JPH04206914A - Electric double layer capacitor and electrode - Google Patents
Electric double layer capacitor and electrodeInfo
- Publication number
- JPH04206914A JPH04206914A JP33877690A JP33877690A JPH04206914A JP H04206914 A JPH04206914 A JP H04206914A JP 33877690 A JP33877690 A JP 33877690A JP 33877690 A JP33877690 A JP 33877690A JP H04206914 A JPH04206914 A JP H04206914A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- electrode
- carbon block
- layer capacitor
- double layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、電気二重層キャパシクおよび分極・r11電
極に関するものであって、より詳しくは、特に炭);系
の分極性電極を使用し、従来の鉛nj電池、Ni−Cd
蓄電池の−1次電池等の用途に使用可能な人容:1:の
電気二重層キャパシタおよびそれに使用する分極性電極
に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electric double layer capacitor and a polarized/r11 electrode, and more specifically, using a polarizable electrode of the charcoal type; Conventional lead nj battery, Ni-Cd
The present invention relates to an electric double layer capacitor having a human capacity of 1, which can be used as a primary battery of a storage battery, and a polarizable electrode used therein.
(従来の技術)
近年、電子機器のバックアップ用電源として、長ノを命
で高速充放電が可能な電気ニー重層キャパシタが用いら
れている。この種のものとしては、従来の吊体金属電極
に代えて活性炭繊維の一面に金属電極をバラ成した分極
性電極や、活=1<炭粉末ペーストを導電性ゴム電極に
圧着した分極性電極を用いたもの、さらに活性炭繊維と
導電性綿体とからなる織物や、繊維金属からなる基体に
熱融着性を有する粉末状フェノール樹脂を成JFgし、
炭化、賦活したものがあり、たとえば、特公昭63−1
r1574号公報、特開昭61−110416号公報、
および特公昭6:(−14492号公報、特公昭63−
55205号公報に記載されているものなどが知られて
いる。(Prior Art) In recent years, electric knee multilayer capacitors, which can be charged and discharged at high speed over long periods of time, have been used as backup power sources for electronic devices. Examples of this type of electrode include a polarizable electrode in which a metal electrode is disposed on one side of activated carbon fiber instead of the conventional hanging metal electrode, and a polarizable electrode in which active=1<charcoal powder paste is pressed onto a conductive rubber electrode. In addition, a powdered phenolic resin having heat-fusibility is formed on a fabric made of activated carbon fibers and conductive cotton, and a substrate made of fiber metal.
There are carbonized and activated products, for example, Tokko Sho 63-1.
r1574 publication, Japanese Patent Application Laid-open No. 61-110416,
and Special Publication No. 14492, Special Publication No. 14492, Special Publication No. 63-
The one described in Japanese Patent No. 55205 is known.
このうち、特公昭6:11 f15745−を公報に1
:1!載されているものは、その第1図に示されている
ように、活性炭繊維からなる7fiなどの表面にアルミ
ニウム等の金属を溶射法により形成した導電性電極を1
r5成した分極性電極と、導電性電極を持たない分極性
電極とを面接触させて複合分極性電極を構成し、この複
合分極性電極を少なくとも一方の電極とするとともに、
セパレータを介して相対向させた電気−゛Φ′層キャパ
シタが開示されている。Among these, the special public official publication 6:11 f15745- was published as 1
:1! As shown in Figure 1, the product listed here has a conductive electrode formed by spraying a metal such as aluminum on the surface of activated carbon fiber such as 7fi.
A composite polarizable electrode is formed by bringing the polarizable electrode having the r5 structure into surface contact with a polarizable electrode having no conductive electrode, and using this composite polarizable electrode as at least one electrode,
Electro-Φ' layer capacitors are disclosed that are opposed to each other with a separator in between.
(1発明が解決し、1;つとする課題)ところで、この
fΦの電気二重層キャパシタは、分Mj性電極に蓄積さ
れる電気二重層を効;ト的に引出すために、分極性電極
である活性炭層の電気抵抗が低いこと、活性炭の集電が
容易であること、また、小l1llj大容)汁化のため
には活性炭の嵩比重が高いこと、電気イと学的に不活性
なこと、さらには低コストであること等が要求される。(Problems to be Solved by the Invention and Problems to be Solved by the Invention) By the way, this fΦ electric double layer capacitor is a polarizable electrode in order to effectively draw out the electric double layer accumulated in the polarizable electrode. The electrical resistance of the activated carbon layer is low, the activated carbon is easy to collect current, the bulk specific gravity of the activated carbon is high for making liquid, and it is electrically inert. Furthermore, it is required to be low cost.
このような条件をン菌たず分抽I性電極として、従来で
は活性炭繊維製の布の一ノjの面にアルミニウム金属を
プラズマ溶射したり、活性炭繊維と導電・1fi線体と
からなる織物を用いたり、繊維金属からなるノ1(体に
熱融着性を有する粉末状フェノール樹脂を成形し、炭化
、賦活したものを用いていた。Conventionally, in order to use these conditions as a microbial extraction electrode, aluminum metal is plasma sprayed on one side of activated carbon fiber cloth, or a fabric made of activated carbon fiber and conductive 1fi wire is used. Or, a material made of fiber metal (made of powdered phenolic resin with heat-adhesive properties, carbonized, and activated) was used.
しかしながら、活性炭繊維製の布では、分極製電極の厚
さは、必然的に材料である合成繊維布を織ることが出来
る厚さ、つまり、−射的には炭化、■atl活した厚さ
で、11.fimm稈度の厚さにしか形1i12するこ
とができない。However, in cloth made of activated carbon fibers, the thickness of the polarized electrodes is necessarily the thickness that allows the material, synthetic fiber cloth, to be woven, i.e., the carbonized, atl activated thickness. , 11. It can only be shaped to a thickness of fimm culm.
しかも、活性炭繊維製の布は、大変高価であり、加圧し
ないと空隙率が90%以I−を占めており(加圧しても
60%以上占める)空間部分のロスが大きく、さらに空
間部分が多いため、繊維−本同士の接触が少なく、接触
抵抗が大きいという問題点がある(特開昭63−194
3 + 9号公報)。Moreover, cloth made of activated carbon fibers is very expensive, has a porosity of more than 90% unless pressurized (occupies more than 60% even when pressurized), and has a large loss of space. Because of this, there is a problem that there is little contact between the fibers and the book, resulting in high contact resistance (Japanese Patent Application Laid-Open No. 63-194
3+9 Publication).
このため、活性炭繊維製の布では、キャパシタとして什
1−げる際のケースをかしめる1程で、繊維間りの接触
抵抗が決定されるために、分極性電極の電気抵抗が不安
定となる恐れがある。したが−)て、このような不都合
を避けるために、炭素繊■1を使用して内部抵抗を下げ
る方法として、導電性綿体との織物を分極性電極に使用
(特公昭63−14492吋公報)したり、繊維金属か
らなるノ:(体に熱融着性をイWする粉末状フェノール
樹脂を成形し、炭化、賦活したものを分極性電極に使用
(特公昭63−5 ”、> 205吋公報)する技術が
開発されている。For this reason, with activated carbon fiber cloth, the contact resistance between the fibers is determined in the first step of caulking the case when used as a capacitor, and the electrical resistance of the polarizable electrode becomes unstable. There is a risk that it will happen. However, in order to avoid such inconveniences, as a method of lowering internal resistance using carbon fiber 1, fabrics with conductive cotton were used for polarizable electrodes (Japanese Patent Publication No. 14492/1983). Powdered phenolic resin made of fiber metal is molded, carbonized and activated and used for polarizable electrodes (Japanese Patent Publication No. 63-5'', > 205-inch publication) has been developed.
しかし4fがら、これらのJJ法も、内部抵抗をドげる
のには効用があるものの、人容h(化には、活性炭の含
有量が少ないために適しておらず、また、導電性金属の
加圧が高価であるという経済1−の問題も無視すること
は出来ない。However, unlike 4F, although these JJ methods are effective in reducing internal resistance, they are not suitable for human body resistance due to the low content of activated carbon, and they are not suitable for reducing internal resistance. The problem of economy 1- that pressurization is expensive cannot be ignored.
また、活性炭繊維の布を使用した人容年キャパシタの製
造)j法として、活性炭繊維製の布を重ねて面接触させ
て、複合分極を横1ルすることが開発されている(特公
昭63−10574号公報)。In addition, as a method for manufacturing capacitors using activated carbon fiber cloth, a method has been developed in which activated carbon fiber cloths are layered and brought into surface contact to achieve horizontal composite polarization (Japanese Patent Publication No. 63). -10574 publication).
しかしながら、この場合も、活性炭繊維同士の接触であ
り、かつ複合面ば面接触であることから、分極・[′1
電極の電気抵抗は高く、不安定であるという問題がある
。However, in this case as well, since the activated carbon fibers are in contact with each other and are in composite face-to-face contact, polarization and ['1
The problem is that the electrodes have high electrical resistance and are unstable.
本発明は、ni7記した従来技術の問題点に鑑みてなさ
ねたものであり、製造が容易で特性も良好な大容量の電
気下、@層キャパシタを提供することを技術的課題とす
る。The present invention has been made in view of the problems of the prior art mentioned above, and its technical object is to provide a large-capacity, @-layer capacitor that is easy to manufacture and has good characteristics.
(課題を解決するための手段)
本発明は、前記した課題を解決するために提案されたも
ので、特定構造の分極性電極、ならびにこの分極性電極
を使用した電気二重層キャパシタを特徴とするものであ
る
すなわち、本発明によれば、樹脂発泡体が炭化、賦活さ
れてなり、嵩密度が0.1 g /cm3以]−1比表
面積が500m27g以上である活性炭ブロックからな
る分極性電極、ならびに該活性炭ブロックを分極性電極
としたことを特徴とする電気二重層キャパシタが提供さ
れる。(Means for Solving the Problems) The present invention has been proposed to solve the above problems, and is characterized by a polarizable electrode having a specific structure and an electric double layer capacitor using this polarizable electrode. That is, according to the present invention, a polarizable electrode consisting of an activated carbon block made of a carbonized and activated resin foam and having a bulk density of 0.1 g/cm3 or more]-1 specific surface area of 500 m27 g or more, Furthermore, an electric double layer capacitor characterized in that the activated carbon block is used as a polarizable electrode is provided.
さらに、本発明によれば、前記活性炭ブロックの気泡方
向が対向電極に向かう方向番こ形成された、実質的に連
続気泡構造を有した分極・l電極を使用した電気−4重
層キャパシタが提供される。Furthermore, according to the present invention, there is provided an electric quadruple layer capacitor using a polarized l-electrode having a substantially open cell structure in which the bubbles of the activated carbon block are oriented in the direction toward the counter electrode. Ru.
(発明の具体的構成) 以下、本発明の具体例構成について説明する。(Specific structure of the invention) Hereinafter, a specific example configuration of the present invention will be explained.
樹脂発泡体
樹脂発泡体とは、例λ−ばポリウレタン、フェノール樹
脂、フルフラール樹脂、エポキシ樹脂、フラン樹脂、ポ
リイソシアヌレート樹脂、ポリイミド樹脂、ユリア樹脂
、ビラニルト?1脂等のi−とじて熱硬化性樹脂のプレ
ポリマーと、発泡剤、さらに硬化剤とを混合、発泡、硬
化させて得た細胞構造なイー1゛する多孔体を古う。こ
れらの樹脂発泡体のうちでは、細胞の旧状が均一で製造
が容易で、かつ炭化、11j(活した際の好収・トが回
持できる点で、フェノール樹脂、なかでもレゾールをプ
レポリマーとして用いるレゾール型フェノール樹脂の発
泡体を用いることが好ましい。レゾールは公知の方法に
したがって、フェノール類とアルデヒド類とをアルカリ
触媒の存在化で反応させることにより得られる。フェノ
ール類としては、目体的にはフェノール、クレゾール、
ギシレノール、および、レゾルキシン等が用いられる。Resin foam Resin foams include, for example, polyurethane, phenol resin, furfural resin, epoxy resin, furan resin, polyisocyanurate resin, polyimide resin, urea resin, and biranyl resin. A porous body having a cellular structure obtained by mixing, foaming, and curing a prepolymer of a thermosetting resin such as a thermosetting resin, a foaming agent, and a curing agent is used. Among these resin foams, phenolic resins, especially resol, are preferred as prepolymers because they have a uniform cell shape, are easy to manufacture, and can be carbonized and recovered. It is preferable to use a resol-type phenolic resin foam to be used as a foam.Resols can be obtained by reacting phenols and aldehydes in the presence of an alkali catalyst according to a known method. Specifically, phenol, cresol,
Gyslenol, resorxin, etc. are used.
アルデヒド類としては具体的には、ホルムアルデヒド、
アセトアルデヒド、および、フルフラール等が用いられ
る。アルカリ触媒としては、具体的にば1.iol 、
KOII、Na011、NHl、Nl+4DH、エタ
ノールアミン、エチレンジアミン、トリエチルアミン等
を挙げることが出来る。樹脂発泡体を得るための発泡剤
としてG:i従末公r11のものが使用できるが、この
なかでG;1重発型発泡剤を用いることが好ましい。し
体的には、ブタン、ペンタン、ヘキサノ、ヘプタン等の
パラフィン系炭化水素類、メタノール、エタノール、ブ
タノール等のアルコール類、フロン123(ジクロロト
リフルオロエタン)などのハロゲン化炭化水素、エーテ
ルおよびこれらの混合物をあげることができる。レゾー
ル型フェノール樹脂等の樹脂を発泡硬化させるために、
発泡剤とともに硬化剤が用いられる。この硬化剤として
は従来より公知の硬化剤がプレポリマーの種類に応じて
選択され使用される。プレポリマーがレゾールII;1
4フェノール樹脂の場合には、具体的には、硫酸、燐酸
、塩酸などの無機酸、クレゾールスルポン酸等の有機酸
が使用される。樹脂発泡体は、例えば1−記したレゾー
ルへりフェノール樹脂プレポリマーに、発(1す剤、硬
化剤および必要に応じてさらに整泡剤や充填剤等を一挙
にもしくは逐次に混合し、得られたクリ−11状物をた
とえば保温された金1ヘリ、木11すもしくはダンボー
ル内、あるいは、2重帯状コンベアートに供給し、発泡
、硬化させ、必要に応じて切断することによ−)で4W
ることか出来る。これらのうちでは金型内にクリーム状
物を供給し、ゆつくりとした速度で徐々に発泡させる方
法が好ましく採用される。これとは反対に、たとえばコ
ンベアーベルト内で急速に発泡させた発泡体の細胞構造
は、不均一でかつ方向も場所に」二〇一定しないため、
内部抵抗値がばらつくという問題があり本発明の目的に
は好適に使用できない。Specifically, the aldehydes include formaldehyde,
Acetaldehyde, furfural, etc. are used. Specifically, examples of the alkali catalyst include 1. iol,
Examples include KOII, Na011, NHl, Nl+4DH, ethanolamine, ethylenediamine, and triethylamine. As a blowing agent for obtaining a resin foam, a blowing agent of G: i or 11 can be used, but among these, it is preferable to use a G: single blowing type blowing agent. Physically, paraffin hydrocarbons such as butane, pentane, hexano, heptane, alcohols such as methanol, ethanol, butanol, halogenated hydrocarbons such as Freon 123 (dichlorotrifluoroethane), ethers, and these I can give you a mixture. In order to foam and harden resins such as resol type phenolic resins,
A curing agent is used along with a blowing agent. As this curing agent, a conventionally known curing agent is selected and used depending on the type of prepolymer. The prepolymer is resol II; 1
In the case of 4-phenol resin, specifically, inorganic acids such as sulfuric acid, phosphoric acid, and hydrochloric acid, and organic acids such as cresol sulfonic acid are used. The resin foam can be obtained, for example, by mixing a foaming agent, a curing agent, and if necessary, a foam stabilizer, a filler, etc. all at once or sequentially into the resol phenolic resin prepolymer described in 1. For example, by supplying a cream-like material into a heated metal container, wooden container, or cardboard box, or into a double-belt conveyor belt, foaming and curing it, and cutting it as necessary. 4W
I can do it. Among these, a method of supplying a creamy material into a mold and gradually foaming it at a slow rate is preferably employed. In contrast, the cellular structure of a foam that is rapidly expanded, for example on a conveyor belt, is non-uniform and does not vary in direction from one place to another.
There is a problem that the internal resistance value varies, so it cannot be suitably used for the purpose of the present invention.
本発明において、この樹脂発泡体の嵩密度は、通常、1
1.1 g/cm” VU l−2好ましくGオf1.
I7ないし[18g / e m ”である。In the present invention, the bulk density of this resin foam is usually 1
1.1 g/cm” VU l-2 preferably G o f1.
I7 to [18 g/e m''.
炭化方法
得られた樹脂発泡体を炭化するには、発泡成■[ヨ体を
そのまま、もしくは切断して板状体とした後、非酸化性
雰囲気F’で焼成して炭素化する。Carbonization method In order to carbonize the obtained resin foam, the foamed resin foam is carbonized by firing it in a non-oxidizing atmosphere F' after forming the foam as it is or cutting it into a plate-shaped body.
すなわち、減圧下またば、Δrガス、11(!ガス、N
2ガス、COガス、ハロゲンガス、アンモニアガス、1
12ガス、またはこれらの混合ガス等の中で、好ましく
は500ないし1200℃、特に600℃ないし900
℃の温度で焼成する。このようにして発泡体は炭素化さ
れ、炭素多孔体が得られる。焼成時の胃温速度には特に
制限はないものの、一般に樹脂の分解が開始される20
0ないし600 ’Cト1近にか(Jては徐々に行うこ
とが好ましい。That is, under reduced pressure, Δr gas, 11 (! gas, N
2 gas, CO gas, halogen gas, ammonia gas, 1
12 gases or mixed gases thereof, preferably from 500 to 1200°C, especially from 600°C to 900°C.
Baking at a temperature of °C. In this way, the foam is carbonized and a porous carbon body is obtained. Although there is no particular limit to the rate of gastric temperature during firing, the decomposition of the resin generally begins20.
It is preferable to gradually increase the temperature between 0 and 600°C.
本発明における、炭素多孔体の嵩密度は、通常、[1,
1g/cmll以上1好ましくは(II7ないし0.8
g/cm3である。In the present invention, the bulk density of the carbon porous material is usually [1,
1 g/cmll or more 1 preferably (II7 to 0.8
g/cm3.
賦活方法
本発明で用いる活性炭ブロックは、1)11記のJj法
で4r、7られた炭素多孔体を酸化性ガスの存在下で賦
活処理をして得られるものである。この活性炭ブロック
は、種々の形状に成形されつるものであるが、本発明に
おいてば1ん板状に形成されることが好ましい。処理温
度は通常800ないし+ 200℃で行うことが好まし
い。処理温度が低ずぎると1.i(活が充分に進行せず
、ttk而1面¥の小さなものしか得られない。一方、
処理温度が高すぎると、炭素多孔体に亀裂が入りやすく
なる。Activation Method The activated carbon block used in the present invention is obtained by 1) activating a carbon porous body subjected to 4r and 7 by the Jj method described in 11 in the presence of an oxidizing gas. Although this activated carbon block can be formed into various shapes and vines, it is preferably formed into a plate shape in the present invention. The treatment temperature is usually preferably 800 to +200°C. If the processing temperature is too low, 1. i (Katsu does not progress sufficiently, and only a small amount of 1 page ¥ can be obtained. On the other hand,
If the treatment temperature is too high, cracks will easily form in the carbon porous body.
本発明でいう酸化性ガスとは、酸素含有気体、たとえば
、水蒸気、−酸化炭素、空電、酸素等をいうが、これら
は通常操作しやすいように、不活性ガス、たとえば燃焼
ガス、N2ガス等との混合電体として用いることが好ま
しい。酸化性ガスへの暴露時間は酸什牲ガスの濃度、処
理温度によって/E 7−iされるが、[1安としては
、炭素多孔体の1fa状が損なわれない範囲とすること
が必要であり、通常、30分ないし30時間が好ましい
。The oxidizing gas in the present invention refers to oxygen-containing gases such as water vapor, carbon oxide, static electricity, oxygen, etc., but these gases are usually replaced by inert gases such as combustion gas, N2 gas, etc. for ease of operation. It is preferable to use it as a mixed electric material with etc. The exposure time to the oxidizing gas depends on the concentration of the oxidizing gas and the processing temperature, but it must be within a range that does not damage the 1fa state of the porous carbon material. Generally, 30 minutes to 30 hours is preferred.
また、賦活はL記のガス賦活性以外の薬品賦活法、また
は両イを併用する)j法でもよい。薬品賦活法とは、樹
脂発泡体に塩化亜鉛、リン酸、硫化カリウl\等の化学
薬品を添加してから、不活性ガス雰囲気で加熱して炭化
と賦活を同時に行う方法であり、このガス賦活法と薬品
賦活法の両前を()1用する方法によっても賦活が行わ
れる。Furthermore, the activation may be a chemical activation method other than the gas activation described in L, or a method (j) that uses both methods in combination. The chemical activation method is a method in which chemicals such as zinc chloride, phosphoric acid, potassium sulfide, etc. are added to the resin foam, and then heated in an inert gas atmosphere to simultaneously carbonize and activate. Activation is also performed by a method that uses both the activation method and the chemical activation method.
本発明で用いる活性炭ブロック
本発明で用いることのできる活性炭ブロックは、嵩密度
が0.1g/cm31.、J ト、好ましくはo、+5
1<10m ”ないし旧70(z、/ (: m 3、
比表面積が5 fl Om 2/ +XXヒト好ましく
は700m27g以上さらに好ましくは700ないし2
0n[1m2/gのものである。この範囲の嵩密度をイ
fする活性炭ブロックは、比表1r+1積を大きくして
も強度が高く破損し?l[い。さらに、カーボンのマト
リックスが連続しているので歪むことかなく、また高強
度を有している。したがって、電解液が容易に含浸でき
、電気抵抗が小さく、安定しているという特徴がある。Activated carbon block used in the present invention The activated carbon block that can be used in the present invention has a bulk density of 0.1 g/cm31. , J, preferably o, +5
1<10m” or old 70 (z, / (: m 3,
The specific surface area is 5 fl Om 2/ +XX humans, preferably 700 m27g or more, more preferably 700 to 2
0n [1 m2/g. An activated carbon block with a bulk density in this range will have high strength and will not break even if the ratio 1r+1 product is increased? l[I. Furthermore, since the carbon matrix is continuous, it does not warp and has high strength. Therefore, it has the characteristics that it can be easily impregnated with an electrolytic solution, has low electrical resistance, and is stable.
本発明で使用する活性炭ブロックは、実質的に連続気泡
構造を有するものであることが特に好ましい。すなわち
、実質的に連続気泡構造をイ1する活性炭ブロックを分
極性電極として用いた場合は、電極の単位重壁当りの容
積を太き(することができるという、重要な技術的意義
を有するものとなる。本発明では分極性電極(活性炭ブ
[−ノック)におけるこの気泡構造は気泡方向が対向電
極に向かう方向に使用されることが好ましい。対向電極
に向かうJj向とは、対向電極の法線に対して60°以
下、好ましくは45°以下、さらに好まL < Let
l O” VU F、 ホIf++’+’fQ M気
?Flji向カlF;成されている状態をCユ味する。It is particularly preferable that the activated carbon block used in the present invention has a substantially open cell structure. In other words, when an activated carbon block having a substantially open cell structure is used as a polarizable electrode, the volume per unit wall of the electrode can be increased, which has important technical significance. In the present invention, the bubble structure in the polarizable electrode (activated carbon b[-knock) is preferably used in a direction in which the bubble direction is directed toward the counter electrode.The Jj direction toward the counter electrode is defined as 60° or less with respect to the line, preferably 45° or less, more preferably L < Let
l O” VU F, HoIf++'+'fQ Mki?Flji directional Ka lF; Cyu taste the state that is being achieved.
すなわち、本発明においては、気泡方向が対向電極に向
かう方向に使用される場合、気泡構造が活性炭ブロック
の内外両面に連通開孔していることによって、大容…の
電気二重層キャパシタが得られるものである。That is, in the present invention, when the bubbles are used in a direction toward the counter electrode, a large-capacity electric double layer capacitor can be obtained because the bubble structure has communicating holes on both the inner and outer surfaces of the activated carbon block. It is something.
なお、本発明において、実質的に連続気泡とは、リエ空
下(10−’ t、orr以下)で活性炭ブロックに含
浸された電解液の容積が、理論的に求められる分極性電
極の空間容積に対し、容積比率で60%以上1好ましく
は80n以[−1さらに好ましくは90%以l−のもの
をいう。In the present invention, the term "substantially open cells" means that the volume of the electrolyte impregnated into the activated carbon block under the Lier atmosphere (10-' t, orr) is the spatial volume of the polarizable electrode that can be theoretically determined. 60% or more 1, preferably 80n or more [-1, more preferably 90% or more 1-] in terms of volume ratio.
測定の際に用いられる電解液の種類としては、たとえば
、30重に%硫酸(密度1.215g/cc、25°C
)、あるいはプロピレンカーボネイ1〜にテトラエヂル
アンモニウムの四弗化ホウ酸IH,,ロ0屯)、1%を
含有した電解液を使用する。The type of electrolyte used during measurement is, for example, 30% sulfuric acid (density 1.215g/cc, 25°C
), or an electrolytic solution containing 1% of propylene carbonate and 1% of tetraedylammonium tetrafluoroboric acid IH, 0 ton).
本発明において、連続気泡率は以−ドのようにして求め
た。In the present invention, the open cell ratio was determined as follows.
理論空間容積(■1)は、分極性電極の体ij’1(V
)と、分極性電極の嵩密度(八〇)と、活性炭の真密度
(D、 c )より、F記の式によって算出される。The theoretical space volume (■1) is the body ij'1 (V
), the bulk density of the polarizable electrode (80), and the true density of activated carbon (D, c), it is calculated by the formula F.
■□= (1−AD/DC)Xv
ここで、活性炭の真密度の測定は、試料を乳鉢で粉砕し
乾燥後、トルエンを浸漬液に用い、ゲールザック潟度計
付比重瓶を使用して測定した。□ = (1-AD/DC) did.
分極性電極に含浸された電解液の容積(V、、)は、分
極性電極の含浸前屯量(Wl)と含浸後型Fit (W
2’I 、および電解液の密度(D、、)より、下記の
式によって算出される。The volume of the electrolyte impregnated into the polarizable electrode (V, , ) is determined by the volume of the polarizable electrode before impregnation (Wl) and the post-impregnation type Fit (W
It is calculated from the following formula from 2'I and the density of the electrolytic solution (D, , ).
v、= (w2−W、)/D。v, = (w2-W,)/D.
したがって、連続気泡率は、 V、/V□×100%で算出される。Therefore, the open cell ratio is It is calculated as V, /V□×100%.
また、気泡方向とは、発泡剤により形成された気孔の長
径方向を意味し、電子”J百微鐙等により容易に観察さ
れる。In addition, the bubble direction means the direction of the major diameter of the pores formed by the foaming agent, and can be easily observed using an electron beam stirrup or the like.
また、本発明の活性炭ブロックは、大型品の製造が容易
であるという特徴を併せ自する。このブロックを(好ま
しくは、気dリノj向が対向電極に向かう方向に)、所
望の厚さ、形状に切断するだけで電気−中層キャパシタ
の分極性電極となる。これに対して、活性炭繊維布を用
いて犬容テ“の分極・I’I電極を製1当する場合は、
布を積層しなければならず、このため、面接触した各市
および点接触した繊維間トで高抵抗化を招くうえ、電気
抵抗が不安定になるという致命的な欠点があり、この点
の比較を以てしても本発明の分極性電極の優れた特徴が
理解されるであろう。Furthermore, the activated carbon block of the present invention is characterized in that it is easy to manufacture large-sized products. By simply cutting this block (preferably in the direction in which the air direction is toward the counter electrode) to a desired thickness and shape, it becomes a polarizable electrode for an electro-intermediate layer capacitor. On the other hand, when making a polarization/I'I electrode using activated carbon fiber cloth,
The fabrics must be laminated, which leads to high resistance at each point in surface contact and between fibers in point contact, and has the fatal disadvantage of unstable electrical resistance. The excellent features of the polarizable electrode of the present invention will be understood from this explanation.
すなわち、本発明は、分極性電極の平面1ノーイズが大
きく、厚さの厚い、高容宿の電気二重層キャパシタを容
易に製造することができるというすぐれた特徴を右する
ものである。That is, the present invention has excellent features in that it is possible to easily manufacture an electric double layer capacitor that has a large plane noise of polarizable electrodes, is thick, and has a high capacity.
また、本発明の活性炭ブし1ツクは、:Y’Hi密度が
高いために、高容晴のキャパシタを製造する場合、分極
性電極の体積を小さくすることができ、したかってキャ
パシタ全体のザイズを小型化することが出来るという性
能面での長所を併せ持つものであるし、さらに、強度を
有するI−レ″j性分極性電極であることから、集電体
は、本活性炭ブロックに金属を直接プラズマ溶q・1シ
たり、金属板、黒鉛板、導電性樹脂板等の導電性を有す
る扱を面接触または、接着複合化することにより極めて
容易に設置でき、エネルギー貯蔵等の大容宿キャパシタ
を安価に製造出来るという、1業的価値がきわめて大き
いものである。In addition, the activated carbon book of the present invention has a high density of Y'Hi, so when manufacturing a capacitor with high capacity, the volume of the polarizable electrode can be reduced, and the size of the entire capacitor can therefore be reduced. Furthermore, since it is a strong I-ray polarizable electrode, the current collector can be used to directly apply plasma to the activated carbon block. It is extremely easy to install by surface contacting or adhesive composite of conductive materials such as metal plates, graphite plates, conductive resin plates, etc., and can be used as large-capacity storage capacitors for energy storage etc. It can be manufactured at a low cost and has extremely high industrial value.
電気ニ、重層キャパシタの製造
第2図は、本発明に係る活性炭ブロックを分極性電極と
した電気−゛重層キャパシタの−・例を示すものであり
、O1i記のように得た活性炭ブロックを発泡Ji向、
つまり、対向電極に向かう方向に所定厚さに切断し、そ
の片面にアルミニュウム集電極層をプラズマ溶q・1シ
である。Manufacture of electrical multi-layer capacitor Figure 2 shows an example of an electrical multi-layer capacitor using the activated carbon block according to the present invention as a polarizable electrode. For Ji,
That is, it is cut to a predetermined thickness in the direction toward the counter electrode, and an aluminum collector electrode layer is plasma-melted on one side of the cut.
本発明の活性炭ブロックへのプラズマ溶射は容易でかつ
堅固に固着することが判明した。そして、所定Jfa状
に切断し、脱気してからプロピレン6カ
ーボネイト
化ホウ酸塩を溶解させた溶液、および硫酸等の電解液を
含浸させ、セパレーターを間にしてプラズマ溶射による
アルミニュウム集電極を外側にして一幻の分極性電極を
対向きセ、さらにこれを一方の電極側ケースと他方の電
極側ケースで覆い、両ケース同士を絶縁材からなるパツ
キンを介してハウジングすることによって、電気−7二
重層キャパシタが製造される。Plasma spraying the activated carbon blocks of the present invention was found to be easy and to adhere firmly. Then, it is cut into a predetermined Jfa shape, degassed, impregnated with a solution in which propylene hexacarbonate borate is dissolved, and an electrolytic solution such as sulfuric acid, and a plasma-sprayed aluminum collector electrode is placed on the outside with a separator in between. By placing two polarizable electrodes facing each other, covering them with a case on one electrode side and a case on the other electrode side, and housing both cases with a gasket made of an insulating material interposed therebetween, an electric-7 A double layer capacitor is manufactured.
また、本発明の活性炭ブロックは強度を有しているので
、金属ケースを集電極と兼ねることで、容易に電気−1
[層キャパシタが製造される。In addition, since the activated carbon block of the present invention has strength, the metal case can also be used as a collector electrode to easily generate electricity.
[A layer capacitor is manufactured.]
さらに、集電極として黒鉛板を使用し、一対の分極性電
極をポリエチレン製の袋に入れ、黒鉛板からリード線を
引き出し密)・1することで、容易に電気ニー重層キャ
パシタが製造される。Furthermore, an electric knee multilayer capacitor can be easily manufactured by using a graphite plate as a collector electrode, placing a pair of polarizable electrodes in a polyethylene bag, and pulling out lead wires from the graphite plate.
(実施例) 以下、実施例に基づいて本発明を説明する。(Example) Hereinafter, the present invention will be explained based on Examples.
実施例1
レゾール(フェノール−ホルムアルデヒド樹脂プレポリ
マー)100重量部、硬化剤としてのパラトルエンスル
ホン酸10!量部、発泡剤としてのジクロロトリフルオ
ロエタン1.5市電部を高速ミキサーで充分に撹拌した
後、この混合物を金!l;!j内に流し込み、蓋をした
後、80’Cのエアオーブン内に30分放置することに
より、縦30cm、横30cm、厚さ3cm、嵩密度0
.3 g/cm”の板状フェノール樹脂発泡体を得た。Example 1 100 parts by weight of resol (phenol-formaldehyde resin prepolymer), 10 parts of para-toluenesulfonic acid as curing agent! After thoroughly stirring 1.5 parts of dichlorotrifluoroethane as a blowing agent with a high-speed mixer, the mixture was mixed with gold! l;! After pouring it into a container and putting a lid on it, leave it in an air oven at 80'C for 30 minutes to create a product with a length of 30 cm, a width of 30 cm, a thickness of 3 cm, and a bulk density of 0.
.. A plate-shaped phenolic resin foam of 3 g/cm" was obtained.
この成F[a板を縦20cm、横IOcm.l’;さ2
.50mに切断してからマツフル炉に入れ、窒素雰囲気
下で胃.渦速度り0℃/時間で温度600℃まで冒−ン
品して加熱し、この温度を1時間保持した後冷却して、
縦1.6cm、横80m、厚さ2cm、嵩密度が0.2
9H< / c m 3の板状炭素多孔体を得た。This formation F[a board is 20cm long and IOcm wide. l';sa2
.. After cutting into 50m lengths, they were placed in a Matsufuru furnace and heated under a nitrogen atmosphere. Heat the product at a vortex rate of 0°C/hour to a temperature of 600°C, maintain this temperature for 1 hour, and then cool it.
1.6cm long, 80m wide, 2cm thick, bulk density 0.2
A plate-like carbon porous body of 9H</cm3 was obtained.
さらに、この板状炭素多孔体を灯油の燃焼ガス中で95
0℃まで昇温してから、このガス中に水蒸気を投入し、
16時間保持した後冷却して活性炭ブロックを得た。Furthermore, this plate-shaped carbon porous body was heated to 95% in kerosene combustion gas.
After raising the temperature to 0℃, water vapor is introduced into this gas,
After holding for 16 hours, the mixture was cooled to obtain an activated carbon block.
得られた活性炭ブロックの外観、嵩密度、強度、比表面
積および連続気泡率を調べた。The appearance, bulk density, strength, specific surface area, and open cell rate of the obtained activated carbon block were examined.
結果は第1表に示す。The results are shown in Table 1.
実施例2
実施例1において、発泡剤であるジクロロトリフルオロ
エタンの使用量を1小計部とした以外は、実施例1と同
様にして、嵩密度[1,4g/cm’の板状フェノール
樹脂発泡体を(1子でから嵩密度n 39.</cm3
の板状炭素多孔体、さらに活性炭ブロックを得た。得ら
れた活性炭ブロックの外観、嵩密度、強度、比表面積お
よび連続気泡率を調べた活量を第1人に示す。Example 2 A plate-shaped phenol resin having a bulk density of [1.4 g/cm' Bulk density n 39.</cm3
A plate-like porous carbon material and an activated carbon block were obtained. The appearance, bulk density, strength, specific surface area, and open cell ratio of the obtained activated carbon block were investigated, and the activity was shown to the first person.
(この頁以下余白)
第1表
*測定に使用した電解液:
*130重量%硫酸(密度1.215 g/cc)*2
ブロビレンカーポ子イトζテトラエチルアン千ニウ
ムの 間引■こホウU塩10市量%を含有した電解液(
密度1.088 g/cc)実施例3
実施例1で得られた活性炭ブロックを、該活性炭ブロッ
クの気泡方向か切断面と直角になるように配置し、帯鋸
で、縦12cm、横7.5cm、厚さ0.5(:mに、
それぞれ2枚切断後、切断面を紙ヤスリでF滑に仕トげ
、分極性電極とした。(Margins below this page) Table 1 * Electrolyte used for measurement: * 130% by weight sulfuric acid (density 1.215 g/cc) *2
Thinning of brobylene carposite
Density: 1.088 g/cc) Example 3 The activated carbon block obtained in Example 1 was arranged so as to be perpendicular to the bubble direction or the cut surface of the activated carbon block, and cut into pieces with a band saw of 12 cm in length and 7.5 cm in width. , thickness 0.5 (: m,
After cutting two pieces of each, the cut surfaces were smoothed with sandpaper to form polarizable electrodes.
次に、上記分極性電極を脱気し、無機電解液として30
wt%硫酸を貞空丁(10−’1.orr以下)に含C
ンした。こねら電解液を含浸した分極性電極にセパレー
ターとしてポリプロピレン製の不織布を間にして、 一
対の分極性電極を対向させ、集電体(対向′電極)とし
て11′、鉛板を一対の分極性電極の外側に面接触させ
た。その結束、分極性電極である活性炭ブロックの気泡
方向は、対向電極と直角となる。黒鉛板の1部から、リ
ード線を取り出してからポリエヂレン製の袋に入れ、富
士・1して基本セルを装作した。さらに、この基本セル
をアクリル製板で両側からはさめ、第3図に示したよう
な電気工φ−層キャパシタを414な。Next, the polarizable electrode was degassed, and the inorganic electrolyte was
Contains wt% sulfuric acid in Teikucho (10-'1.orr or less)
I turned on. A pair of polarizable electrodes impregnated with an electrolyte and a polypropylene non-woven fabric as a separator are placed opposite each other, and a lead plate is used as a current collector (opposing electrode). Surface contact was made with the outside of the electrode. The direction of the bubbles in the activated carbon block, which is the bundle and polarizable electrode, is perpendicular to the counter electrode. A lead wire was taken out from one part of the graphite plate, placed in a polyethylene bag, and then covered with Fuji 1 to form a basic cell. Furthermore, this basic cell is sandwiched between acrylic plates from both sides, and an electrician's φ-layer capacitor 414 as shown in FIG. 3 is installed.
(1られたキャパシタの重晴を、耐電圧IVまで一定電
流で充放電を行い、容量および内部抵抗を測定した。内
部抵抗は、一定電流で充電しml・1電圧がIVに達し
た直後に放電を開始し、そのときの電圧降下から算出し
た。(The capacitor was charged and discharged with a constant current until the withstand voltage IV, and the capacity and internal resistance were measured.The internal resistance was determined by charging with a constant current and discharging immediately after the ml/1 voltage reached IV.) It was calculated from the voltage drop at that time.
結果を第2表に示す。The results are shown in Table 2.
実施例4
実施例2で得られた活性炭ブロックを、該活性炭ブロッ
クの気泡方向が切断面と直角になるように、帯鋸で、縦
7.5cm、横2c:m、厚さ0.5(:mに、それぞ
れ2枚切断後、実施例コ3と同様にして、活性炭ブロッ
クの気泡jj向がffi、I同電極と直角どなるように
電気二重層キャパシタをIH7、その容量および内部抵
抗を測定した。Example 4 The activated carbon block obtained in Example 2 was cut with a band saw to a length of 7.5 cm, a width of 2 cm, and a thickness of 0.5 cm so that the bubble direction of the activated carbon block was perpendicular to the cut surface. After cutting two sheets of each of the activated carbon blocks, an IH7 electric double layer capacitor was measured in the same manner as in Example C3 so that the air bubble direction of the activated carbon block was perpendicular to the electrodes ffi and I, and its capacity and internal resistance were measured. .
結果を第2表に示す。The results are shown in Table 2.
実施例5
実施例2で得られた活性炭ブロックを、該活性炭ブロッ
クの気泡方向が切断面と平行となるように、帯鋸で、縦
7.5cm、横20m、厚さ0.5cmに、それぞれ2
枚切断後、実施例3と同様にして電気−Φ′層キャパシ
タを得た。このキャパシタにおいては、分極性電極の活
性炭ブロックは対向電極と・IL行になっている。その
容量および内部抵抗を測定した。Example 5 The activated carbon block obtained in Example 2 was cut into 2 pieces each with a length of 7.5 cm, a width of 20 m, and a thickness of 0.5 cm using a bandsaw so that the bubble direction of the activated carbon block was parallel to the cut surface.
After cutting, an electric-Φ' layer capacitor was obtained in the same manner as in Example 3. In this capacitor, the activated carbon block of the polarizable electrode is in an IL row with the counter electrode. Its capacity and internal resistance were measured.
結果を第2表に示す。The results are shown in Table 2.
第2表
A:30重量%硫酸
実施例6
実施例2で得られた活性炭ブロックを、該活・ヒ1:炭
ブロックの気泡方向が切断面と直角となるように、帯鋸
で、縦7.5cm、横2cm、厚さ0.5cmに、それ
ぞれ2枚切断後、実施例3の電解液に代えて、有機電解
液として、プロピレンカーボネイトにテトラエチルアン
モニュウムの四弗化ホウ酸Iu l Ow t%を加え
溶解さぜた溶液を使用し、酎・l電圧を3Vとした以外
は実施例:3と同様にして電気二重層キャパシタを得、
その容量および内部抵抗を測定した。Table 2 A: 30% by weight sulfuric acid Example 6 The activated carbon block obtained in Example 2 was cut vertically with a band saw so that the bubble direction of the activated carbon block was perpendicular to the cut surface. After cutting into two pieces each 5 cm wide, 2 cm wide, and 0.5 cm thick, instead of the electrolytic solution of Example 3, as an organic electrolytic solution, propylene carbonate and tetraethylammonium tetrafluoroboric acid Iu l Ow t% were added. An electric double layer capacitor was obtained in the same manner as in Example 3, except that the added and dissolved solution was used and the voltage was changed to 3 V.
Its capacity and internal resistance were measured.
結果を第3表に示す。The results are shown in Table 3.
実施例7
実施例2で得られた活性炭ブロックを、該活性炭ブロッ
クの気泡方向が切断面と平行になるように、帯鋸で、縦
7.5cm、横2cm、厚さ0.5cmに、それぞれ2
枚切断後、実施例3の電解液に代えて、有機電解液とし
てプロピレンカーポネイ]−にテトラエチルアンモニュ
ウムの四弗化ホウ酸塩10 w t%を加え溶解させた
溶液を使用し、耐電圧3■まで一定電流で充放電を行う
以外は、実施例3と同様にして電気−F[層キャパシタ
を得、その容量および内部抵抗を測定した。Example 7 The activated carbon block obtained in Example 2 was cut into 2 pieces each with a length of 7.5 cm, a width of 2 cm, and a thickness of 0.5 cm using a bandsaw so that the bubble direction of the activated carbon block was parallel to the cut surface.
After cutting the sheets, instead of the electrolyte in Example 3, a solution prepared by adding and dissolving 10 wt% of tetraethylammonium tetrafluoroborate in propylene carbonate was used as an organic electrolyte, and the dielectric strength was 3. An electric F layer capacitor was obtained in the same manner as in Example 3, except that charging and discharging was carried out at a constant current up to (1), and its capacitance and internal resistance were measured.
その結県を第3表に示す。The prefectures are shown in Table 3.
(この真上1ζ余白)
第3表
B:プロビレンカーボネイ!・にテトラエヂルアンモニ
ュウムの四弗化ボウ酸塩1 [1w t%含有(発明の
効宋)
本発明によれば、分極性電極として、樹脂発泡体を炭化
、賦活した活性炭ブロックを用いることにより、嵩密度
の高い、サイズの大きい電極が容易に得られるため、大
容量の電気二重層キャパシタの製造が容易となった。(1ζ margin directly above this) Table 3 B: Provirene carbonei! - Tetraedylammonium tetrafluoroborate 1 [Contains 1wt% (Effects of the invention) According to the present invention, by using an activated carbon block obtained by carbonizing and activating a resin foam as a polarizable electrode. Since large-sized electrodes with high bulk density can be easily obtained, it has become easy to manufacture large-capacity electric double layer capacitors.
また、本発明の活性炭ブロックは、活性炭が立体的に連
続しているため電気抵抗か低く、かつ強度が高く、さら
に加1−性が良いことから、人容宿キャパシタ用として
、厚く、ゞ[面サイズの大きな分極性電極の製造が容易
となった。In addition, the activated carbon block of the present invention has low electric resistance and high strength because the activated carbon is three-dimensionally continuous, and has good malleability, so it is suitable for use in accommodation capacitors. It has become easier to manufacture polarizable electrodes with large surface sizes.
さらに合成樹脂を原料としているため、不純物の含有率
が少な(、電気化学的に不活性であり、このため、初1
用特性を長間にh7Hり維持することができ、エネルギ
ー貯蔵用として好適なものとなる。Furthermore, since it is made from synthetic resin, it has a low content of impurities (and is electrochemically inactive, so it
The energy storage properties can be maintained for a long time, making it suitable for energy storage.
第1図は、従来の電気二重層キャパシタの断面図、
第2図は、本発明の電気二重層キャパシタの一例を示す
断面図、
第3図は、本発明の電気二重層キャパシタの伯の一例を
示す断面図。
第4図は、本発明の活性炭ブロックの気泡構造(気泡方
向)を示す電子顕微鎖写真(251’?)である。
図中、
1:分極性電極体
2:導電性電極
3:セパレータ
4:分極性電極体
5:複合分極性電極
6:パツキン
7:ケース
8:ネジ(絶縁性)
9:リード線
lO二二鉛鉛
板1:ポリエチレン製袋
12ニアクリル板
13:ボルト
−」
区
Qつ
派
第4図
手 糸売 ネ甫 正 書(方式)
%式%
■、特許出願の表示
平成2年特許願第338776号
2、発明の名称
電気二重層キャパシタおよび電極
3゜補正をする者
事件との関係 特許出願人
寵韻陀岱懸陛“i T、r%2見謂
4代理人〒113
5、補正命令の日イ1
平成3年3月12日(発送日)Fig. 1 is a sectional view of a conventional electric double layer capacitor, Fig. 2 is a sectional view showing an example of an electric double layer capacitor of the present invention, and Fig. 3 is an example of an electric double layer capacitor of the present invention. FIG. FIG. 4 is an electron micrograph (251'?) showing the cell structure (bubble direction) of the activated carbon block of the present invention. In the figure, 1: Polarizable electrode body 2: Conductive electrode 3: Separator 4: Polarizable electrode body 5: Composite polarizable electrode 6: Packing 7: Case 8: Screw (insulating) 9: Lead wire 1O2 lead Lead plate 1: polyethylene bag 12, acrylic plate 13: bolt-'' Ku Qtsu-ha 4th figure hand Itotori Nefu official book (method) % formula % ■, Indication of patent application 1990 Patent Application No. 338776 2 , Name of the invention Electric double layer capacitor and electrode 3゜Relationship with the case of the person who amends the patent applicant His Majesty the Patent Applicant "i T, r%2 4th attorney" 〒113 5, Date of amendment order I 1 March 12, 1991 (shipment date)
Claims (4)
.1g/cm^3以上、比表面積が500m^2/g以
上である活性炭ブロックを分極性電極として使用したこ
とを特徴とする電気二重層キャパシタ。(1) The resin foam is carbonized and activated, and the bulk density is 0.
.. An electric double layer capacitor characterized in that an activated carbon block having a specific surface area of 1 g/cm^3 or more and a specific surface area of 500 m^2/g or more is used as a polarizable electrode.
有するものである請求項第1項記載の電気二重層キャパ
シタ。(2) The electric double layer capacitor according to claim 1, wherein the activated carbon block has a substantially open cell structure.
対向電極に向かう方向に使用したものである請求項第1
項記載の電気二重層キャパシタ。(3) Claim 1, wherein the polarizable electrode is one in which the bubbles of an activated carbon block are oriented in the direction toward the counter electrode.
The electric double layer capacitor described in Section 1.
.1g/cm^3以上、比表面積が500m^2/g以
上である活性炭ブロックからなることを特徴とする電極
。(4) The resin foam is carbonized and activated, and the bulk density is 0.
.. An electrode comprising an activated carbon block having a specific surface area of 1 g/cm^3 or more and a specific surface area of 500 m^2/g or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33877690A JP3023379B2 (en) | 1990-11-30 | 1990-11-30 | Electric double layer capacitor and electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33877690A JP3023379B2 (en) | 1990-11-30 | 1990-11-30 | Electric double layer capacitor and electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04206914A true JPH04206914A (en) | 1992-07-28 |
JP3023379B2 JP3023379B2 (en) | 2000-03-21 |
Family
ID=18321360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33877690A Expired - Fee Related JP3023379B2 (en) | 1990-11-30 | 1990-11-30 | Electric double layer capacitor and electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3023379B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994001879A1 (en) * | 1992-07-03 | 1994-01-20 | Mnogoprofilnoe Nauchno-Tekhnicheskoe Proizvodstvenno-Kommercheskoe Obschestvo S Ogranichennoi Otvetstvennostju 'econd' ('econd' Ltd.) | Capacitor with double electric layer |
WO1994010698A1 (en) * | 1992-10-27 | 1994-05-11 | Mnogoprofilnoe Nauchno-Tekhnicheskoe I Proizvod Stvenno-Kommercheskoe Obschestvo S Organichennoi Otvetstvennostju 'econd' | Capacitor with double electric layer |
US5621607A (en) * | 1994-10-07 | 1997-04-15 | Maxwell Laboratories, Inc. | High performance double layer capacitors including aluminum carbon composite electrodes |
US5862035A (en) * | 1994-10-07 | 1999-01-19 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6233135B1 (en) | 1994-10-07 | 2001-05-15 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6449139B1 (en) | 1999-08-18 | 2002-09-10 | Maxwell Electronic Components Group, Inc. | Multi-electrode double layer capacitor having hermetic electrolyte seal |
US6631074B2 (en) | 2000-05-12 | 2003-10-07 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
US6813139B2 (en) | 2001-11-02 | 2004-11-02 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
KR100752942B1 (en) * | 2003-11-20 | 2007-08-30 | 티디케이가부시기가이샤 | Electrode for electrochemical capacitor, fabricating method of the electrode, and electrochemical capacitor, fabricating method of the capacitor |
-
1990
- 1990-11-30 JP JP33877690A patent/JP3023379B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994001879A1 (en) * | 1992-07-03 | 1994-01-20 | Mnogoprofilnoe Nauchno-Tekhnicheskoe Proizvodstvenno-Kommercheskoe Obschestvo S Ogranichennoi Otvetstvennostju 'econd' ('econd' Ltd.) | Capacitor with double electric layer |
WO1994010698A1 (en) * | 1992-10-27 | 1994-05-11 | Mnogoprofilnoe Nauchno-Tekhnicheskoe I Proizvod Stvenno-Kommercheskoe Obschestvo S Organichennoi Otvetstvennostju 'econd' | Capacitor with double electric layer |
US6233135B1 (en) | 1994-10-07 | 2001-05-15 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6430031B1 (en) | 1994-10-07 | 2002-08-06 | Maxwell Electronic Components Group, Inc. | Low resistance bonding in a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US5862035A (en) * | 1994-10-07 | 1999-01-19 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US5907472A (en) * | 1994-10-07 | 1999-05-25 | Maxwell Laboratories, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6059847A (en) * | 1994-10-07 | 2000-05-09 | Maxwell Energy Products, Inc. | Method of making a high performance ultracapacitor |
US6094788A (en) * | 1994-10-07 | 2000-08-01 | Maxwell Energy Products, Inc. | Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US5621607A (en) * | 1994-10-07 | 1997-04-15 | Maxwell Laboratories, Inc. | High performance double layer capacitors including aluminum carbon composite electrodes |
US5777428A (en) * | 1994-10-07 | 1998-07-07 | Maxwell Energy Products, Inc. | Aluminum-carbon composite electrode |
US6585152B2 (en) | 1994-10-07 | 2003-07-01 | Maxwell Technologies, Inc. | Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6451073B1 (en) | 1994-10-07 | 2002-09-17 | Maxwell Electronic Components Group, Inc. | Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6449139B1 (en) | 1999-08-18 | 2002-09-10 | Maxwell Electronic Components Group, Inc. | Multi-electrode double layer capacitor having hermetic electrolyte seal |
US6842330B2 (en) | 1999-08-18 | 2005-01-11 | Maxwell Technologies, Inc. | Multi-electrode double layer capacitor having hermetic electrolyte seal |
US6631074B2 (en) | 2000-05-12 | 2003-10-07 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
US6813139B2 (en) | 2001-11-02 | 2004-11-02 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
KR100752942B1 (en) * | 2003-11-20 | 2007-08-30 | 티디케이가부시기가이샤 | Electrode for electrochemical capacitor, fabricating method of the electrode, and electrochemical capacitor, fabricating method of the capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP3023379B2 (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180019072A1 (en) | Electrochemical Method of Producing Graphene-Based Supercapacitor Electrode from Coke or Coal | |
WO1997020333A1 (en) | Double layer capacitor with porous carbon electrodes and method for manufacturing these electrodes | |
US8501307B2 (en) | Recompressed exfoliated graphite articles | |
KR20070087481A (en) | High capacity electrode active material, method for manufacturing the same, electrode and energy storage device having the same | |
JPH04206914A (en) | Electric double layer capacitor and electrode | |
JPWO2018207769A1 (en) | Modified activated carbon and method for producing the same | |
CN105518814A (en) | Activated carbon for electrode of electric storage device and preparation method thereof | |
Wan et al. | A high power Li–air battery enabled by a fluorocarbon additive | |
Lv et al. | Graphene/MnO 2 aerogel with both high compression-tolerance ability and high capacitance, for compressible all-solid-state supercapacitors | |
JPH02297915A (en) | Electric double layer capacitor | |
US20040252442A1 (en) | Polarizing electrode, manufacturing method thereof, and electric double-layer capacitor | |
JPH04175277A (en) | Carbon porous material, production thereof and electric double layer capacitor | |
US3053925A (en) | Porous sintered plate | |
JPH04206916A (en) | electric double layer capacitor | |
JPH06267794A (en) | Method for manufacturing polarizable electrode material | |
JPH0799141A (en) | Polarized electrode, manufacture thereof and electric double layer capacitor using the same | |
JPH03141629A (en) | electric double layer capacitor | |
JPH0422062A (en) | Polarizable electrode plate | |
JP3097860B2 (en) | Electric double layer capacitor | |
KR20190011487A (en) | Preparing method of carbone foam, carbone foam prepared by thereof and electrode for supercapacitor comprising the carbone foam | |
JPH04206920A (en) | Electrode and electric double layer capacitor | |
JPH04177713A (en) | Electric dual layer capacitor | |
JP2018041921A (en) | Nonaqueous lithium power storage element | |
JP2000103610A (en) | Production of carbon powder and carbonaceous material | |
JP2016026985A (en) | Method for producing activated carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |