[go: up one dir, main page]

JPH04207970A - Voltage regulator - Google Patents

Voltage regulator

Info

Publication number
JPH04207970A
JPH04207970A JP33370490A JP33370490A JPH04207970A JP H04207970 A JPH04207970 A JP H04207970A JP 33370490 A JP33370490 A JP 33370490A JP 33370490 A JP33370490 A JP 33370490A JP H04207970 A JPH04207970 A JP H04207970A
Authority
JP
Japan
Prior art keywords
regulator
frequency filter
high frequency
output
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33370490A
Other languages
Japanese (ja)
Inventor
Sunao Hasegawa
直 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO RIKOUSHIYA KK
Original Assignee
TOKYO RIKOUSHIYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO RIKOUSHIYA KK filed Critical TOKYO RIKOUSHIYA KK
Priority to JP33370490A priority Critical patent/JPH04207970A/en
Publication of JPH04207970A publication Critical patent/JPH04207970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To realize variable setting of an arbitrary sine wave output voltage by constituting a voltage regulator of a prestage high frequency filter, a regulator, a high frequency filter, a load and a control section. CONSTITUTION:A power supply is connected between input terminals 2-1, 2-2 and power is fed through a high frequency filter 3, a regulator 4 and a high frequency filter 5 to a load 7. The high frequency filter 3 functions such that the switching operation of the regulator 4 does not interfere with the power supply side. The regulator 4 performs switching operation according to PWM control signals A2, A3. The high frequency filter 5 smoothes a switching voltage Vsw fed from the regulator 4 into the original sine wave. A control section 8 performs continuous variable control of ON interval between 0 to a period T based on a set reference voltage Vs thus regulating the output voltage Vout between 0 to the power supply voltage Vin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は商用電源やその他の交流電源から負荷に供給す
る正弦波の出力電圧をo(V)から電源電圧の近くまで
任意に可変設定出来る電圧調整器(以下VRと略称する
)に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention allows the output voltage of a sine wave supplied to a load from a commercial power source or other AC power source to be variably set from o(V) to close to the power supply voltage. This relates to a voltage regulator (hereinafter abbreviated as VR).

(従来の技術) 従来のVRには例えば、 摺動型変圧器とモーターを組
合せた方式やサイリスタ位相制御ユニットとフィルタを
組合せた方式が有り、いずれも重量が重く形状が大きい
装置となる。
(Prior Art) Conventional VR includes, for example, a system that combines a sliding transformer and a motor, and a system that combines a thyristor phase control unit and a filter, both of which are heavy and large in size.

最近、小形軽量を指向したスイッチング方式では第6図
(a)に示すような整流ダイオードブリッジとゲートタ
ーンオフサイリスタ(以下GT○と略称する)を組合せ
た双方向スイッチ素子1組を用いたものがある。
Recently, some switching systems aiming at compactness and light weight use a set of bidirectional switching elements that combine a rectifier diode bridge and a gate turn-off thyristor (hereinafter abbreviated as GT○) as shown in Figure 6(a). .

第6図(a)によって説明すると、1は電源、2゜2は
入力端子、4は調整器、6,6は出力端子、7は負荷、
8は制御部、qは出力電圧設定器とからなる。
To explain with reference to Fig. 6(a), 1 is a power supply, 2゜2 is an input terminal, 4 is a regulator, 6, 6 is an output terminal, 7 is a load,
8 is a control section, and q is an output voltage setting device.

調整器は電源と負荷の間に接続されており、第6図(b
)のように電源電圧Vinの交流半周期に複数回前記調
整器の双方向スイッチ素子をオンオフし、出力電圧Vo
utを調整して負荷に出力する。
The regulator is connected between the power source and the load, as shown in Figure 6 (b
), the bidirectional switching element of the regulator is turned on and off several times during an AC half cycle of the power supply voltage Vin, and the output voltage Vo is
Adjust ut and output to the load.

出力電圧Voutを高い値に設定した時には、制御部で
その設定信号に依って作られるパルス幅変調(以下PW
Mと略称する)制御信号により調整器のスイッチングは
周期T内のオン時間tonが長く、オフ時間toffが
短くなり、低い出力電圧Voutは設定値に調整出来る
When the output voltage Vout is set to a high value, the control section generates pulse width modulation (hereinafter referred to as PW) based on the setting signal.
According to the control signal (abbreviated as M), the switching of the regulator is such that the on time ton within the period T is long and the off time toff is short, so that the low output voltage Vout can be adjusted to the set value.

逆に出力電圧Voutを低い値に設定した時には、制御
部の機能により調整器のスイッチングはオフ時間tof
fが長く、オン時間tonが短くなり、高い出力電圧V
outを設定値に調整出来る。
Conversely, when the output voltage Vout is set to a low value, the switching of the regulator is controlled by the off-time tof due to the function of the control section.
f is long, on-time ton is short, and high output voltage V
Out can be adjusted to the set value.

(発明が解決しようとする課題) 第6図(a)に示す回路では次のような課題を有する。(Problem to be solved by the invention) The circuit shown in FIG. 6(a) has the following problems.

(1)第6図(b)のように電源から負荷に流れている
電流Ioutを調整器で短時間にオフしたとき、前記ス
イッチ素子GT○のアノードとカソード間にはニクロム
線などの抵抗負荷が持っている小さな値のインダクタン
スしおよび電源側及び配線に存在している無視できない
値のインダクタンスLが発生する過大な逆起電力VLが
加わるので第6図(c)のVakような電圧が印加する
。このような過大な逆起電力VLを吸収して、GT○を
破損から保護するためのスナバ−回路やサージ吸収素子
が必要となる。
(1) When the current Iout flowing from the power supply to the load is turned off by the regulator in a short time as shown in Fig. 6(b), a resistive load such as a nichrome wire is placed between the anode and cathode of the switching element GT○. The small value of inductance that exists on the power supply side and the non-negligible inductance L that exists on the power supply side and the wiring generates an excessive back electromotive force VL, so a voltage such as Vak in Figure 6 (c) is applied. do. A snubber circuit or a surge absorbing element is required to absorb such an excessive back electromotive force VL and protect GT◯ from damage.

例えば、インダクタンス し・10(μH)出力電流 
Iout=10  (A) ターンオフタイム tf=1.0 (μ5ee)周波数
 f=20(KH2) とした場合の、逆起電力VLとスナバ−回路の損失Pl
ossは?  VL=L−ΔIout/1f=100 
(V)P1oss=0.5LIout2f =1.0(
W)  となる。
For example, inductance and 10 (μH) output current
Iout=10 (A) Turn-off time tf=1.0 (μ5ee) Frequency f=20 (KH2), back electromotive force VL and snubber circuit loss Pl
What about oss? VL=L-ΔIout/1f=100
(V)P1oss=0.5LIout2f=1.0(
W) becomes.

前記例の場合はニクロム線などの抵抗負荷であるのでイ
ンダクタンスが小さいために逆起電力とスナバ−回路の
損失は比較的小さなスナバ−回路やサージ電圧抑制素子
で対策出来るが、モーター等の巻線と鉄芯で構成してい
る負荷の場合はインダクタンスが極めて大きい。
In the case of the above example, since the load is a resistive load such as a nichrome wire, the inductance is small, so the back electromotive force and the loss of the snubber circuit can be countered with a relatively small snubber circuit or surge voltage suppressor, but the winding of the motor etc. In the case of a load consisting of a steel core and an iron core, the inductance is extremely large.

例えば□、インダクタンス L=10 (n+H)出力
電流 Iout=10 (A) ターンオフタイム tf=10 (μ5ee)周波数 
f= 2 (KHz) とした場合の、逆起電力VLとスナバ−回路の損失Pl
ossは’7    VL=L−ΔIout/1f=1
0 (KV)P1oss=0.5LIout2f =1
.0 (KW)ともなる。
For example, □, inductance L=10 (n+H) output current Iout=10 (A) turn-off time tf=10 (μ5ee) frequency
Back electromotive force VL and snubber circuit loss Pl when f = 2 (KHz)
oss is '7 VL=L-ΔIout/1f=1
0 (KV)P1oss=0.5LIout2f=1
.. 0 (KW).

逆起電力とスナバ−回路の損失が極めて大きく、装置の
効率が極めて低くて他の方式に依らなければ実用に供さ
ないことが分かる。
It can be seen that the back electromotive force and the loss of the snubber circuit are extremely large, and the efficiency of the device is extremely low, so that it cannot be put to practical use unless other methods are used.

つまり、第6図の方式は抵抗負荷のみに使用できるだけ
で、一般的負荷に対する汎用性が極めて狭い。
In other words, the method shown in FIG. 6 can only be used for resistive loads, and its versatility for general loads is extremely limited.

(2)調整器がスイッチング動作したとき、電源側の電
流が直接急峻に変化するので、電源波形の歪みや外部へ
伝導ノイズとして悪影響を与える。
(2) When the regulator performs a switching operation, the current on the power supply side changes directly and sharply, causing distortion of the power supply waveform and adverse effects on the outside as conduction noise.

(3)調整器がスイッチング動作したとき、負荷に加わ
る電圧や電流が直接急峻に変化するので、使用出来る負
荷が限定され、又外部にノイズ等の悪影響を与える。
(3) When the regulator performs a switching operation, the voltage and current applied to the load directly change sharply, which limits the load that can be used and also causes negative effects such as noise on the outside.

静止型VRの小形軽量化及び高性能化は従来よりユーザ
ーから要望されていたが、交流電源の諸条件や負荷の多
様性に対して適した回路方式やデバイスの応用や開発に
難しさが有り、現在までなかなか製品化出来なかった。
Users have been requesting smaller, lighter weight, and higher performance static VRs, but it has been difficult to apply and develop circuit systems and devices that are suitable for the various AC power conditions and loads. , until now it has not been possible to commercialize it.

本発明の目的は前記の諸課題を除去し、もしくは著しく
改善し、 スイッチングのときのエネルギーを円滑に転
流し、負荷に任意の正弦波出力電圧を容易に可変設定出
来−て、小形軽量で、効率および力率が良く、出力電圧
の波形歪が少なく、信頼性が高くかつ低価格のVRを提
供することにある。
The purpose of the present invention is to eliminate or significantly improve the above-mentioned problems, to smoothly commutate energy during switching, to easily and variably set an arbitrary sine wave output voltage to a load, and to be small and lightweight. The object of the present invention is to provide a highly reliable and low-cost VR with good efficiency and power factor, little waveform distortion of output voltage.

(課題を解決するための手段) 前記の目的を達するために本発明の手段を第1図によっ
て説明する。
(Means for Solving the Problems) The means of the present invention to achieve the above object will be explained with reference to FIG.

交流電源入力端子2−1.2−2間に前段高周波フィル
タ3の入力側を接続する。
The input side of the pre-stage high frequency filter 3 is connected between the AC power input terminals 2-1 and 2-2.

高周波フィルタ3の出力側に調整器4の入力側を接続す
る。
The input side of the regulator 4 is connected to the output side of the high frequency filter 3.

調整器4の出力側に高周波フィルタ5の入力側を接続す
る。
The input side of a high frequency filter 5 is connected to the output side of the regulator 4.

高周波フィルタ5の出力側に出力端子6−1.6−2を
介して負荷7を接続する。
A load 7 is connected to the output side of the high frequency filter 5 via output terminals 6-1, 6-2.

前記調整器4の入力側は交流半周期の間に複数回オンオ
フスイッチングを相反して行う二個の双方向のスイッチ
素子4−1.4−2を直列接続した両端とする。
The input side of the regulator 4 has two bidirectional switching elements 4-1 and 4-2 connected in series, each of which performs on-off switching multiple times during an AC half cycle.

双方向スイッチ素子4−1.4−2の直列接続点と前記
調整器の入力側の片方との間を前記調整器4の出力側と
する。
The output side of the regulator 4 is between the series connection point of the bidirectional switch elements 4-1, 4-2 and one of the input sides of the regulator.

前記双方向スイッチ素子4−1.4−2に、任意の正弦
波出力電圧を得るためのPWM信号を出力する制御部8
を接続してなるものである。
A control unit 8 that outputs a PWM signal to obtain an arbitrary sine wave output voltage to the bidirectional switch element 4-1, 4-2.
It is made by connecting.

(作用) 前記手段の作用を第1.2.3図に依って説明する。(effect) The operation of the above means will be explained with reference to FIG. 1.2.3.

電源電圧Vinは入力端子2−1.2−2間から高周波
フィルタ3.調整器4.高周波フィルタ5を経由して出
力端子6−1.6−2間の負荷7に出力電圧Voutと
して出力する。 制御部8のPWM制御信号は正弦波−
周期について常に一定の比率で調整器4をスイッチング
することにより入力の正弦波と同じ正弦波出力電圧Vo
utとして出力する事が出来る。
The power supply voltage Vin is applied between the input terminals 2-1 and 2-2 to the high frequency filter 3. Adjuster 4. It is output as an output voltage Vout via the high frequency filter 5 to the load 7 between the output terminals 6-1, 6-2. The PWM control signal of the control unit 8 is a sine wave.
By always switching the regulator 4 at a constant ratio with respect to the period, the sine wave output voltage Vo is the same as the input sine wave.
It can be output as ut.

出力電圧Voutを高い値に設定したときには、PWM
制御信号による前記調整器4のスイッチング動作を、第
2図(e)のように電源側と負荷側を接続して出力にカ
行するスイッチ素子4−1のオン時間ton=tl−t
2を長くし、次に第2図(f)のように電源側から負荷
側を遮断して高周波フィルタ6の入力側を短絡して電流
ILを転流するスイッチ素子4−2のオン時間tOff
=t2−t3を短くし、スイッチング電圧Vswは低い
出力電圧Voutを上昇させて調整し、高周波フィルタ
6で平滑して出力端子間の負荷に出力する。
When the output voltage Vout is set to a high value, the PWM
The switching operation of the regulator 4 according to the control signal is controlled by the on-time ton=tl-t of the switching element 4-1 which connects the power supply side and the load side and outputs it as shown in FIG. 2(e).
2 is lengthened, and then, as shown in FIG. 2(f), the on time tOff of the switch element 4-2 is cut off from the power supply side to the load side, and the input side of the high frequency filter 6 is short-circuited to commutate the current IL.
=t2-t3 is shortened, the switching voltage Vsw is adjusted by increasing the low output voltage Vout, smoothed by the high frequency filter 6, and output to the load between the output terminals.

出力電圧Voutを低い値に設定したときには、PWM
制御信号による前記調整器4のスイッチング動作を、ス
イッチ素子4−1のオン時間tonを短くし、スイッチ
素子4−2のオン時間を長くし、 スイッチング電圧V
swは高い出力電圧Voutを降下させて調整する。
When the output voltage Vout is set to a low value, the PWM
The switching operation of the regulator 4 according to the control signal is performed by shortening the on-time ton of the switching element 4-1 and lengthening the on-time of the switching element 4-2, so that the switching voltage V
sw is adjusted by lowering the high output voltage Vout.

前記調整器4のスイッチング動作はカ行するスイッチ素
子4−1がオフのとき、負荷側の電流ILを転流する交
流スイッチ素子4−2がオンし、負荷側にどのようなイ
ンダクタンスが有っても過大な逆起電力が発生せず、こ
のエネルギーを円滑に負荷に転流するように作用する。
The switching operation of the regulator 4 is such that when the switching element 4-1 is turned off, the AC switching element 4-2, which commutates the current IL on the load side, is turned on, and what kind of inductance is present on the load side. Even when the load is off, an excessive back electromotive force is not generated, and this energy is smoothly commutated to the load.

(実施例) 以下、図面を参照して、本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

〈メイン回路〉 第1図のように入力端子2−1゜2−
2間に電源を接続し、同じく入力端子2−1.2−2間
から高周波フィルタ3、調整器4、高周波フィルタ5を
経由して出力端子6−1.6−2間に接続し、同じく出
力端子6−1.6−2間に負荷8を接続して電源電力を
負荷に供給する。
<Main circuit> As shown in Figure 1, input terminal 2-1゜2-
Connect a power supply between input terminals 2-1. A load 8 is connected between the output terminals 6-1 and 6-2 to supply power from the source to the load.

く高周波フィルタ3〉 高周波フィルタ3は入力端子2
−1.2−2間にチョークコイル3−1とコンデンサ3
−2を直列接続した両端を高周波フィルタ3の入力側と
して接続し、コンデンサ3−2の両端を高周波フィルタ
3の出力側とする。調整器4によるスイッチング動作の
影響と電源側からの影響をお互いに干渉しないように作
用する。
High frequency filter 3> High frequency filter 3 is input terminal 2
-1. Choke coil 3-1 and capacitor 3 between 2-2
-2 connected in series are connected as the input side of the high frequency filter 3, and both ends of the capacitor 3-2 are connected as the output side of the high frequency filter 3. It acts so that the influence of the switching operation by the regulator 4 and the influence from the power supply side do not interfere with each other.

く調整器4〉 調整器4は高周波フィルタ3の出力側に
スイッチ素子4−1と相反した動作をするスイッチ素子
4−2を直列接続した両端を調整器4の入力側として接
続し、交流スイッチ素子4−2の両端を調整器4の出力
側とし、電界効果トランジスタ(以下FETと略称する
)を逆極性に直列接続したものを双方向スイッチ素子と
し、PWM制御信号A2. A3に応じてスイッチング
動作をする。
Regulator 4> The regulator 4 connects the output side of the high-frequency filter 3 with a switch element 4-1 and a switch element 4-2 that operates in opposition to each other in series, and connects both ends of the switch element 4-1 and the switch element 4-2, which operate in opposition to each other, as the input side of the regulator 4. Both ends of the element 4-2 are the output sides of the regulator 4, field effect transistors (hereinafter abbreviated as FETs) connected in series with opposite polarities are used as a bidirectional switch element, and the PWM control signals A2. A switching operation is performed according to A3.

く高周波フィルタ5〉 高周波フィルタ5は調整器4の
出力側の端子間にチョークコイル5−1とコンデンサ5
−2を直列接続した両端を高周波フィルタ5の入力側と
して接続し、コンデンサ5−2の両端を高周波フィルタ
5の出力側とする。調整器4によるスイッチング電圧V
swの波形を元の正弦波に平滑する。
High frequency filter 5> The high frequency filter 5 has a choke coil 5-1 and a capacitor 5 between the output side terminals of the regulator 4.
-2 connected in series are connected as input sides of the high frequency filter 5, and both ends of the capacitor 5-2 are connected as the output sides of the high frequency filter 5. Switching voltage V by regulator 4
Smooth the waveform of sw to the original sine wave.

〈制御部9〉 制御部9は第3図(a)、(b)のよう
にスイッチングIC部8−1内で鋸歯状波電圧Vtrと
出力電圧設定基準電圧Vsを比較し、ここで電圧Vs値
の高低がPWM信号Aとなり、信号Aをパルス整形回路
網(以下PFNと略称する)8−2に入力し、信号Aを
反転した信号A1を作り、信号A。
<Control unit 9> The control unit 9 compares the sawtooth wave voltage Vtr and the output voltage setting reference voltage Vs in the switching IC unit 8-1 as shown in FIGS. 3(a) and 3(b), and here the voltage Vs The high and low values become the PWM signal A, and the signal A is input to a pulse shaping circuit network (hereinafter abbreviated as PFN) 8-2 to create a signal A1 which is an inversion of the signal A.

A1の立上がり時間をわずかに遅らせたPWM制御信号
A2. A3を絶縁・ドライブ部8−3を経由して前記
スイッチ素子4−1.4−2のFETのゲート、ソース
間に入力して任意の正弦波出力電圧Voutの設定をす
る。
PWM control signal A2. with a slightly delayed rise time of A1. An arbitrary sine wave output voltage Vout is set by inputting A3 between the gate and source of the FET of the switching element 4-1, 4-2 via the insulation/drive section 8-3.

く動作説明〉 次に上記実施例の動作について説明する。Operation explanation> Next, the operation of the above embodiment will be explained.

第2図(a)ようにの電源電圧Vinは入力端子間から
高周波フィルタ3.調整器4.高周波フィルタ5を経由
して出力端子間の負荷7に出力電圧Voutとして印加
すると負荷力率によって出力電流routのような電流
が出力端子を流れる。
The power supply voltage Vin as shown in FIG. 2(a) is applied between the input terminals of the high frequency filter 3. Adjuster 4. When the output voltage Vout is applied to the load 7 between the output terminals via the high frequency filter 5, a current similar to the output current rout flows through the output terminals depending on the load power factor.

電源電圧Vinが高周波フィルタ3を通って調整器4に
よってスイッチングされ、高周波フィルタ5の入力側に
印加するスイッチング電圧Vswと高周波フィルタ5の
チョークコイル5−1を流れる電流ILは第2図(b)
のように表わされ、その部分子1を分かり易いように拡
大したのが第2図(c)、 (d)であり、メイン回路
の動作状態を表わしたのが第2図(e)、(f)である
When the power supply voltage Vin passes through the high frequency filter 3 and is switched by the regulator 4, the switching voltage Vsw applied to the input side of the high frequency filter 5 and the current IL flowing through the choke coil 5-1 of the high frequency filter 5 are as shown in FIG. 2(b).
Figures 2(c) and 2(d) are enlarged views of the molecule 1 for ease of understanding, and Figures 2(e) and 2(e) represent the operating state of the main circuit. (f).

第2図(C)の区間t1〜t2は第2図(e)のように
、スイッチ素子4−1がオン、同4−2がオフとなり、
電源電圧Vinはスイッチ素子4−1を通って高周波フ
ィルタ5の入力側に印加して、第2図(d)のようにチ
ョークコイル5−1を流れる電流ILをカ行して値は増
大し、スイッチ素子4−1を流れる電流Iaの増大分は
 主にコンデンサ3−2から 供給されチョークコイル
5−1にエネルギーとして蓄えられる。
In the interval t1 to t2 of FIG. 2(C), as shown in FIG. 2(e), the switching element 4-1 is on and the switching element 4-2 is off,
The power supply voltage Vin is applied to the input side of the high frequency filter 5 through the switch element 4-1, and the value increases by causing the current IL to flow through the choke coil 5-1 as shown in FIG. 2(d). , an increase in the current Ia flowing through the switch element 4-1 is mainly supplied from the capacitor 3-2 and stored as energy in the choke coil 5-1.

同じく、区間t2〜t3は第2図(f)のように、スイ
ッチ素子4−1と4−2のオンとオフが互いに反転して
、同4−1がオフ、同4−2がオンとなり、電源電圧V
inはスイッチ素子4−1で遮断し、 高周波フィルタ
6の入力側はスイッチ素子4−2で短絡され電流ILは
転流して値は減少し、スイッチ素子4−2を流れる電流
Ifの減少分はチョークコイル5−1の蓄積されたエネ
ルギーとして負荷に放出される。
Similarly, in the interval t2 to t3, as shown in FIG. 2(f), the on and off states of the switch elements 4-1 and 4-2 are reversed, so that the switch elements 4-1 is off and the switch element 4-2 is on. , power supply voltage V
in is cut off by the switch element 4-1, the input side of the high frequency filter 6 is short-circuited by the switch element 4-2, the current IL is commutated and its value decreases, and the decrease in the current If flowing through the switch element 4-2 is The energy stored in the choke coil 5-1 is released to the load.

同じく、区間t3〜t4は再びスイッチ素子4−1と4
−2が互いに反転して、区間t1〜t2と同じ状態とな
る。
Similarly, in the section t3 to t4, switch elements 4-1 and 4
-2 are inverted to each other, resulting in the same state as the interval t1 to t2.

このようにして、高周波フィルタ5の入力側には電源電
圧VinをPWMスイッチングした第2図(C)のよう
なスイッチング電圧Vswが印加し、高周波フィルタ5
を通過して平滑した出力電圧Voutは次式で表わすこ
とができる。
In this way, the switching voltage Vsw as shown in FIG. 2(C) obtained by PWM switching the power supply voltage Vin is applied to the input side of the high frequency filter 5, and the high frequency filter
The output voltage Vout smoothed by passing through can be expressed by the following equation.

Vout= (ton/T) −Vinつまり、制御部
8の設定基準電圧Vsによって第2図(C)の周期T時
間内のオン時間tonを0から周期Tまでの間を連続可
変制御することによって出力電圧Voutを0(■)か
ら電源電圧Vinまで調整できる。
Vout= (ton/T) -Vin That is, by continuously variable control of the on time ton within the period T time in FIG. 2(C) from 0 to the period T using the set reference voltage Vs of the control unit 8. The output voltage Vout can be adjusted from 0 (■) to the power supply voltage Vin.

ここに、オン時間ton=t2−tl=t4−t3周期
 T=t3−tl=t4−t2 その他の詳細な回路定数は省略する。
Here, on-time ton=t2-tl=t4-t3 period T=t3-tl=t4-t2 Other detailed circuit constants are omitted.

く出力電圧Voutを高い値に設定したいとき〉第3図
(a)のように、希望する出力電圧Voutに相当する
基準設定電圧Vsは鋸歯状波電圧Vtrの最小値から尖
頭値までの間にあって、高い方に変化させて行き、スイ
ッチングIC部8−1内の比較回路、PFN9−6、絶
縁・ドライブ部の機能によって、第3図(b)のスイッ
チング電圧Vswはオン時間ton’が長く、オフ時間
toffが短くなって行き、低い出力電圧Voutを適
宜上昇させて調整出来る。
When you want to set the output voltage Vout to a high value> As shown in Fig. 3(a), the reference setting voltage Vs corresponding to the desired output voltage Vout is between the minimum value and the peak value of the sawtooth wave voltage Vtr. The switching voltage Vsw shown in FIG. 3(b) has a long on-time ton' due to the functions of the comparator circuit in the switching IC section 8-1, the PFN 9-6, and the insulation/drive section. , the off-time toff becomes shorter, and the low output voltage Vout can be adjusted by increasing it appropriately.

〈出力電圧Voutを低い値に設定したいとき〉逆に基
準設定電圧Vsを鋸歯状波電圧Vtrの低い方に変化さ
せて行き、第3図(b)のスイッチング電圧Vswはオ
ン時間tonが短く、オフ時間toffが長くなって、
高い出力電圧Voutを適宜降下させて調整する。
<When you want to set the output voltage Vout to a low value> Conversely, the reference setting voltage Vs is changed to the lower side of the sawtooth wave voltage Vtr, and the switching voltage Vsw shown in FIG. 3(b) has a short on time ton. The off time toff becomes longer,
Adjust by lowering the high output voltage Vout as appropriate.

〈他の実施例〉 (1)前記メイン回路の構成は第1図を一実施例とする
が、第4図(a)のように高周波フィルタ5の出力側と
出力端子6,6の間に単巻変圧器10を挿入すると出力
電圧Voutは電源電圧Vinより高い電圧または低い
電圧で大きい出力電流を得ることも出来るし、絶縁型変
圧器によれば電源側と負荷側を絶縁することも出来る。
<Other Embodiments> (1) The configuration of the main circuit is shown in FIG. 1 as an example, but as shown in FIG. If the autotransformer 10 is inserted, a large output current can be obtained with the output voltage Vout being higher or lower than the power supply voltage Vin, and an isolation type transformer can isolate the power supply side and the load side. .

(2)メイン回路の構成は第1図を一実施例とするが、
 第4図(b)のように高周波フィルタ5のチョークコ
イル5−1とコンデンサ5−2の間にさらに2個の双方
向スイッチ素子4−3.4−4を接続することにより、
出力電圧Voutが電源電圧Vinより低い設定範囲で
は双方向スイッチ素子4−3をオフ、同4−4をオンの
ままとして第1図の方式と同じように双方向スイッチ素
子4−1.4−2のスイッチングを相反した動作にて出
力を調整し、また出力電圧Voutを電源電圧Vinよ
りも高くしたいときには双方向スイッチ素子4−1をオ
ン、同4−2をオフのままとして双方向スイッチ素子4
−3.4−4のスイッチングを相反したPWM制御動作
にてチョークコイル5−1の逆起電力によって出力電圧
Voutを昇圧し調整を出来る。
(2) The configuration of the main circuit is shown in FIG. 1 as an example.
By connecting two more bidirectional switching elements 4-3 and 4-4 between the choke coil 5-1 and the capacitor 5-2 of the high-frequency filter 5 as shown in FIG. 4(b),
In the setting range where the output voltage Vout is lower than the power supply voltage Vin, the bidirectional switching element 4-1.4- is turned off, and the bidirectional switching element 4-4 is left on, in the same manner as in the method shown in FIG. If you want to adjust the output by performing opposite switching operations, and to make the output voltage Vout higher than the power supply voltage Vin, the bidirectional switching element 4-1 is turned on and the bidirectional switching element 4-2 is left off. 4
-3. The output voltage Vout can be boosted and adjusted by the back electromotive force of the choke coil 5-1 by the PWM control operation that is opposite to the switching of 4-4.

この方式は前記項(1)の変圧器による昇圧に対して、
変圧器を使用しないで昇圧出来るのでさらに小形軽量化
ができる。
In this method, for boosting voltage using a transformer in the above section (1),
Since the voltage can be stepped up without using a transformer, it is possible to further reduce the size and weight.

(3)メイン回路の構成は第1図を一実施例とするが、
第4図(C)のように調整器4にさらに2個の双方向ス
イッチ素子4−3.4−4を接続することにより、出力
電圧Voutが電源電圧Vinと同じ位相の出力をする
場合は双方向スイッチ素子4−3をオフ、同4−4をオ
ンのままとして第1図の方式と同じように双方向スイッ
チ素子4−1.4−2のスイッチングを相反したPWM
制御動作にて出力を調整し、また出力電圧Voutが電
源電圧Vinと逆相の出力をする場合はスイッチ素子4
−1をオン、同4−2をオフのままとして、同様にスイ
ッチ素子4−3.4−4のスイッチングを相反したPW
M制御動作にて調整をすると、出力電圧Voutは連続
的に電源電圧Vin値から0(v)を経由して電源電圧
Vinの逆相の電圧値までを調整出来る。
(3) The configuration of the main circuit is shown in FIG. 1 as an example.
When the output voltage Vout is output in the same phase as the power supply voltage Vin by further connecting two bidirectional switching elements 4-3 and 4-4 to the regulator 4 as shown in FIG. 4(C), A PWM method in which the switching of the bidirectional switching elements 4-1 and 4-2 is reversed in the same way as the method shown in Fig. 1, with the bidirectional switching element 4-3 turned off and the bidirectional switching element 4-4 kept on.
The output is adjusted by control operation, and when the output voltage Vout is output in the opposite phase to the power supply voltage Vin, the switch element 4
-1 is turned on and switch 4-2 is left off, and the switching of switch elements 4-3 and 4-4 is similarly reversed.
When adjusted by the M control operation, the output voltage Vout can be continuously adjusted from the power supply voltage Vin value through 0 (v) to a voltage value of the opposite phase of the power supply voltage Vin.

(4)メイン回路の構成は第1図を一実施例とするが、
 第4図(d)のように調整器4の双方向スイッチ素子
4−2と高周波フィルタ5のチョークコイル5−1の接
続位置をお互いに入れ替えて、第1図の方式と同じよう
にスイッチ素子4−1.4−2のスイッチングを相反し
たPWM制御動作にて出力を調整すると、出力電圧Vo
utは電源電圧Vinと逆相の出力をすることが出来る
。 この方式は前記項(1)、(3)の変圧器やスイッ
チ素子追加なしで逆相出力が得られる。
(4) The configuration of the main circuit is shown in FIG. 1 as an example.
As shown in FIG. 4(d), the connection positions of the bidirectional switching element 4-2 of the regulator 4 and the choke coil 5-1 of the high-frequency filter 5 are exchanged with each other, and the switching element is 4-1. When the output is adjusted by PWM control operation that contradicts the switching in 4-2, the output voltage Vo
ut can output an output having a phase opposite to that of the power supply voltage Vin. In this method, a negative phase output can be obtained without adding the transformer or switch element described in items (1) and (3) above.

(5)前記メイン回路の入力端子2−1.2−2側及び
出力端子6−1.6−2側には電源及び負荷のオンオフ
および過大電流からの保護の為にノーヒユーズブレーカ
を、またこのVRの使用環境によっては伝導ノイズの影
響を低下させるためにノイズフィルタやノイズカット変
圧器を接続することも出来る。
(5) A no-fuse breaker is installed on the input terminal 2-1.2-2 side and the output terminal 6-1.6-2 side of the main circuit to turn on/off the power supply and load and to protect against excessive current. Depending on the usage environment of this VR, a noise filter or a noise cut transformer may be connected to reduce the influence of conduction noise.

(6)調整器4の各スイッチ素子は前記第1図のFET
を逆極性に直列接続して双方向スイッチ素子としたもの
を一実施例とするが、 第5図(a)。
(6) Each switch element of the regulator 4 is the FET shown in FIG.
In one embodiment, a bidirectional switch element is obtained by connecting the two in series with opposite polarities, as shown in FIG. 5(a).

(b)のようにFETの代わりに自己ターンオフ機能を
持った半導体素子、例えばトランジスタや工GBT、G
T○、SITに高速ダイオードを前記素子の電流方向と
逆向きに並列接続したものと置き換えた交流スイッチ素
子又は、第5図(C)、(d)。
As shown in (b), semiconductor elements with a self-turn-off function are used instead of FETs, such as transistors, GBTs, and GBTs.
T○, an AC switching element in which SIT is replaced with a high-speed diode connected in parallel in the direction opposite to the current direction of the element, or FIGS. 5(C) and (d).

(e)のように高速ダイオードの整流ブリッジの正極と
負極端子間にFETのドレインとソース、又はトランジ
スタのコレクタとエミッタ、又はGT○のアノードとカ
ソードを各々接続し前記整流ブリッジの交流端子間を交
流スイッチ素子としたものでも同様の機能を有する。
As shown in (e), connect the drain and source of an FET, the collector and emitter of a transistor, or the anode and cathode of a GT○ between the positive and negative terminals of the rectifier bridge of the high-speed diode, respectively, and connect the AC terminals of the rectifier bridge. An AC switch element also has a similar function.

(7)調整器4の双方向スイッチ素子4〜1と4−2、
または同4−3と4−4が互いに反転するとき各素子の
スイッチング特性による上下素子による短絡を防止する
ために制御部9のPFN9−6で各双方向スイッチ素子
のターンオンを僅かに遅らせるデッドタイムを設けてお
り、この時に素子間に発生するサージ電圧を吸収するス
ナバ−回路を各スイッチ素子に並列接続することも出来
る。
(7) bidirectional switching elements 4 to 1 and 4-2 of regulator 4;
Or, when 4-3 and 4-4 are reversed, the dead time is set to slightly delay the turn-on of each bidirectional switching element using the PFN 9-6 of the control unit 9 in order to prevent short circuits caused by the upper and lower elements due to the switching characteristics of each element. It is also possible to connect a snubber circuit in parallel to each switch element to absorb the surge voltage generated between the elements at this time.

(8)本発明のVRの動作開始時や瞬時停電回復時は出
力電圧設定基準電圧Vsを瞬時に低下させて一定の時間
を掛けて定常値Vsまで上昇することにより出力電圧V
outは基準電圧Vsに従って低い電圧から定常値Vo
utまで円滑に上昇させることも出来る。
(8) When the VR of the present invention starts operating or recovers from a momentary power outage, the output voltage setting reference voltage Vs is instantly lowered and then raised to the steady-state value Vs over a certain period of time.
out changes from a low voltage to a steady value Vo according to the reference voltage Vs.
It is also possible to smoothly raise it to ut.

(9)制御部8の動作用電源は電源変圧器やスイッチン
グ直流電源を設けて供給することも出来る。
(9) The operating power for the control unit 8 can be supplied by providing a power transformer or a switching DC power supply.

(発明の効果) 本発明は前記のように構成したので以下の効果を有する
(Effects of the Invention) Since the present invention is constructed as described above, it has the following effects.

(1)調整器4に電流転流用の双方向スイッチ素子4−
2が付いており、常に電流ループが確立しているのでど
のような力率の負荷にも使用出来て、さらに、スナバ−
回路の損失も極めて小さくできる。
(1) Bidirectional switch element 4- for current commutation in regulator 4
2, a current loop is always established, so it can be used with loads of any power factor, and it also has a snubber.
Circuit loss can also be extremely reduced.

(2)調整器でスイッチングされた波形は高周波フィル
タ5.に依って再び元の正弦波に平滑されるのでどのよ
うな種類の負荷にも使用出来る。
(2) The waveform switched by the regulator is passed through the high frequency filter 5. It can be used for any kind of load because it is smoothed back to the original sine wave by .

(3)調整器でスイッチングしたときの高周波電流は電
源側の高周波フィルタ3から供給するので電源側に波形
歪みや伝導ノイズ等の悪影響を極めて小さく出来る。
(3) Since the high frequency current when switched by the regulator is supplied from the high frequency filter 3 on the power supply side, the adverse effects of waveform distortion, conduction noise, etc. on the power supply side can be minimized to a minimum.

(4)連続的に可変出来るPWM制御によって、0(り
から電源電圧Vinまでなど、任意の出力電圧に設定出
来る。
(4) Continuously variable PWM control allows the output voltage to be set to any desired value, such as from 0 to the power supply voltage Vin.

(5)メイン回路を構成する主な部品は高周波用の小形
の部品と半導体の部品のみであるため、装置全体を小形
軽量(体積比115〜1/2)に出来る。
(5) Since the main components constituting the main circuit are only small high-frequency components and semiconductor components, the entire device can be made small and lightweight (volume ratio 115 to 1/2).

(6)調整器でスイッチングされた電圧波形の周波数は
超音波帯としであるので騒音は極めて小さb為。
(6) The frequency of the voltage waveform switched by the regulator is in the ultrasonic band, so the noise is extremely small.

以上の効果が有るために他の方式と比較しても本発明は
極めて優れていることが理解される。
It is understood that because of the above effects, the present invention is extremely superior compared to other systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関わるVRの一実施例を示す回路図、
第2図と第3図は本発明に関わるVRによる波形図形と
メイン部分回路図、第4図と第5図は本発明に関わるV
Rの他の実施例を示す部分回路図、第6図は従来方式の
VRの回路図と波形図形である。 1・・・電源、2・・・入力端子、3・・・高周波フィ
ルタ、4・・・調整器、5・・・高周波フィルタ、6・
・・出力端子、7・・・負荷、8・・・制御部、9・・
・出力電圧設定器、  10・・・・単巻変圧器。 第2図 第35!! 第5図 (a)(b)
FIG. 1 is a circuit diagram showing an embodiment of VR related to the present invention,
Figures 2 and 3 are waveform diagrams and main circuit diagrams of VR related to the present invention, and Figures 4 and 5 are VR waveforms and main circuit diagrams related to the present invention.
FIG. 6 is a partial circuit diagram showing another embodiment of R, and is a circuit diagram and waveform diagram of a conventional VR. DESCRIPTION OF SYMBOLS 1... Power supply, 2... Input terminal, 3... High frequency filter, 4... Adjuster, 5... High frequency filter, 6...
...Output terminal, 7...Load, 8...Control unit, 9...
・Output voltage setting device, 10...Auto transformer. Figure 2 35! ! Figure 5(a)(b)

Claims (1)

【特許請求の範囲】[Claims] 1 交流電源入力端子間に前段高周波フィルタの入力側
を接続し、この前段高周波フィルタの出力側に調整器の
入力側を接続し、この調整器の出力側に後段高周波フィ
ルタの入力側を接続し、この後段高周波フィルタの出力
側に出力端子を介して負荷を接続し、前記調整器の入力
側は交流半周期の間に複数回オンオフスイッチングを相
反して行う二個の双方向の交流スイッチ素子を直列接続
した両端とし、この双方向スイッチ素子の直列接続点と
前記調整器の入力側の片方との間を前記調整器の出力側
とし、前記双方向スイッチ素子に、任意の正弦波出力電
圧を得るためのパルス幅変調信号を出力する制御部を接
続してなることを特徴とする電圧調整器。
1 Connect the input side of the front-stage high-frequency filter between the AC power input terminals, connect the input side of the regulator to the output side of this front-stage high-frequency filter, and connect the input side of the rear-stage high-frequency filter to the output side of this regulator. , a load is connected to the output side of this latter-stage high-frequency filter via an output terminal, and the input side of the regulator includes two bidirectional AC switching elements that perform on-off switching multiple times in a reciprocal manner during an AC half cycle. are both ends connected in series, and the output side of the regulator is between the series connection point of this bidirectional switch element and one of the input sides of the regulator, and an arbitrary sine wave output voltage is applied to the bidirectional switch element. A voltage regulator characterized in that it is connected to a control section that outputs a pulse width modulation signal to obtain a pulse width modulation signal.
JP33370490A 1990-11-30 1990-11-30 Voltage regulator Pending JPH04207970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33370490A JPH04207970A (en) 1990-11-30 1990-11-30 Voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33370490A JPH04207970A (en) 1990-11-30 1990-11-30 Voltage regulator

Publications (1)

Publication Number Publication Date
JPH04207970A true JPH04207970A (en) 1992-07-29

Family

ID=18269032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33370490A Pending JPH04207970A (en) 1990-11-30 1990-11-30 Voltage regulator

Country Status (1)

Country Link
JP (1) JPH04207970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333783A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Power output apparatus and vehicle equipped with the same
JP2017518732A (en) * 2014-06-03 2017-07-06 エッジ エレクトロンズ リミテッド Power-saving high-frequency series step-down AC voltage regulator system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333783A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Power output apparatus and vehicle equipped with the same
JP2017518732A (en) * 2014-06-03 2017-07-06 エッジ エレクトロンズ リミテッド Power-saving high-frequency series step-down AC voltage regulator system

Similar Documents

Publication Publication Date Title
JP2868148B2 (en) Zero current switching power converter
US5132889A (en) Resonant-transition DC-to-DC converter
JP2512670B2 (en) Step-up power switching converter
US4713742A (en) Dual-inductor buck switching converter
US6188209B1 (en) Stepping inductor for fast transient response of switching converter
JP3078475B2 (en) AC-DC switching power converter
US5065300A (en) Class E fixed frequency converter
JP2007523587A (en) DC-DC voltage regulator whose switching frequency is responsive to the load
JP2010516223A (en) Power converter with snubber
US5432431A (en) Boost switching power conversion using saturable inductors
US6727482B2 (en) Apparatus and method for inductive heating
US5151852A (en) Class E power amplifier
US4668906A (en) Switched resistor regulator
JPS5989575A (en) High frequency series resonance dc/dc converter
KR930000966B1 (en) Nonlinear Resonant Switch and Converter
US11973440B2 (en) Isolated DC/DC converter with secondary-side full bridge diode rectifier and asymmetrical auxiliary capacitor
Aydemir et al. A critical evaluation of high power hard and soft switched isolated DC-DC converters
Fujii et al. Class-E rectifier using thinned-out method
JP2000308337A (en) Two-phase dc-dc converter preventing reverse recovery current of feedback diode
JPH04207970A (en) Voltage regulator
JPH03296117A (en) Variable automatic voltage controller
JPH0816257A (en) Voltage regulator
JP3794476B2 (en) Boost chopper circuit
JP2737391B2 (en) Ringing choke converter
JP2000197351A (en) Power supply having improved power factor