JPH04206416A - Impregnated cathode - Google Patents
Impregnated cathodeInfo
- Publication number
- JPH04206416A JPH04206416A JP2337090A JP33709090A JPH04206416A JP H04206416 A JPH04206416 A JP H04206416A JP 2337090 A JP2337090 A JP 2337090A JP 33709090 A JP33709090 A JP 33709090A JP H04206416 A JPH04206416 A JP H04206416A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- impregnated
- thin film
- impregnated cathode
- scandium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims description 27
- 229910052721 tungsten Inorganic materials 0.000 claims description 19
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 229910052706 scandium Inorganic materials 0.000 claims description 14
- 239000010937 tungsten Substances 0.000 claims description 14
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 13
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 11
- 229910052762 osmium Inorganic materials 0.000 claims description 8
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 7
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 150000003326 scandium compounds Chemical class 0.000 description 7
- 239000010410 layer Substances 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 101150038956 cup-4 gene Proteins 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid Thermionic Cathode (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は表示管、ブラウン管、撮像管、進行波管などの
電子管に用いられる含浸形陰極に係り、特に、低温動作
において高電流密度を得ることのできる含浸形陰極に関
する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an impregnated cathode used in electron tubes such as display tubes, cathode ray tubes, image pickup tubes, and traveling wave tubes, and in particular, to obtain high current density in low-temperature operation. This invention relates to an impregnated cathode that can be used as an impregnated cathode.
[従来の技術〕
含浸形陰極は高電流密度が得られる陰極であり、電子管
の高性能化、特に、高精細度化、高輝度化を達成するた
めの陰極として有望視されている陰極である。[Prior Art] An impregnated cathode is a cathode that can obtain a high current density, and is a cathode that is seen as a promising cathode for improving the performance of electron tubes, especially achieving higher definition and higher brightness. .
含浸形陰極はタングステンからなる耐熱多孔質体の細孔
部にバリウムを含む酸化物、通常はBaOとCaO1お
よびAl、○、からなる化合物を含浸させた構造からな
るものが基本であるが、陰極表面にタングステンとタン
グステン酸スカンジウム(SC,W、01.)からなる
薄膜を被覆することによって電子放出特性が向上するこ
とか知られている。スカンジウム化合物被覆型含浸形陰
極は、加熱によって被覆膜表面にBa、Sc、○からな
る単原子層を形成する。この単原子層の形成によって陰
極表面の仕事関数か低下し、電子放出特性が向上するも
のと考えられている。IOA/cm’ の電流初度が得
られる陰極温度を陰極の動作温度と定義すると、陰極表
面に被覆層の存在しない含浸形陰極の仕事関数は約2.
OeV、動作温度は1100〜1200’Cであるのに
対し、スカンジウム化合物被覆型含浸形陰極の仕事関数
は約1.2eV、動作温度は850〜900℃である。An impregnated cathode basically has a structure in which the pores of a heat-resistant porous material made of tungsten are impregnated with an oxide containing barium, usually a compound consisting of BaO, CaO1, and Al, ○. It is known that electron emission characteristics can be improved by coating the surface with a thin film made of tungsten and scandium tungstate (SC, W, 01.). The scandium compound-coated impregnated cathode forms a monoatomic layer consisting of Ba, Sc, and O on the surface of the coating film by heating. It is believed that the formation of this monoatomic layer lowers the work function of the cathode surface and improves the electron emission characteristics. If the cathode temperature at which an initial current of IOA/cm' is obtained is defined as the operating temperature of the cathode, then the work function of an impregnated cathode without a coating layer on the cathode surface is approximately 2.
OeV and operating temperature are 1100-1200'C, whereas the scandium compound coated impregnated cathode has a work function of about 1.2eV and operating temperature is 850-900'C.
表面単原子層を構成するBaは、下記の式(1)のよう
に、耐熱多孔質体をなすタングステンとバリウム酸化物
の熱反応によって生成し、被覆膜中を熱拡散して陰極表
面に到達したものである。Ba, which constitutes the surface monoatomic layer, is generated by a thermal reaction between tungsten and barium oxide, which constitute a heat-resistant porous material, as shown in the following formula (1), and thermally diffuses in the coating film to reach the cathode surface. It has been reached.
W+2Ba3AI、0.−+3Ba+BaW○、+2B
a、Al、04−=・(1)式(1)の反応によるBa
の生成は耐熱多孔質体の細孔内で起こるため、被覆膜表
面にお(てるBaの濃度には多孔質体の形状を反映りた
分布か見られる。即ち、多孔質体の細孔に接した部分の
Ba’jIt度は、それ以外の部分のBa濃度よりも高
い。スカンジウム化合物被覆型含浸形陰極においては、
Ba濃度による表面の仕事関数の変化か、金属被覆型な
ど、他の含浸形陰極に比へて人きいため、放出される電
子の強度に不均一性か現れる7なお、スカンジウム化合
物被覆型含浸形陰極の放出電流分布については、アイ・
イー・イー・イー、トランザクション オンエし・クト
ロン デパイシズ、第36巻(1989年)第209頁
から第214頁(IEEE、Trans、Electr
on Devices、 36(1989)pp、20
9−214)において、′論じられている。また、電子
放出特性について論じているものとしては、ジャパニー
ズ ジャーナル オブ アプライド フィジックス、第
28巻(1,989年)第490頁から第494頁(J
pn。W+2Ba3AI, 0. -+3Ba+BaW○, +2B
a, Al, 04-=・(1) Ba by the reaction of formula (1)
Since the formation of Ba occurs within the pores of the heat-resistant porous material, the concentration of Ba on the surface of the coating film has a distribution that reflects the shape of the porous material. The Ba'jIt degree of the part in contact with is higher than the Ba concentration of the other part.In the scandium compound-coated impregnated cathode,
Possibly due to changes in the surface work function due to Ba concentration, the intensity of emitted electrons appears to be non-uniform as compared to other impregnated cathodes such as metal-coated cathodes7. Regarding the emission current distribution of the cathode,
E.E., Transactions on Electronics, Vol. 36 (1989), pp. 209-214 (IEEE, Trans, Electr.
on Devices, 36 (1989) pp, 20
9-214), 'discussed. In addition, the Japanese Journal of Applied Physics, Vol. 28 (1,989), pp. 490 to 494 (J
pn.
J、 Appl、Phys、 28 (1989)
pp、 490−494)が挙げられる。J, Appl, Phys, 28 (1989)
pp, 490-494).
[発明か解決しようとする課題]
上記したように、タングステンからなる耐熱多孔質体の
細孔部にバリウムを含む酸化物を含浸させた構造からな
る含浸形陰榛の表面にタングステンとタングステン酸ス
カンジウムからなる薄膜を被覆した従来のスカンジウム
化合物被覆型含浸形陰極においては、陰極表面における
放出電流分布に不均一性が見られる。このため、放出さ
れる電子の運動エネルギーの幅が広がり、ブラウン管に
実装した場合にフォーカス特性などの点で問題を生じて
、実用化への障害となっていた。[Problem to be solved by the invention] As described above, tungsten and scandium tungstate are applied to the surface of the impregnated shade, which has a structure in which the pores of a heat-resistant porous body made of tungsten are impregnated with an oxide containing barium. In the conventional impregnated cathode coated with a scandium compound, non-uniformity is observed in the emission current distribution on the cathode surface. For this reason, the range of kinetic energy of the emitted electrons widens, causing problems in terms of focusing characteristics when mounted on a cathode ray tube, which has been an obstacle to practical application.
本発明の目的は、上記従来のスカンジウム化合物被覆型
含浸形陰極の有していた課題を解決し、実用化に耐え得
る含浸形陰極を提供することにある。An object of the present invention is to solve the problems of the conventional scandium compound-coated impregnated cathode and to provide an impregnated cathode that can be put to practical use.
[課題を解決するための手段]
上記目的を達成するために、耐熱多孔質体の細孔部にバ
リウムを含む酸化物を含浸させた含浸形陰極の表面に高
融点の金属薄膜を設け、さらにタングステンとタングス
テン酸スカンジウムを含む薄膜を設けた。特に、上記金
属薄膜をルテニウム。[Means for Solving the Problems] In order to achieve the above object, a thin metal film with a high melting point is provided on the surface of an impregnated cathode in which the pores of a heat-resistant porous body are impregnated with an oxide containing barium. A thin film containing tungsten and scandium tungstate was provided. In particular, the metal thin film mentioned above is ruthenium.
ロジウム、レニウム、オスミウム、イリジウムから選ば
れる少なくとも一種を主たる成分とした場合、および、
上記タングステン酸スカンジウムを3C,w、o、、お
よびSc、Wo、2のいずれか一種、もしくは両者の混
合物とした場合に、その効果は顕著である。また、上記
金属薄膜の厚さが10〜11000nの範囲にある場合
、および、上記タングステンとタングステン酸スカンジ
ウムを含む薄膜の厚さが10〜11000nの範囲にあ
る場合に顕著な効果が認められる。When the main component is at least one selected from rhodium, rhenium, osmium, and iridium, and
The effect is remarkable when the scandium tungstate is any one of 3C, w, o, and Sc, Wo, and 2, or a mixture of both. Further, remarkable effects are observed when the thickness of the metal thin film is in the range of 10 to 11,000 nm, and when the thickness of the thin film containing tungsten and scandium tungstate is in the range of 10 to 11,000 nm.
[作用]
本発明の耐熱多孔質体の細孔部にバリウムを含む酸化物
を含浸させた含浸形陰極の表面に高融点の金属薄膜を設
け、さらにタングステンとタングステン酸スカンジウム
を含む薄膜を設けた含浸形陰極を加熱すると、多孔質体
の細孔部でタングステンとバリウム含有酸化物が反応し
てBaが生成する。この反応によって生成したBaは被
覆膜中を拡散して陰極表面に到達し、表面単原子層を形
成する。Baか金属薄膜力を拡散する内に面内方向の濃
度分布は均一となるため、表面におけるBafi度は一
様であり、放出電流分布の均一化か達成される。[Function] A thin metal film with a high melting point is provided on the surface of an impregnated cathode in which the pores of the heat-resistant porous body of the present invention are impregnated with an oxide containing barium, and a thin film containing tungsten and scandium tungstate is further provided. When the impregnated cathode is heated, tungsten and barium-containing oxide react in the pores of the porous body to generate Ba. Ba generated by this reaction diffuses through the coating film, reaches the cathode surface, and forms a surface monoatomic layer. Since the concentration distribution in the in-plane direction becomes uniform while the Ba metal thin film force is diffused, the Bafi degree on the surface is uniform, and a uniform emission current distribution is achieved.
二二で、金属薄膜を融点か高く、かつ、Baとの反応性
が無いルテニウム、ロジウム、レニウム。Ruthenium, rhodium, and rhenium have a high melting point and do not react with Ba.
オスミウム、イリジウムから選ばれる少なくとも一種を
主たる成分とした場合が効果的である。また、金属薄膜
の厚さは、10nm以下では拡散によるBa濃度の均一
化か不十分であり、11000n以上では拡散による陰
極表面へのBaの供給が困難になるため、10〜110
0Onの範囲にある場合が効果的である。It is effective to use at least one selected from osmium and iridium as the main component. Furthermore, if the thickness of the metal thin film is less than 10 nm, it is insufficient to uniformize the Ba concentration by diffusion, and if it is more than 11,000 nm, it becomes difficult to supply Ba to the cathode surface by diffusion.
It is effective if it is in the range of 0On.
また、ここで、タングステンとタングステン酸スカンジ
ウムを含む薄膜の厚さは、10nm以下では被覆が不完
全であり、11000n以上では拡散による陰極表面へ
のBaの供給が困難になるため、10〜1. OOOn
mの範囲にある場合が効果的である。In addition, if the thickness of the thin film containing tungsten and scandium tungstate is less than 10 nm, the coating will be incomplete, and if it is more than 11,000 nm, it will be difficult to supply Ba to the cathode surface by diffusion. OOOn
It is effective if it is within the range of m.
また、タングステン酸スカンジウムとしては、Baと反
応して表面星原子層を形成するのに必要なScを生成す
ることの容易なSc、〜′303.およびSc、WO1
,のいずれか一種、もしくは両者の混合物とすることが
効果的である。In addition, as scandium tungstate, Sc ~'303. and Sc, WO1
, or a mixture of both is effective.
C実施例]
第1図に基ついて、本発明含浸形陰榛の作製について説
明する。粒径5μmのタングステン粉末をプレス成形し
た後、真空中焼結を行なうことによって空孔率30%の
多孔質体1を作製した。この基体に、水素雰囲気中にお
いて4Ba○・CaO・Al、O,の組成の酸化物2を
加熱融解して含浸させ、下地含浸形陰極3を作製した。Example C] The production of the impregnated shade of the present invention will be described with reference to FIG. A porous body 1 with a porosity of 30% was produced by press-molding tungsten powder with a particle size of 5 μm and then sintering it in a vacuum. This substrate was impregnated with an oxide 2 having a composition of 4Ba◯.CaO.Al, O by heating in a hydrogen atmosphere to produce a base-impregnated cathode 3.
次に、モリブデンからなるカップ4およびスリーブ5を
作製し、カップ4に下地含浸形陰極3を挿入することに
よって陰極本体を作製した。Next, a cup 4 and a sleeve 5 made of molybdenum were produced, and a base-impregnated cathode 3 was inserted into the cup 4 to produce a cathode body.
次に、複数のターゲットを用いた多層膜の連続形成が可
能な高周波マグネトロンスパッタ装置を使用し、オスミ
ウム板と、Sc、W、01.のペレットを配置したタン
グステン板の2種類のターゲットを用意して、上記陰極
本体の下地含浸形陰極3の表面に被覆膜の形成を行った
。まず、オスミウム膜6を500nmの厚さで形成した
のち、WとSc、W、0,3を含む薄膜7を300nm
の厚さで形成した。WとSc、W、01.を含む薄膜7
に関してはSC,W2O3,ペレットの個数を変えるこ
とによって薄膜の組成を調整し、薄膜中のScの重量比
を3%とした。使用した放電ガスはアルゴンであり、陰
極本体を水冷しながらスパッタリングを行なった。Next, using a high frequency magnetron sputtering device that can continuously form a multilayer film using a plurality of targets, an osmium plate, Sc, W, 01. A coating film was formed on the surface of the base-impregnated cathode 3 of the cathode body using two types of tungsten plate targets on which pellets were arranged. First, an osmium film 6 is formed to a thickness of 500 nm, and then a thin film 7 containing W, Sc, W, 0,3 is formed to a thickness of 300 nm.
It was formed with a thickness of . W and Sc, W, 01. Thin film 7 containing
Regarding this, the composition of the thin film was adjusted by changing the number of SC, W2O3, and pellets, and the weight ratio of Sc in the thin film was set to 3%. The discharge gas used was argon, and sputtering was performed while cooling the cathode body with water.
以上のようにして作製した本発明の含浸形陰榛について
、超高真空容器内に設けた直径25μmの小孔を有する
陽極を用いた二極管配置において、陽極に正の高圧パル
ス電圧を印加しながら陽極を陰極表面に対して水平に移
動させ、小孔を通って流れる電流値を検出するという方
法によって、放出電流分布の測定を行なった。測定結果
(a)を、比較のために上記の陰極本体3にWとSc、
W、O,、からなる薄膜を設けた従来のスカンジウム
化合物被覆型含浸形陰極についての測定結果(b)とと
もに、第2図に示す。第2図の横軸は陰極表面内の位置
を示し、縦軸は放出電流を示す。陰極の加熱はヒータ8
に通電することで行ない、陰極表面温度を850℃に保
って測定を行った。図に示した結果から、従来の陰極か
大きな放出電流分布を持つのに対して、本発明の陰極の
放出電流分布はほぼ一様であり、放出電流分布の均一化
が達成されていることがわかる。Regarding the impregnated type ink of the present invention produced as described above, in a diode arrangement using an anode having a small hole with a diameter of 25 μm provided in an ultra-high vacuum container, while applying a positive high voltage pulse voltage to the anode, The emission current distribution was measured by moving the anode horizontally with respect to the cathode surface and detecting the value of the current flowing through the small holes. The measurement result (a) was measured using W and Sc on the above cathode body 3 for comparison.
The results are shown in FIG. 2 along with measurement results (b) for a conventional scandium compound-coated impregnated cathode provided with a thin film of W, O, etc. The horizontal axis in FIG. 2 shows the position within the cathode surface, and the vertical axis shows the emission current. Heater 8 is used to heat the cathode.
The measurement was carried out by applying current to the cathode while maintaining the cathode surface temperature at 850°C. From the results shown in the figure, it can be seen that while the conventional cathode has a large emission current distribution, the emission current distribution of the cathode of the present invention is almost uniform, and that a uniform emission current distribution has been achieved. Recognize.
上記実施例においては、金属薄膜を厚さ500nmのオ
スミウム膜とした場合について説明したが、オスミウム
の代わりにルテニウム、ロジウム、レニウム、または、
イリジウムを用いた場合についても、薄膜の厚さが10
〜11000nの範囲にあれば、放出電流分布の均一化
に効果があり、特に、金属薄膜の厚さを300〜800
nmとしたとき、この効果は顕著である。また、タング
ステン酸スカンジウムとしてSc、W、01.の代わり
にSc6WO12を用いた場合や両者の混合物を用いた
場合についても、金属薄膜の厚さが10〜11000n
の範囲にあれば、放出電流分布の均一化に効果がある。In the above embodiment, the case where the metal thin film was an osmium film with a thickness of 500 nm was explained, but instead of osmium, ruthenium, rhodium, rhenium, or
Even when iridium is used, the thickness of the thin film is 10
~11000n is effective in making the emission current distribution uniform, especially when the thickness of the metal thin film is 300~800n.
This effect is remarkable when it is expressed as nm. Further, as scandium tungstate, Sc, W, 01. Also when using Sc6WO12 instead of Sc6WO12 or a mixture of both, the thickness of the metal thin film is 10 to 11000 nm.
Within this range, it is effective in making the emission current distribution uniform.
また、上記実施例において説明した本発明の陰極をブラ
ウン管に実装した。この本発明の含浸形陰極を用いたブ
ラウン管は、同一の電子銃を用いた場合、従来構造のス
カンジウム化合物被覆型含浸形陰極を用いたブラウン管
に比較して、優れたフォーカス特性を有していた。Further, the cathode of the present invention explained in the above example was mounted on a cathode ray tube. A cathode ray tube using the impregnated cathode of the present invention had superior focusing characteristics compared to a cathode ray tube using a scandium compound-coated impregnated cathode with a conventional structure when the same electron gun was used. .
[発明の効果]
本発明によれば含浸形陰極を、下地含浸形陰榛の表面に
オスミウム等の高融点金属の薄膜を設け、更にタングス
テンとタングステン酸スカンジウムを含む薄膜を設けた
含浸形陰極とすることにより、従来の含浸形陰極に比較
して、放出電流分布を著しく均一なものにすることが可
能となる。[Effects of the Invention] According to the present invention, an impregnated cathode is formed by providing a thin film of a high-melting point metal such as osmium on the surface of a base impregnated undercoat, and further providing a thin film containing tungsten and scandium tungstate. By doing so, it becomes possible to make the emission current distribution significantly more uniform compared to conventional impregnated cathodes.
第1図は本発明の含浸形陰極の概略構成を示す断面図、
第2図は本発明の含浸形陰極と従来の含浸形陰極におけ
る放出電流分布を示す線図である。
l・・・耐熱多孔質体、2・・・バリウムを含む酸化物
、3・・・下地含浸形陰極、4・・・カップ、5・・・
スリーブ、6・・・O8薄膜、7・・・WとSc、W、
O,、を含む薄膜、8・・・ヒータ。FIG. 1 is a sectional view showing the schematic structure of the impregnated cathode of the present invention;
FIG. 2 is a diagram showing the emission current distribution in the impregnated cathode of the present invention and the conventional impregnated cathode. 1... Heat-resistant porous body, 2... Oxide containing barium, 3... Substrate impregnated cathode, 4... Cup, 5...
Sleeve, 6...O8 thin film, 7...W and Sc, W,
Thin film containing O, 8... Heater.
Claims (1)
を含浸させた構造からなる含浸形陰極において、陰極表
面に高融点の金属薄膜を設け、さらにタングステンとタ
ングステン酸スカンジウムを含む薄膜を設けたことを特
徴とする含浸形陰極。 2、上記金属薄膜はルテニウム、ロジウム、レニウム、
オスミウム、イリジウムから選ばれる少なくとも一種の
元素を主たる成分とすることを特徴とする請求項1記載
の含浸形陰極。 3、上記金属薄膜の厚さが10〜1000nmの範囲の
厚さであることを特徴とする請求項1または2記載の含
浸形陰極。 4、上記タングステン酸スカンジウムはSC_2W_3
O_1_2またはSc_6WO_1_2のいずれか一種
、もしくは両者の混合物であることを特徴とする請求項
1から3までのいずれかに記載の含浸形陰極。 5、上記タングステンとタングステン酸スカンジウムを
含む薄膜の厚さが10〜1000nmの範囲の厚さであ
ることを特徴とする請求項1から4までのいずれかに記
載の含浸形陰極。[Claims] 1. In an impregnated cathode having a structure in which a heat-resistant porous body and its pores are impregnated with an oxide containing barium, a high melting point metal thin film is provided on the cathode surface, and tungsten An impregnated cathode characterized by being provided with a thin film containing scandium acid. 2. The metal thin film mentioned above is made of ruthenium, rhodium, rhenium,
The impregnated cathode according to claim 1, characterized in that the main component is at least one element selected from osmium and iridium. 3. The impregnated cathode according to claim 1 or 2, wherein the metal thin film has a thickness in the range of 10 to 1000 nm. 4. The above scandium tungstate is SC_2W_3
The impregnated cathode according to any one of claims 1 to 3, characterized in that it is one of O_1_2 and Sc_6WO_1_2, or a mixture of both. 5. The impregnated cathode according to claim 1, wherein the thin film containing tungsten and scandium tungstate has a thickness in the range of 10 to 1000 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337090A JPH04206416A (en) | 1990-11-30 | 1990-11-30 | Impregnated cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337090A JPH04206416A (en) | 1990-11-30 | 1990-11-30 | Impregnated cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04206416A true JPH04206416A (en) | 1992-07-28 |
Family
ID=18305341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2337090A Pending JPH04206416A (en) | 1990-11-30 | 1990-11-30 | Impregnated cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04206416A (en) |
-
1990
- 1990-11-30 JP JP2337090A patent/JPH04206416A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thomas et al. | Thermionic sources for high-brightness electron beams | |
US3558966A (en) | Directly heated dispenser cathode | |
JP6014669B2 (en) | Target for barium-scandium oxide dispenser cathode | |
JP2987140B2 (en) | Field emission electron source, method of manufacturing the same, flat light emitting device, display device, and solid-state vacuum device | |
US7026749B2 (en) | Cathode for electron tube and method of preparing the same | |
US5866975A (en) | Low-temperature cathode having an emissive nanostructure | |
JP3957344B2 (en) | Discharge tube or discharge lamp and scandate-dispenser cathode | |
WO2001015192A1 (en) | Schottky emitter having extended life | |
RU2210134C2 (en) | Cold-emission cathode and flat-panel display | |
JPH04206416A (en) | Impregnated cathode | |
JPH0765693A (en) | Oxide cathode | |
Gaertner et al. | Vacuum electron sources and their materials and technologies | |
CN100437873C (en) | Cathode for electronic tube and method for manufacturing same | |
US2686886A (en) | Electric discharge tube | |
US2792273A (en) | Oxide coated nickel cathode and method of activation | |
JPH065198A (en) | Cathode including cathode element | |
JPH0443527A (en) | Impregnated cathode and electron tube using the same | |
KR100393990B1 (en) | heater for CRT | |
US2279821A (en) | Secondary electron emissive electrode | |
Yamamoto | Recent development of cathodes used for cathode ray tubes | |
JP2730260B2 (en) | Cathode for electron tube | |
JPH04286827A (en) | Impregnated cathode | |
JPH1027538A (en) | Impregnated cathode and cathode ray tube using the same | |
JPS60170137A (en) | hot cathode | |
JPH08138536A (en) | Impregnated cathode, method of manufacturing the same, and cathode ray tube using the same |