combustion removal of combustible materials, and blending of fibers and particles.Each manufacturing method involves introducing pore sizes in a gradient manner. Is possible. Here, when forming a ceramic porous body by the foaming method, the method of distributing the pore diameter in a gradient manner is as shown in (1) to (4) below. ■First, add a dispersant such as water to ceramic powder to form a slurry, add a foaming agent 2 binder, etc., and heat to decompose the foaming agent and generate gas, foaming the slurry. let ■Next, the foam is dried to remove moisture and solidify.
しかし、泡状体は表面積が大きいため、固化する前に泡
が合体して大きな泡に成長する。従って、泡を石膏板の
ような吸水性のある材料にのせる。However, since the foam has a large surface area, the bubbles coalesce and grow into large bubbles before solidifying. Therefore, the foam is placed on an absorbent material such as plasterboard.
これにより、石膏に接する部分は吸水され、泡が合体す
る前に固化が進行する。このよう°にして泡径が傾斜的
に分布するセラミック発泡体が成形できる。■更に、こ
の発泡体を十分乾燥した後焼成することにより、泡径が
傾斜的に分布した泡状セラミックス多孔体を得る。なお
、可燃物を燃焼除去して気孔を導入するセラミックラス
多孔体についても、前記傾斜気孔非対称膜と同様に、可
燃物をまず傾斜的に成形し、可燃物粒子の空隙にセラミ
ックスラリ−を流し込む事によって成形できる。As a result, the parts in contact with the plaster absorb water, and solidification progresses before the bubbles coalesce. In this way, a ceramic foam with a gradient distribution of bubble diameters can be molded. (2) Further, by sufficiently drying this foam and firing it, a foam-like ceramic porous body having a gradient distribution of bubble diameters is obtained. In addition, regarding the porous ceramic glass body in which pores are introduced by burning off combustible materials, the combustible material is first formed in an inclined manner, and the ceramic slurry is poured into the voids of the combustible material particles, in the same way as the inclined pore asymmetric membrane. It can be shaped by things.
[作 用]
本発明によれば、使用目的に応じて化学的成分や多孔構
造の異なるものを簡単に作ることができ、かつコスト低
減をなし得るセラミック多孔体を得ることができる。[Function] According to the present invention, ceramic porous bodies can be obtained that can be easily manufactured with different chemical components and porous structures depending on the purpose of use, and that can reduce costs.
以下、本発明の実施例について説明する。Examples of the present invention will be described below.
[実施例1]
■まず、最大径20μmの電融アルミナ粒子と平均粒径
2μのバイヤー法アルミナ粉、及び平均粒径0.5μm
のアラム分解アルミナ粉を混合し、0.1〜20μmの
範囲をカバーするアルミナ粉粒体を調整した。次に、こ
の粉粒体100部、イオン交換水30部、ポリアクリル
酸アンモニウム065部をポットミルにて一昼夜混合し
てスラリーとした。[Example 1] ■First, fused alumina particles with a maximum diameter of 20 μm, Bayer method alumina powder with an average particle diameter of 2 μm, and an average particle diameter of 0.5 μm
Alumina decomposed alumina powder was mixed to prepare alumina powder covering the range of 0.1 to 20 μm. Next, 100 parts of this powder, 30 parts of ion-exchanged water, and 065 parts of ammonium polyacrylate were mixed in a pot mill overnight to form a slurry.
■一方、内径φ30mm、長さ100svの空洞部をも
った2つ割りの石膏型を予め製作しておき、この石膏型
中にアラム分解アルミナ粉5部を分散したイオン交換水
を満たし、この水中の中心部に内径φ5asのガラス管
よりなるスポイト中より上記スラリーを静に注入した。■Meanwhile, a two-part plaster mold with a cavity with an inner diameter of 30 mm and a length of 100 sv is made in advance, and this plaster mold is filled with ion-exchanged water in which 5 parts of alum decomposed alumina powder is dispersed. The above slurry was gently injected into the center of the tube from a dropper made of a glass tube with an inner diameter of φ5 as.
次に、石膏型に栓を施し、この石膏型を1100Orp
で10分間回転した。つづいて、栓を開放し、石膏型内
の水を静に流し出した後、室内に放置し内面にアルミナ
粉粒体よりなる薄い層を付着させた石膏型を乾燥した。Next, a plug is applied to the plaster mold, and the plaster mold is placed at 1100 Orp.
and rotated for 10 minutes. Subsequently, the stopper was opened and the water inside the plaster mold was gently poured out, and the mold was left indoors to dry the plaster mold with a thin layer of alumina powder adhered to its inner surface.
■次に、アルミナ管状成形体を石膏型を二つに割って取
り出した。総厚さ(H)は1■であり、20μmの粒子
から0.2μmの粉に至る粉粒体が実質的に傾斜的に充
填焼結された。ここで、予め石膏型イオン交換水に分散
しておいたアラム分解アルミナ粉は、粒子成長し最小粒
径が0.2μmとなっている事が確認された。なお、ア
ラム分解アルミナは、粒子成長し粒径が0.2μmとな
っていた。■Next, the plaster mold of the alumina tubular molded body was broken into two and taken out. The total thickness (H) was 1 .mu.m, and particles ranging from 20 .mu.m particles to 0.2 .mu.m powder were filled and sintered in a substantially gradient manner. Here, it was confirmed that the alum decomposed alumina powder, which had been previously dispersed in gypsum-type ion-exchanged water, had grown into particles and had a minimum particle size of 0.2 μm. Note that the alum decomposed alumina had grown into particles and had a particle size of 0.2 μm.
このようにして得られた管状アルミナ多孔体1は、第1
図及び第2図に示す如く、最外層である粒子径(L、)
20μmのセラミックスからなる最大径層2から最内層
である粒子径が0.2μmのセラミックスからなる最小
径層3まで、各層の粒子径が順に小さくなるように複数
層積層された構成となっている。The tubular alumina porous body 1 obtained in this way is
As shown in the figure and Fig. 2, the particle size (L,) of the outermost layer
It has a structure in which multiple layers are stacked such that the particle size of each layer becomes smaller in order from the largest diameter layer 2 made of ceramics with a particle size of 20 μm to the innermost layer, the smallest diameter layer 3 made of ceramics with a particle size of 0.2 μm. .
事実、前記焼成体を切断し、顕微鏡で微細構造を観察し
たところ、層厚は約1msであり、20μmからの粒子
から0,2μmの粉に至る粉粒体が実質的に傾斜して充
填焼結されていた。予め石膏型イオン交換水に分散して
おいたアラム分解アルミナ粉は、大きな粒子の結合に寄
与している事が確認された。アラム分解アルミナは、粒
子成長し最小粒径が0.2μmとなっていた。In fact, when the fired body was cut and the microstructure was observed under a microscope, the layer thickness was approximately 1 ms, and the powder particles ranging from 20 μm particles to 0.2 μm powder were substantially slanted during filling and firing. It was tied. It was confirmed that the alum decomposed alumina powder, which was pre-dispersed in gypsum-type ion-exchanged water, contributed to the bonding of large particles. The alum decomposed alumina had grown to a minimum particle size of 0.2 μm.
上記管状アルミナ多孔体の細孔径分布を水銀圧入ボロン
シメータで測定したところ、細孔径は0.1μmから1
0μmまで実質的に分布していた。When the pore size distribution of the above tubular alumina porous material was measured using a mercury intrusion boron simeter, the pore size ranged from 0.1 μm to 1 μm.
It was substantially distributed down to 0 μm.
また、上記セラミック管は肉厚方向に傾斜的に気孔径分
布をもった管である事が判明した。更に、上記セラミッ
ク管をフィルターとして使用したところ、圧力損失が小
さく、かつ振動衝撃などに耐え、良好に使用できた。It was also found that the ceramic tube had a pore size distribution that was gradient in the thickness direction. Furthermore, when the above ceramic tube was used as a filter, the pressure loss was small and it withstood vibration shock, etc., and could be used satisfactorily.
[実施例2]
まず、実施例1と同様な方法にて、20μmがら5μm
の粒径のカーボン粒子から管状成形体を得た。次に、平
均粒径0.2μmのイツトリア安定化ジルコニア粉80
部、イオン交換水20部、ポリアクリル酸アンモニウム
2部をボットミル中で一昼夜混合してスラリーとした。[Example 2] First, in the same manner as in Example 1, from 20 μm to 5 μm
A tubular molded body was obtained from carbon particles having a particle size of . Next, 80 yttria-stabilized zirconia powder with an average particle size of 0.2 μm
1 part, 20 parts of ion-exchanged water, and 2 parts of ammonium polyacrylate were mixed in a bot mill overnight to form a slurry.
つづいて、このスラリーを前記カーボン成形体中に含浸
した後、室内に放置し乾燥した。この後、これを空気中
で1450”C12時間焼成し、カーボンを燃焼除去す
るとともに焼結し、φ20m mの管状ジルコニア多孔
体を得た。Subsequently, this slurry was impregnated into the carbon molded body, and then left indoors to dry. Thereafter, this was fired in air at 1450" C for 12 hours to burn off the carbon and sinter it to obtain a tubular zirconia porous body with a diameter of 20 mm.
このようにして得られた管状ジルコニア多孔体は、図示
しないが、最外層が粒子径15μmのセラミックスから
なり、最内層が粒子径が3μmのセラミックスからなり
、各層の粒子径が最外層がら順に小さくなるように複数
層積層された構成となっている。Although not shown, the tubular porous zirconia body obtained in this way has an outermost layer made of ceramics with a particle size of 15 μm, an innermost layer made of ceramics with a particle size of 3 μm, and the particle size of each layer becomes smaller in order from the outermost layer. It has a structure in which multiple layers are laminated.
[実施例3] まず、平均粒径0.8μmの窒化珪素粉100部。[Example 3] First, 100 parts of silicon nitride powder with an average particle size of 0.8 μm.
平均粒径0.2μmのアルミナ粉5部、平均粒径0.5
μmのイツトリア5部、イオン交換水30部。5 parts of alumina powder with average particle size of 0.2 μm, average particle size of 0.5
5 parts of μm ittria, 30 parts of ion exchange water.
及びポリアクリル酸アンモニウム3部をボットミル中で
一昼夜混合し、スラリーを調整した。次に、このスラリ
ーにバインダーとしてメチルセルロース2部、整泡剤と
してステアリン酸アンモニウム2部添加し、泡立て機で
泡を立てた。つづいて、この泡を乾燥した石膏板に流し
、更に乾燥防止のため泡をビニールシートで覆って室内
に放置した。and 3 parts of ammonium polyacrylate were mixed in a bot mill overnight to prepare a slurry. Next, 2 parts of methyl cellulose as a binder and 2 parts of ammonium stearate as a foam stabilizer were added to this slurry, and the mixture was foamed using a foaming machine. Next, the foam was poured onto a dry plasterboard, and the foam was covered with a vinyl sheet to prevent drying and left indoors.
泡状スラリー中の水分は石膏型に吸収され、泡の下面か
ら固化が進行した。同時に、泡は少しずつ合体していっ
た。−昼夜放置乾燥後、乾燥した泡状成形体を窒素ガス
中で600℃、2時間加熱することで脱脂し、更に窒素
ガス中で1820℃で2時間焼成して泡状窒化珪素セラ
ミックスを得た。The water in the foam slurry was absorbed by the plaster mold, and solidification progressed from the bottom of the foam. At the same time, the bubbles began to coalesce little by little. - After being left to dry day and night, the dried foam molded body was degreased by heating in nitrogen gas at 600°C for 2 hours, and further fired in nitrogen gas at 1820°C for 2 hours to obtain foam silicon nitride ceramics. .
泡状セラミックスを切断してセルの大きさを測定したと
ころ、乾燥方向に100μmから300μmの傾斜的に
セル径のが分布したものとなっている。When the cell size was measured by cutting the foamed ceramic, it was found that the cell diameter was distributed gradiently from 100 μm to 300 μm in the drying direction.
このセラミック多孔体を窒素雰囲気における断熱材とし
て使用したところ、従来のカーボンファイバーによる断
熱材に比べ、約2倍の断熱効果が得られた。When this ceramic porous body was used as a heat insulating material in a nitrogen atmosphere, the heat insulating effect was approximately twice that of conventional carbon fiber heat insulating materials.
[発明の効果]
以上詳述した如く本発明によれば、使用目的1こ応じて
化学的成分や多孔構造の異なるものを簡単に作ることが
でき、かつコスト低減をなし得るセラミック多孔体を提
供できる。[Effects of the Invention] As detailed above, the present invention provides a ceramic porous body that can be easily manufactured with different chemical components and porous structures depending on the purpose of use, and that can reduce costs. can.
第1図は本発明の一実施例に係る管状アルミナ多孔体の
説明図、第2図は第1図のX−X+こ沿う要部の断面図
である。
1・・・管状アルミナ多孔体、2・・・最大径層、3・
・・細小径層。
出願人代理人 弁理士 鈴江武彦FIG. 1 is an explanatory diagram of a tubular alumina porous body according to an embodiment of the present invention, and FIG. 2 is a sectional view of a main part along line X-X+ in FIG. 1. 1... Tubular alumina porous body, 2... Maximum diameter layer, 3...
...Small diameter layer. Applicant's agent Patent attorney Takehiko Suzue
Claims (1)
ミック層を、気孔径の大きいセラミックスからなるセラ
ミック層から気孔径の小さいセラミックスからなるセラ
ミック層へ、順次厚さ方向に積層してなることを特徴と
するセラミック多孔体。A plurality of ceramic layers composed of ceramics having different pore diameters are sequentially laminated in the thickness direction from a ceramic layer composed of a ceramic layer with a large pore diameter to a ceramic layer composed of a ceramic layer with a small pore diameter. Ceramic porous body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2340579A JP2997542B2 (en) | 1990-11-30 | 1990-11-30 | Ceramic porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2340579A JP2997542B2 (en) | 1990-11-30 | 1990-11-30 | Ceramic porous body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04209772A true JPH04209772A (en) | 1992-07-31 |
JP2997542B2 JP2997542B2 (en) | 2000-01-11 |
Family
ID=18338350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2340579A Expired - Fee Related JP2997542B2 (en) | 1990-11-30 | 1990-11-30 | Ceramic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2997542B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002178137A (en) * | 2000-12-19 | 2002-06-25 | Tokyo Yogyo Co Ltd | Aluminum melting and holding furnace |
WO2006095564A1 (en) * | 2005-03-08 | 2006-09-14 | Bridgestone Corporation | Porous body composed of silicon carbide sintered body and method for manufacturing same |
JP2006321698A (en) * | 2005-05-20 | 2006-11-30 | National Institute Of Advanced Industrial & Technology | Ceramic structure and manufacturing method thereof |
JP2007292736A (en) * | 2006-03-27 | 2007-11-08 | Citizen Fine Tech Co Ltd | Porous cover and its manufacturing method |
JP2007326733A (en) * | 2006-06-07 | 2007-12-20 | Nippon Steel Corp | Method of manufacturing heat insulating gradient material and heat insulating gradient material |
CN120108793A (en) * | 2025-04-30 | 2025-06-06 | 烟台大学 | Boron carbide core control rod with gradient pore structure and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011218310A (en) * | 2010-04-12 | 2011-11-04 | Sumitomo Osaka Cement Co Ltd | Exhaust gas purification filter, and method for manufacturing the same |
-
1990
- 1990-11-30 JP JP2340579A patent/JP2997542B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002178137A (en) * | 2000-12-19 | 2002-06-25 | Tokyo Yogyo Co Ltd | Aluminum melting and holding furnace |
WO2006095564A1 (en) * | 2005-03-08 | 2006-09-14 | Bridgestone Corporation | Porous body composed of silicon carbide sintered body and method for manufacturing same |
JP2006321698A (en) * | 2005-05-20 | 2006-11-30 | National Institute Of Advanced Industrial & Technology | Ceramic structure and manufacturing method thereof |
JP2007292736A (en) * | 2006-03-27 | 2007-11-08 | Citizen Fine Tech Co Ltd | Porous cover and its manufacturing method |
JP2007326733A (en) * | 2006-06-07 | 2007-12-20 | Nippon Steel Corp | Method of manufacturing heat insulating gradient material and heat insulating gradient material |
CN120108793A (en) * | 2025-04-30 | 2025-06-06 | 烟台大学 | Boron carbide core control rod with gradient pore structure and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2997542B2 (en) | 2000-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5762841A (en) | Ceramic porous body having a continuous particle size distribution | |
JP4176278B2 (en) | Ceramic porous body and method for producing the same | |
EP1063005B1 (en) | Ceramic membrane | |
Mao | Processing of ceramic foams | |
JPH05254914A (en) | Method for making sintered body | |
CN113624048A (en) | Porous ceramic with straight-hole gradient structure, capillary core and preparation method of porous ceramic | |
KR101401084B1 (en) | Particle-stabilized ceramic foams coated on ceramic materials and the method for manufacturing the same | |
JPH04209772A (en) | Ceramic porous material | |
Leng et al. | Microstructure and permeability of porous YSZ ceramics with aligned and gradient pore channels fabricated by freeze casting | |
JPS61219742A (en) | Manufacture of glassy cellular inorganic substance | |
Persson | Surface and colloid chemistry in ceramic casting operations | |
JP2008260655A (en) | Ceramic porous body and filters using it | |
JP2002220292A (en) | Porous inorganic material having porous ceramic membrane and method for producing the same | |
JPH01274815A (en) | Production of ceramics filter | |
JPH0631174B2 (en) | Method for producing reticulated silica whiskers-ceramics porous body composite | |
JP2005255439A (en) | Nano / micro / macro multi-structured porous material and its production method | |
CN109534803B (en) | Charged ceramic membrane and preparation method thereof | |
KR101466576B1 (en) | Porous ceramic structure and manufacturing method thereof | |
Li et al. | Kieselguhr–Mullite ceramic membrane substrate fabricated by line compounding technique | |
EP2435241B1 (en) | Aligned porous substrates by directional melting and resolidification | |
JP4376479B2 (en) | Method for producing Si-SiC composite material | |
Kamitani et al. | Fabrication of Highly Porous Alumina‐Based Ceramics with Connected Spaces by Employing PMMA Microspheres as a Template | |
JP2566886B2 (en) | Method for producing porous sintered body having continuous pores | |
JPH03150276A (en) | Ceramic multilayer body and its manufacturing method | |
JPH04202069A (en) | Laminated ceramic porous body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 9 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |