[go: up one dir, main page]

JPH04204750A - Electrostatic charge image developing toner - Google Patents

Electrostatic charge image developing toner

Info

Publication number
JPH04204750A
JPH04204750A JP2337541A JP33754190A JPH04204750A JP H04204750 A JPH04204750 A JP H04204750A JP 2337541 A JP2337541 A JP 2337541A JP 33754190 A JP33754190 A JP 33754190A JP H04204750 A JPH04204750 A JP H04204750A
Authority
JP
Japan
Prior art keywords
toner
hydrophobicity
degree
fine particles
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2337541A
Other languages
Japanese (ja)
Other versions
JP3123076B2 (en
Inventor
Junji Machida
純二 町田
Ichiro Izumi
一郎 出水
Mitsutoshi Nakamura
中村 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18309627&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04204750(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP02337541A priority Critical patent/JP3123076B2/en
Publication of JPH04204750A publication Critical patent/JPH04204750A/en
Application granted granted Critical
Publication of JP3123076B2 publication Critical patent/JP3123076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To obtain a toner excellent in toner fluidity, electrification rising, electrification uniformity and environmental stability by incorporating developer inorg. fine particles having hydrophobicity distribution. CONSTITUTION:Inorg. fine particles subjected to surface treatment with a hydrophobe so that the particles have a hydrophobicity distribution are incorporated into the toner. The org. particles are silicon dioxide (anhydride), aluminum silicate, zinc oxide, etc., or mixture of these produced by dry or wet method. As for the hydrophobe, various kinds of coupling agents such as silane type, titanate type, aluminum type, zircoaluminate type, silicone oil, etc., can be used. Thereby, the obtd. toner has excellent toner fluidity, electrification rising, electrification uniformity and environmental stability of charges.

Description

【発明の詳細な説明】 産業上智利四−サ黙 本発明は、電子写真、静電記録、静電印刷等に於ける静
電荷像を視像する静電荷像現像用トナーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a toner for developing electrostatic images for visualizing electrostatic images in electrophotography, electrostatic recording, electrostatic printing, and the like.

久米挟鼾 電子写真においては、トナーどキャリアとの混合系現像
剤を用いたカスケード現像法(アメリカ合衆国特許(U
SP)第2297691号、USP第2618552号
)もしくは磁気ブラフ現像法(Usp第2832311
号)によるか、又はトナーのみからなる現像剤を用いた
タッチダウン現像法(USP第4121931号)、非
磁性−成分現像法(USP第37311.46号)など
により、静電荷像を可視化して又は静電荷像を反転現像
により可視化して高品質な安定した画像をえる。
In electrophotography, a cascade development method (United States patent (U.S.
SP) No. 2297691, USP No. 2618552) or magnetic bluff development method (USP No. 2832311)
(No. 37311.46), a touchdown development method using a developer consisting only of toner (USP No. 4121931), a non-magnetic component development method (USP No. 37311.46), etc. Alternatively, an electrostatic charge image can be visualized by reversal development to obtain a high-quality, stable image.

これらの現像法に適用するトナーとし、では、バインダ
ーとしての熱可塑性樹脂に帯電制御剤どしての染料、着
色剤としての顔料また離型剤とじでワックス等を加えて
混練、粉砕、分級を行い平均粒径が4〜2511mのト
ナー粒子としたものが用いられている。そして一般的に
トナーに流動性を付与したりクリーニング性を向上させ
たりするためにシリカ、酸化チタンや酸化アルミラー等
の無機微粉末が添加される。
The toner to be applied to these development methods is a thermoplastic resin as a binder, a dye as a charge control agent, a pigment as a coloring agent, a wax as a release agent, etc., and then kneaded, crushed, and classified. Toner particles having an average particle diameter of 4 to 2511 m are used. In general, inorganic fine powders such as silica, titanium oxide, and aluminum oxide are added to impart fluidity to the toner and improve cleaning properties.

これらの無機微粉末は親水性であり、その結果トナーの
流動性や摩擦帯電性に湿度が大きく影響する。このよう
な環境条件の影響を防ぐため、これらの無機微粉末の表
面を疎水化剤を用いて表面処理したものを用いてトナー
とし、複写機等の現像装置に適用するのが普通である(
USP第3720617号、特公昭5410344号公
報)、。
These inorganic fine powders are hydrophilic, and as a result, humidity greatly affects the fluidity and triboelectric charging properties of the toner. In order to prevent the effects of such environmental conditions, it is common practice to use a surface treated inorganic fine powder using a hydrophobizing agent to make toner and apply it to developing devices such as copying machines (
USP No. 3720617, Japanese Patent Publication No. 5410344).

これらの疎水化剤としては、一般的シランカップリング
剤が使用されている。例えば二酸化ケイ素粒子の表面の
水酸基をシランカップリング剤から誘導されるンラノー
ル基との間で反応して疎水化されている。疎水化度につ
いては特公平1−22616号公報で開示されているが
十分とはいえず、帯電の立ち上がりや均一性および安定
性などに問題がある。
As these hydrophobizing agents, general silane coupling agents are used. For example, hydroxyl groups on the surface of silicon dioxide particles are made hydrophobic by reacting with ranol groups derived from a silane coupling agent. Although the degree of hydrophobicity is disclosed in Japanese Patent Publication No. 1-22616, it is not sufficient, and there are problems with charging rise, uniformity, and stability.

発明が解決しようとする課題 本発明は上記事情に鑑みなされたものであり、疎水化剤
を用いて疎水化度分布を有するように、表面処理した無
機微粉末をトナーに含有させることにより、トナー流動
性さらにはトナーの荷電立ち上がり性や均一性に優れ又
荷電の環境安定性に優れたトナーを得るに至り本発明を
完成した。
Problems to be Solved by the Invention The present invention has been made in view of the above circumstances, and it is possible to create a toner by incorporating inorganic fine powder that has been surface-treated using a hydrophobizing agent so as to have a hydrophobic degree distribution. The present invention has been completed by obtaining a toner which has excellent fluidity, toner charge build-up and uniformity, and excellent environmental stability of charge.

課題を解決するための手段 本発明は疎水化度分布を有する現像剤用無機微粒子を含
有することを特徴とする静電荷像現像用トナーに関する
Means for Solving the Problems The present invention relates to a toner for developing electrostatic images characterized by containing inorganic fine particles for a developer having a hydrophobicity distribution.

無機微粒子としては、乾式法又は湿式法で製造した二酸
化ケイ素(無水)、ケイ酸アルミニウム、ケイ麩マグ不
ソウムなどのケイ酸塩、二酸化チタン、アルミナ炭酸カ
ルシウム、チタン際バリウム、酸化亜鉛など、又はその
混合物を含む。
Examples of inorganic fine particles include silicon dioxide (anhydrous) produced by a dry method or wet method, aluminum silicate, silicates such as silicate, titanium dioxide, calcium alumina carbonate, barium on titanium, zinc oxide, etc. including mixtures thereof.

これらの無機微粒子の平均粒径は1IIlμIT1〜2
μm1好ましくは51μ丙〜・lμIである。
The average particle size of these inorganic fine particles is 1IIlμIT1~2
μm1 is preferably 51μH to lμI.

本発明においては無機微粒子は、疎水化度分布を有する
ように疎水化剤で疎水化処理を施す。
In the present invention, inorganic fine particles are subjected to hydrophobization treatment using a hydrophobizing agent so that they have a hydrophobization degree distribution.

疎水化剤としては、シラン系、チタネート系、アルミニ
ウム系、ジルコアルミネート系等の各種のカップリング
剤及びシリコーンオイル等が用いられる。シラン系では
クロロシラン、アルキルシラン、アルコキンシラン、ン
ラザン等を挙げることができる。具体的に例えば ・CH,5iCQ3 ・(CHs)as+cffl ・(CHx)ssicQ ・CHs S 1(○cHs)s ・CHs S i(OCHxc Hs)s・(CH5)
3S i(OCHs) ・(CHs)zsi(OCHs)z ・ (e  Hs)zs  五(OCHtc  H3)
z・S i(OCR! CHs)4 ・Si(○CHI)4 ・CHn(H)Si(OCHs)* ・CH5(H)S i(OCHICHs)z・(CH3
)、(H)S i(OCHzc H3)・(◎)xs 
1(OCHs)z ・◎5i(OCHxCHx)3 ・(◎)2S1(OCHzCHx)z ・◎S i(OCHs)s ・(◎)zsicI2z ・(◎)、CH,5iCQ ・◎5XCQj ・(◎XCHs)SiCI2z ・(CHs’)3S iN HS i(CHs)s・C
H3(CHりIts 1(CHsXOCH3)!・CH
3(CHs)+ y S i(OCHs)s・CH3(
CHz)rySi(OC*Hi)s・CH3(CHz)
ssi(CHs)zcQ・cH3(cH,)、、5i(
cH3)、cΩ・CHs(CHx)it S i(CH
s)Cら・CH4(CHり17s 1CQs 等を挙げることができる。
As the hydrophobizing agent, various coupling agents such as silane type, titanate type, aluminum type, zircoaluminate type, silicone oil, etc. are used. Examples of silanes include chlorosilane, alkylsilane, alkoxysilane, and silane. Specifically, for example, ・CH,5iCQ3 ・(CHs)as+cffl ・(CHx)ssicQ ・CHs S 1(○cHs)s ・CHs S i(OCHxc Hs)s・(CH5)
3S i(OCHs) ・(CHs)zsi(OCHs)z ・(e Hs)zs 5(OCHtc H3)
z・S i(OCR! CHs)4 ・Si(○CHI)4 ・CHn(H)Si(OCHs)* ・CH5(H)S i(OCHICHs)z・(CH3
), (H)S i(OCHzc H3)・(◎)xs
1(OCHs)z ・◎5i(OCHxCHx)3 ・(◎)2S1(OCHzCHx)z ・◎S i(OCHs)s ・(◎)zsicI2z ・(◎), CH, 5iCQ ・◎5XCQj ・(◎XCHs) SiCI2z ・(CHs')3S iN HS i(CHs)s・C
H3(CHriIts 1(CHsXOCH3)!・CH
3(CHs)+y Si(OCHs)s・CH3(
CHz)rySi(OC*Hi)s・CH3(CHz)
ssi(CHs)zcQ・cH3(cH,),,5i(
cH3), cΩ・CHs(CHx)it S i(CH
s) C et al. CH4 (CH ri 17s 1CQs etc.).

チタネート系では例えば 喝 cH (CIH17)  O−+r−T i ・[P÷O−C
lsHxt)20 H]zCHI       OCC
1yH3sI       / CH30CC17H31゜ CH3−CH−0−Ti+0−P(0−C8H17)2
11等を挙げることができる。
For titanate series, for example, cH (CIH17) O-+r-T i ・[P÷O-C
lsHxt)20H]zCHI OCC
1yH3sI / CH30CC17H31゜CH3-CH-0-Ti+0-P(0-C8H17)2
11 etc. can be mentioned.

シリコーンオイル系では、例えば 一般式[工]: 〔式中、R1は−C、H、OC、H、○H1CH。For silicone oil type, for example General formula [engineering]: [In the formula, R1 is -C, H, OC, H, ○H1CH.

Cs Hi OC−C−CHz 。Cs Hi OC-C-CHz.

CH,OH QsH,OCH*  CC1Hs。CH,OH QsH, OCH* CC1Hs.

CH,OH を表わす] 一般式[■]。CH,OH ] General formula [■].

〔式中、R2は−CH3、−Hを表わす1一般式[■コ
ニ 〔式中、R1は−CH5,−OCH,を表わす〕一般式
[■コ。
[In the formula, R2 represents -CH3, -H] General formula [■] [In the formula, R1 represents -CH5, -OCH] General formula [■]

一般式[vl: R6 〔式中、R1はアルギル基、R6、R8は水素、アルキ
ル基又は−R7N H2(Rl:アルキル基)、R8は
メチル基又はメトキシ基を表わす〕等を挙げることがで
き特に限定するものではない。
The general formula [vl: R6 [wherein R1 is an argyl group, R6 and R8 are hydrogen, an alkyl group or -R7N H2 (Rl: an alkyl group], and R8 is a methyl group or a methoxy group] can be mentioned. It is not particularly limited.

疎水化剤を用いて無機微粉末の表面を処理するには、次
のような方法による。まず、疎水化剤単独か又はテトラ
ヒドロフラン(THF)、  トルエン、酢酸エチル、
メチルエチルケトンあるいはアセトン等の溶剤を用いて
混合希釈し、無機微粉末をブレンダー等で強制的に攪拌
しつつカップリング剤の希釈液を滴下したりスプレーし
たりして加え充分混台する。次jコ得られた混合物をバ
ット等に移してオーブンに入れ加熱し乾燥させる。その
後再びブレンダーにて攪拌し充分に解砕する。このよう
な方法において各々の疎水化剤は同時に用いて処理して
もよい。このような乾式法の他に無機微粉末を疎水化剤
を有機溶剤を溶かした溶液に浸漬し、乾燥させ解砕する
というような湿式による処理法もある。
The following method is used to treat the surface of inorganic fine powder using a hydrophobizing agent. First, a hydrophobizing agent alone or tetrahydrofuran (THF), toluene, ethyl acetate,
The mixture is mixed and diluted using a solvent such as methyl ethyl ketone or acetone, and while the inorganic fine powder is forcibly stirred with a blender, a diluted solution of the coupling agent is added dropwise or sprayed and mixed thoroughly. Next, transfer the obtained mixture to a vat or the like and heat it in an oven to dry it. Thereafter, the mixture is stirred again using a blender to thoroughly crush the mixture. In such a method, each hydrophobizing agent may be used simultaneously. In addition to such a dry method, there is also a wet method in which fine inorganic powder is immersed in a solution containing a hydrophobizing agent and an organic solvent, dried, and crushed.

また、無機微粉末は、上記疎水化処理を施す前に、10
0℃以上で加熱処理した方が望ましい。
In addition, the inorganic fine powder was treated with 10
It is preferable to perform heat treatment at 0°C or higher.

無機微粒子に上記のような疎水化処理を施し、疎水化度
の分布を付与するには、まず所定量の無機微粉末をブレ
ンダー等によって撹拌しながら疎水化剤またはその希釈
混合液を滴下またはスプレー等によって加え十分に混合
する。そしてさらに所定量の無機微粉末を加え十分l二
撹拌する。このように疎水化剤に対して無機微粉末を段
階的に加えることによって疎水化度の分布を付与するこ
とができる。
In order to perform hydrophobization treatment as described above on inorganic fine particles and impart a distribution of hydrophobization degree, first, a predetermined amount of inorganic fine powder is stirred with a blender, etc., and a hydrophobizing agent or a diluted mixture thereof is dropped or sprayed. etc. and mix thoroughly. Further, a predetermined amount of inorganic fine powder is added and thoroughly stirred. In this way, by adding the inorganic fine powder to the hydrophobizing agent in stages, it is possible to impart a distribution of the degree of hydrophobization.

本発明において疎水化度とは、以下に記載のご■とくメ
タノール使用量から算出される値をいう。
In the present invention, the degree of hydrophobicity refers to a value calculated from the amount of methanol used as described below.

即ち、200m12のビーカーに純水50I110を入
れ、0.2gの試料を添加する。攪拌しながら、ビユレ
ットから無水硫酸ナトリウムで脱水したメタノールを加
え、液面上に試料がほぼ認められなくなった点を終点と
して要【7たメタノール量から下り式により疎水化度を
算出する。
That is, 50I110 of pure water is placed in a 200m12 beaker, and 0.2g of the sample is added. While stirring, methanol dehydrated with anhydrous sodium sulfate is added from the biuret, and the end point is when almost no sample is observed on the liquid surface.The degree of hydrophobicity is calculated from the amount of methanol obtained by using the downward formula.

(式中Cはメタノール使用量(cc)を表す)上記式よ
り、疎水化度とメタノール使用量の関係を表わすと下記
のごとくになる。
(In the formula, C represents the amount of methanol used (cc)) From the above formula, the relationship between the degree of hydrophobicity and the amount of methanol used is as follows.

疎水イ璧Jに【−へ−−−−ムぐ二工全二上像−黒1−
≧く9す10                5.5
疎水化度分布は以下のごどく求められる。
Hydrophobic Ippi J [-to----Muguji Kozenji Upper Image-Black 1-
≧ku9su10 5.5
The hydrophobicity distribution is determined as follows.

0.2gの試料を200mf2のビンに純水50mCと
無水硫酸ナトリウムで脱水したメタノールを疎水化度1
0に対応する量加え、強く1分間振り混ぜた後、1時間
静置し、沈んだ試料を分離する。それを蒸発皿に移し、
溶液を蒸発乾固し、デシケータ中で放冷する。蒸発乾固
後の試料(g)を測定し、下記式より“ぬれ特性(%)
′測定する。
0.2g of sample was placed in a 200mf2 bottle with 50mC of pure water and methanol dehydrated with anhydrous sodium sulfate.
Add the amount corresponding to 0, shake vigorously for 1 minute, let stand for 1 hour, and separate the sample that has sunk. Transfer it to an evaporating dish,
The solution is evaporated to dryness and allowed to cool in a desiccator. Measure the sample (g) after evaporation to dryness, and calculate the "wetting property (%)" using the following formula.
'Measure.

次に、疎水化度20.30・・・・90に対応するメタ
ノール量を順次使用し、上記と同様にしてぬれ特性を測
定する。疎水化度とぬれ特性の関係をグラフに表わすこ
とによって、疎水化度分布が明瞭に表わされる。例えば
、後述する疎水性微粒子(a)の分布が第1図に示され
ている。
Next, wetting characteristics are measured in the same manner as above using methanol amounts corresponding to hydrophobic degrees of 20.30...90. By graphing the relationship between the degree of hydrophobicity and wetting characteristics, the distribution of the degree of hydrophobicity can be clearly expressed. For example, the distribution of hydrophobic fine particles (a), which will be described later, is shown in FIG.

本発明においては、ぬれ特性が100%となる疎水化度
(全疎水化度という)X、(%)が、20≦xl≦80
の範囲にあり、ぬれ特性が5%以上を示すときの疎水化
度X、と全疎水化度X1との差(ΔX)が15%以上と
なる分布を有するように流動化剤を疎水化する。無機微
粉末に、疎水化度とし。
In the present invention, the hydrophobicity degree (referred to as total hydrophobicity degree) X, (%) at which the wetting property is 100% is 20≦xl≦80.
The fluidizing agent is hydrophobized so that it has a distribution in which the difference (ΔX) between the hydrophobicity degree X when the wetting property is 5% or more and the total hydrophobicity degree X1 is 15% or more. . Add hydrophobicity to inorganic fine powder.

て、このような分布を付与することにより、環境安定性
、トナー飛散防止、カブリの発生防止、荷電の安定性を
達成することができる。全疎水化度が20%より小さい
ときは高湿時の荷電性が低下し、トナー飛敷、カブリ等
が問題となる。全疎水化度が80より太きいものは製造
的に難しい。また、ΔX大きさが15%より小さいと、
荷電の安定性が得られない。
By providing such a distribution, environmental stability, prevention of toner scattering, prevention of fogging, and stability of charging can be achieved. When the total degree of hydrophobicity is less than 20%, the charging property at high humidity is reduced, causing problems such as toner flying and fogging. Products with a total hydrophobicity greater than 80 are difficult to manufacture. Also, if the ΔX magnitude is smaller than 15%,
Charge stability cannot be obtained.

本発明の表面処理された無機微粉末をトナーに含有させ
るには、トナー混線時に該無機微粉末を同時に練り込ん
でトナー内部に均一に分散させる方法(内添)がある。
In order to incorporate the surface-treated inorganic fine powder of the present invention into the toner, there is a method (internal addition) in which the inorganic fine powder is simultaneously kneaded and uniformly dispersed inside the toner at the time of toner mixing.

また重合法によりトナーを作製する場合は、重合時に無
機微粉末を加えてトナーの形成と同時に無機微粉末を取
り込ませる方法等も利用できる。さらにトナー表面に無
機微粉末をハイブリダイゼーションシステム、メカノフ
ュージョンシステム等で機械的剪断力で固着させる方法
も利用できる。
In addition, when producing a toner by a polymerization method, a method can also be used in which fine inorganic powder is added during polymerization so that the fine inorganic powder is incorporated at the same time as the toner is formed. Furthermore, it is also possible to use a method of fixing inorganic fine powder to the toner surface using mechanical shearing force using a hybridization system, mechanofusion system, or the like.

トナーは一般に少なくともバインダー樹脂、着色剤から
なる微小粒子で、磁性キャリア粒子とともに二成分で使
用するもの、トナーを非磁性−成分で使用するもの、ト
ナー内部に磁性剤を含有させたトナー(磁性トナー)ど
して−成分で使用するもの等存在するが、本発明に従い
疎水化処理された無機微粒子はいずれのトナーにも適用
できる。
Toners are generally microparticles consisting of at least a binder resin and a colorant, and some are used as two components together with magnetic carrier particles, some are used as a non-magnetic component, and some are toners that contain a magnetic agent inside the toner (magnetic toner). Although there are some types of toners that are used as components, the inorganic fine particles that have been hydrophobized according to the present invention can be applied to any toner.

係るトナーに添加する無機微粒子の量は一成分で使用す
るか、二成分で使用するか等にあわせて通常使用される
量で適用すればよく、例えば二成分現像剤に内添加ある
いは外添加する場合、トナーに対して0.05〜51量
%、好ましくは0.1〜2重量%の量で使用する。又一
種以上のブレンド系でも使用できる。
The amount of inorganic fine particles added to the toner may be the amount normally used depending on whether it is used as one component or as two components, for example, it may be added internally or externally to a two-component developer. In this case, it is used in an amount of 0.05 to 51% by weight, preferably 0.1 to 2% by weight, based on the toner. It can also be used as a blend of more than one type.

トナーに用いるバインダー樹脂としては、アクリル樹脂
、ポリスチレン樹脂、ポリエステル樹脂、スチレン−ア
クリル共重合樹脂、エポキシ樹脂等各種の樹脂か使用さ
れる。
As the binder resin used in the toner, various resins such as acrylic resin, polystyrene resin, polyester resin, styrene-acrylic copolymer resin, and epoxy resin are used.

ヒートロール定着用トナーの場合は、ワ・ンクス等の離
型剤がトナーに添加されるのか普通である。
In the case of toner for heat roll fixing, a release agent such as wax is usually added to the toner.

定着時にローラー表面へトナーがオフセ・ン卜するのを
防止するのがその目的である。一般的には低分子量ポリ
プロピレンや低分子量ポリエチレン等の低い分子量ポリ
オレフィンが挙げられる。
Its purpose is to prevent toner from being offset onto the roller surface during fixing. Generally, low molecular weight polyolefins such as low molecular weight polypropylene and low molecular weight polyethylene are mentioned.

以下に、本発明を実施例を用いてさらに詳しく説明する
The present invention will be explained in more detail below using Examples.

疎水化処理製造例(a) 疎水化剤として、ヘキサメチルジシラザン2gをテトラ
ヒドロフランlogに溶解した混合液を準備した。
Hydrophobization Treatment Production Example (a) As a hydrophobization agent, a mixed solution in which 2 g of hexamethyldisilazane was dissolved in log tetrahydrofuran was prepared.

無機微粒子としてコロイダルシリカ;アエロジル#20
0(日本アエロジル社製)を乾燥器で120′C,2時
間処理した。その内、20gを高速ミキサーに入れ、2
50Orpmで攪拌しながら、上記混合液を5分間かけ
て徐々に添加した。
Colloidal silica as inorganic fine particles; Aerosil #20
0 (manufactured by Nippon Aerosil Co., Ltd.) was treated in a dryer at 120'C for 2 hours. Put 20g of it into a high speed mixer and
The above mixture was gradually added over 5 minutes while stirring at 50 rpm.

さらに、アエロジル#200を5g加えて、3000r
p+nlO分間攪拌した。ミキサーから内容物を取り出
し、150℃の恒温槽で2時間加熱処理した後、解砕し
、疎水化度分布が50%〜70%の疎水性シリカ(a)
を得た。
Furthermore, add 5g of Aerosil #200 and add 3000r
Stirred for p+nIO minutes. The contents were taken out from the mixer, heated in a constant temperature bath at 150°C for 2 hours, and then crushed to produce hydrophobic silica (a) with a hydrophobicity distribution of 50% to 70%.
I got it.

第1図に疎水化度とぬれ特性の関係を示し、疎水化度分
布を示した。
Figure 1 shows the relationship between the degree of hydrophobicity and wetting properties, and shows the distribution of the degree of hydrophobicity.

疎水化度分布え色−■ 疎水化剤としてジメチルシリコーンオイル3gをトルエ
ン10gに溶解した混合液を準備した。
Hydrophobization degree distribution color - ■ A mixed solution was prepared by dissolving 3 g of dimethyl silicone oil in 10 g of toluene as a hydrophobizing agent.

無機微粒子としてアニロジルl”−25(日本アエロジ
ル社製)を乾燥器で120℃2時間処理した。その内3
5gを高速ミキサーに入れ、250Q rpmで攪拌し
ながら上記混合液を5分間かけて徐々に添加した。さら
にアエロジルP−25を15g加えて、3000rp+
nlO分間攪拌した。ミキサーから内容物を取り出し、
200℃の恒温槽で5時間処理した後、解砕し、疎水化
度分布が30%〜55%の疎水性酸化チタン(b)を得
た。
Anilosil l''-25 (manufactured by Nippon Aerosil Co., Ltd.) was treated as inorganic fine particles at 120°C for 2 hours in a dryer.
5 g was placed in a high-speed mixer, and the above mixture was gradually added over 5 minutes while stirring at 250 Q rpm. Add 15g of Aerosil P-25 to 3000rp+
Stirred for nIO minutes. Remove the contents from the mixer and
After being treated in a constant temperature bath at 200°C for 5 hours, it was crushed to obtain hydrophobic titanium oxide (b) having a hydrophobicity distribution of 30% to 55%.

第2図に疎水化度とぬれ特性の関係を示し、疎水化度分
布を示した。
Figure 2 shows the relationship between the degree of hydrophobicity and wetting properties, and shows the distribution of the degree of hydrophobicity.

疎水化処理製造例(C) 疎水化剤としてハイドロジエンボリシロキザン2gをト
ルエンlOgに溶解した混合液を準備した。
Hydrophobization Treatment Production Example (C) A mixed solution was prepared in which 2 g of hydrogen polysiloxane was dissolved in 10 g of toluene as a hydrophobizing agent.

無′l!&微粒子としてコロイダルアルミナRX(日本
アエロジル社製)を乾燥器で120℃、2時間処理した
、その内、20gを高速ミキサーに入れ、2500rp
mで攪拌しながら、上記混合液を徐々に添加した。さら
にコロイダルアルミナRXを20g加えて、3000r
pml 0分間攪拌した。ミキサーから内容物を取り出
し170°Cの恒温槽で5時間加熱処理した後、解砕し
、疎水化度分布が25%〜60%の疎水性アルミナ(C
)を得た。
No 'l! & Colloidal alumina RX (manufactured by Nippon Aerosil Co., Ltd.) was treated as fine particles at 120°C for 2 hours in a dryer, and 20g of it was placed in a high-speed mixer and heated at 2500 rpm.
The above mixture was gradually added while stirring at m. Add 20g of colloidal alumina RX to 3000r
pml Stirred for 0 minutes. The contents were taken out from the mixer and heated in a constant temperature bath at 170°C for 5 hours, then crushed to produce hydrophobic alumina (C) with a hydrophobicity distribution of 25% to 60%.
) was obtained.

第3図に疎水化度どぬね特性の関係を示し、疎水化度分
布を示した。
Figure 3 shows the relationship between the characteristics of the degree of hydrophobicity and shows the distribution of the degree of hydrophobicity.

疎水化処理製造例(d) 疎水化剤としてジメチルジメトキンシラン1゜5gをテ
トラヒドロフラン15gに溶解した混合液を準備した。
Hydrophobization treatment production example (d) A mixed solution was prepared by dissolving 1.5 g of dimethyldimethquine silane as a hydrophobizing agent in 15 g of tetrahydrofuran.

無機微粉子としてコロイダルシリカ:アエロジル#13
0(日本アニロジル社製)を乾燥器で1206C2時間
処理し、た。その内、lOgを高速ミキサーに入れ、2
50Orpmで攪拌しながら上記混合液を5分間かけて
徐々に添加した。添加後、コロイダルシリカ#130を
5g加え、3000rpm5分間攪拌し、さらにコロイ
ダルシリカ#130を5g加え300 Orpm5分間
攪拌した。ミキサーから内容物を取り出し、120℃の
恒温槽で2時間加熱処理した後、解砕し、疎水化度分布
が15%〜55%の疎水性ノリ力(cりを得た。
Colloidal silica as inorganic fine powder: Aerosil #13
0 (manufactured by Nippon Anilosil Co., Ltd.) was treated in a dryer at 1206C for 2 hours. Put 10g of it into a high-speed mixer, and
The above mixture was gradually added over 5 minutes while stirring at 50 rpm. After the addition, 5 g of colloidal silica #130 was added and stirred at 3000 rpm for 5 minutes, and further 5 g of colloidal silica #130 was added and stirred at 300 rpm for 5 minutes. The contents were taken out from the mixer, heat-treated in a constant temperature bath at 120°C for 2 hours, and then crushed to obtain hydrophobic glue strength (cure) with a hydrophobic degree distribution of 15% to 55%.

第4図に疎水化度どぬれ特性の関係を示し、疎水化度分
布を示した。
FIG. 4 shows the relationship between the degree of hydrophobicity and wetting characteristics, and shows the distribution of the degree of hydrophobicity.

疎水化処理製造例(e) 疎水化剤としてへキサメチルジシラザン2.5gをテト
ラヒドロ7ラン]Ogに溶解した混合液を準備し、た。
Hydrophobization treatment production example (e) A mixed solution was prepared by dissolving 2.5 g of hexamethyldisilazane as a hydrophobization agent in tetrahydro7ran]Og.

無機微粒子としてコロイダルンリ力、アニロジル#20
0(13本アエロジル社製)を乾燥器で120℃2時間
処理した。その内25gを高速ミキサーに入れ、250
0rpmで攪拌し2なから上記混合液を5分間かけて徐
々に加え、3000rpIl+で10分間攪拌後120
℃の恒温槽で2時間処理した後、解砕し、疎水化度分布
が75%〜80%の疎水性シリカ(e)を得た。
Colloidal particles as inorganic particles, Anilosil #20
0 (13 pieces manufactured by Aerosil) were treated in a dryer at 120°C for 2 hours. Put 25g of it into a high-speed mixer and
Stir at 0 rpm, gradually add the above mixture over 5 minutes, stir at 3000 rpm for 10 minutes, then add 120 rpm.
After treatment for 2 hours in a constant temperature bath at °C, it was crushed to obtain hydrophobic silica (e) with a hydrophobic degree distribution of 75% to 80%.

第5図t:H水化度とぬれ特性の関係を示し2、疎水化
度分布を示した。
Figure 5 t: Shows the relationship between the degree of H hydration and wetting properties2, and shows the distribution of the degree of hydrophobicity.

疎水化処理製造例(f) 疎水化剤としてジメチルシリコーンオイル2゜5gをl
−ルユン10gに溶解した混合液を準備した。
Hydrophobization treatment production example (f) 2.5g of dimethyl silicone oil as a hydrophobization agent
- A mixed solution was prepared by dissolving 10 g of Luyun.

無機微粒子として酸化チタン微粒子MT−150A(テ
イ力社製)を乾燥器で120℃2時間処理した。その内
、35gを高速ミキサーに入れ、2500 rpmで攪
拌しながら上記混合液を5分間で徐々に加えた。さらに
3000rpIIll 0分間攪拌した。ミキサーから
内容物を取り出し、200℃の恒温槽で5時間処理した
徒、解砕し、疎水化度分布が50%〜55%の疎水性酸
化チタン(f)を得tこ。
Titanium oxide fine particles MT-150A (manufactured by Teiriki Co., Ltd.) were treated as inorganic fine particles at 120° C. for 2 hours in a dryer. 35 g of the mixture was placed in a high-speed mixer, and the above mixed solution was gradually added over 5 minutes while stirring at 2500 rpm. The mixture was further stirred for 3000 rpm for 0 minutes. The contents were taken out from the mixer, treated in a constant temperature bath at 200°C for 5 hours, and crushed to obtain hydrophobic titanium oxide (f) with a hydrophobicity distribution of 50% to 55%.

第6図に疎水化度とぬれ特性の関係を示し、疎水化度分
布を示した。
FIG. 6 shows the relationship between the degree of hydrophobicity and wetting properties, and shows the distribution of the degree of hydrophobicity.

疎水化処理製造例遵Q 疎水化剤としてジメチルジクロルシランIgfrテトラ
ヒドロフランlogに溶解した混合液を準備した。
Hydrophobization Treatment Production Example Compliance Q A mixture of dimethyldichlorosilane Igfr and tetrahydrofuran log was prepared as a hydrophobization agent.

無機微粒子としてコロイダルシリカ;アエロジル# 1
30(日本アエロジル社製)を乾燥器で120℃2時間
処理した。その内、25gを高速ミキサーに入れ、25
00rpnlで攪拌しながら上記混合液を5分間かけて
徐々に加え、さらに3000rpmlO分間攪拌した。
Colloidal silica as inorganic fine particles; Aerosil #1
30 (manufactured by Nippon Aerosil Co., Ltd.) was treated in a dryer at 120°C for 2 hours. Put 25g of it into a high-speed mixer,
The above mixture was gradually added over 5 minutes while stirring at 00 rpm, and further stirred for 3000 rpm.

ミキサーから内容物を取り出し、120℃の恒温槽で2
時間処理した後、解砕し、疎水化度分布が35%〜40
%の疎水性シリカ(g)を得た。
Remove the contents from the mixer and place in a thermostat at 120℃ for 2 hours.
After being treated for a period of time, it is crushed and the hydrophobicity distribution is 35% to 40%.
% of hydrophobic silica (g) was obtained.

第7図に疎水化度とぬれ特性の関係を示し、疎水化度分
布を示した。
FIG. 7 shows the relationship between the degree of hydrophobicity and wetting properties, and shows the distribution of the degree of hydrophobicity.

疎水化処理製造例(h) 疎水化剤としてオクチルトリメトギシシラン12gをテ
トラヒドロフラン7gに溶解した混合液を準備した。
Hydrophobizing treatment production example (h) A mixed solution was prepared in which 12 g of octyltrimethoxysilane was dissolved in 7 g of tetrahydrofuran as a hydrophobizing agent.

無機微粒子としてコロイダルシリカ#200(日本アエ
ロジル社製)を乾燥器で120℃、2時間処理した。そ
の内8gを高速ミキサーに入れ、2000 rpmで攪
拌しながら上記混合液を5分間かけて徐々に加えた。さ
らにアエロジル#200を17g加えて、3000rp
ml 0分間攪拌した。ミキサーから内容物を取り出し
、120℃の恒温槽で5時間処理した後、解砕し、疎水
化度分布が0%〜70%の疎水性シリカ(h)を得た。
Colloidal silica #200 (manufactured by Nippon Aerosil Co., Ltd.) as inorganic fine particles was treated in a dryer at 120° C. for 2 hours. 8 g of the mixture was placed in a high-speed mixer, and the above mixed solution was gradually added over 5 minutes while stirring at 2000 rpm. Add 17g of Aerosil #200 and 3000rp.
ml Stirred for 0 minutes. The contents were taken out from the mixer, treated in a constant temperature bath at 120°C for 5 hours, and then crushed to obtain hydrophobic silica (h) with a hydrophobicity distribution of 0% to 70%.

第8図に疎水化度とぬれ特性の関係を示し、疎水化度分
布を示した。
FIG. 8 shows the relationship between the degree of hydrophobicity and wetting properties, and shows the distribution of the degree of hydrophobicity.

実施例1 (トナーAの調製) ・スチレン/n−ブチルメタクリ 100重量部レート
共重合樹脂 (数平均分子量Mn:6300、 My/Mn:42、軟化点:132℃、ガラス転移点二
60℃) ・カーボンブラックMA48    8重量部(三菱化
成社製) ・オフセット防止剤 ビスコール  5重量部550 
P(三洋化成工業社製) ・荷電制御剤 ボントロンE−813重量部(オリエン
ト化学社製) 上記の原料をヘンシェルミキサーで混合した。
Example 1 (Preparation of Toner A) Styrene/n-butyl methacrylate 100 parts by weight rate copolymer resin (number average molecular weight Mn: 6300, My/Mn: 42, softening point: 132°C, glass transition point 260°C)・Carbon black MA48 8 parts by weight (manufactured by Mitsubishi Kasei Corporation) ・Offset inhibitor Viscoel 5 parts by weight 550
P (manufactured by Sanyo Chemical Industries, Ltd.) - Charge control agent Bontron E-813 parts by weight (manufactured by Orient Chemical Co., Ltd.) The above raw materials were mixed in a Henschel mixer.

混合物を2軸混練押出機で混練後冷却したゎ混練物を粗
粉砕し、ジェット粉砕機で粉砕し、風力分級機により分
級し、4〜20μm(平均粒径9.5μ111)のトナ
ーを得た。上記のトナー100重量部に疎水性微粒子(
a) 0 、2重量部を加え、ヘンシェル混合機中12
00 rpmで1分間混合処理した(得られたトナーを
トナーAとする)(キャリアの製造) 成分 ・ポリエステル樹脂       100重量部(AV
23.0HV40、 軟化点123℃、ガラス転移点67℃)・Fe−Zn系
フェライト微粒子  500重量部MFPi(TDK社
製) ・カーボンブラックMA#8    2重量部(三菱化
成社製) 上記材料をヘンシェルミキサーにより十分混合した。次
いで、混合物をシリンダ部180℃、ンリンダヘッド部
170℃に設定した押し出し混練機を用いて、溶融、混
練した。混練物を冷却後、粗粉砕し、さらにジェットミ
ルで微粉砕した。粉砕物を分級機を用いて分級し、平均
粒径60μmのバインダー型キャリア[I]を得た。
The mixture was kneaded with a twin-screw extruder and cooled. The kneaded product was coarsely ground, ground with a jet grinder, and classified with an air classifier to obtain a toner of 4 to 20 μm (average particle size: 9.5 μm). . Hydrophobic fine particles (
a) Add 0.2 parts by weight and mix in a Henschel mixer.
00 rpm for 1 minute (the obtained toner is referred to as toner A) (manufacture of carrier) Ingredients: Polyester resin 100 parts by weight (AV
23.0HV40, softening point 123°C, glass transition point 67°C) - Fe-Zn ferrite fine particles 500 parts by weight MFPi (manufactured by TDK) - Carbon black MA#8 2 parts by weight (manufactured by Mitsubishi Kasei) The above materials were mixed into Henschel Thoroughly mixed using a mixer. Next, the mixture was melted and kneaded using an extrusion kneader set at 180°C in the cylinder part and 170°C in the cylinder head part. After cooling the kneaded product, it was coarsely ground and further finely ground using a jet mill. The pulverized product was classified using a classifier to obtain a binder type carrier [I] having an average particle size of 60 μm.

(現像剤評価) トナーA36gをキャリア564gと混合し、二成分現
像剤を調製し、帯電性、環境性テスト、耐刷実写テスト
に供した。
(Developer evaluation) A two-component developer was prepared by mixing 36 g of toner A with 564 g of carrier, and subjected to charging property, environmental performance test, and printing durability test.

実施例2 (トナーBの調製) ・ポリエステル樹脂       100重量部(数平
均分子量Mn:4800、 My/Mn:2.8、軟化点101 ℃、ガラス転移点63℃) ・銅フタロシアニン顔料 L 1ono1  3重量部
BlueFG−7350 (東洋インキ製造社製) ・荷電制御剤ボントロンE−842重量部(オリエント
化学社製) 上記の原料を実施例1のトナーAと同様な方法で処理し
、5〜25μm(平均粒径10−3μ1m)のトナーを
得た。上記トナー100重量部に疎水性微粒子(b)1
重量部と疎水性シリカR,−974(日本アエロジル社
製)0.2重量部を加えヘンシェル混合機中1200r
pm+で1分間混合処理した(得られたトナーをトナー
Bとする) (キャリアの製造) スチレン/メチルメタクリレート/2−ヒドロキシエチ
ルアクリレート/メタクリル酸から成るスチレン−アク
リル系共重合体(1,5ニア:1.0:0.5)80重
量部とブチル化メラミン樹脂20重量部をトルエンで希
釈し、固形比2%のスチレン−アクリル樹脂溶液を調合
した。芯材として焼結フェライト粉(F −300;パ
ウダーテ・ンク社製平均粒径50μm+)を用いてスビ
ラコータ(開田精工社製)により、芯材に対して該溶液
を3,0重量%の被覆ができるようにスプレーでコート
乾燥した。
Example 2 (Preparation of Toner B) - Polyester resin 100 parts by weight (number average molecular weight Mn: 4800, My/Mn: 2.8, softening point 101°C, glass transition point 63°C) - Copper phthalocyanine pigment L 1ono1 3 parts by weight Part BlueFG-7350 (manufactured by Toyo Ink Mfg. Co., Ltd.) Charge control agent Bontron E-842 part by weight (manufactured by Orient Chemical Co., Ltd.) The above raw materials were treated in the same manner as toner A in Example 1, A toner with a particle size of 10-3 μm) was obtained. 1 part by weight of hydrophobic fine particles (b) per 100 parts by weight of the above toner.
Add 0.2 parts by weight of hydrophobic silica R, -974 (manufactured by Nippon Aerosil Co., Ltd.) and mix in a Henschel mixer at 1200 rpm.
pm+ for 1 minute (the obtained toner is referred to as toner B) (Manufacture of carrier) A styrene-acrylic copolymer (1,5 nia :1.0:0.5) and 20 parts by weight of the butylated melamine resin were diluted with toluene to prepare a styrene-acrylic resin solution with a solid ratio of 2%. Using sintered ferrite powder (F-300; average particle size 50 μm+, manufactured by Powder Tech Co., Ltd.) as a core material, the core material was coated with 3.0% by weight of the solution using a Subira coater (manufactured by Kaida Seiko Co., Ltd.). Spray coat and allow to dry.

その後140℃で3時間硬化させ、さらに170℃で4
時間で熱処理させ、電気抵抗値が4.3xio”ΩCf
f1の熱硬化性アクリルコートキャリア[11を得た。
After that, it was cured at 140℃ for 3 hours, and then at 170℃ for 4 hours.
After heat treatment for several hours, the electrical resistance value is 4.3xio"ΩCf
A thermosetting acrylic coated carrier [11] of f1 was obtained.

(現像剤評価) トナーB48gをキャリア552gと混合し、二成分現
像剤を調製し、実施例1と同様な評価に供しtこ。
(Developer evaluation) A two-component developer was prepared by mixing 48 g of toner B with 552 g of carrier, and subjected to the same evaluation as in Example 1.

実施例3 (トナーCの調製) ・スチレン/n−ブチルメタクリ 100重量部レート
共を台樹脂 (数千均分7量Mn:4500、 Mw/Mn:60、軟化点121 ℃、ガラス転移点60℃) ・カーボンブラック M、118    8重量部(三
菱化成社製) ・オフセット防止剤ビスコール   5重量部550P
(三洋化成工業社製) ・荷電制御剤ポントロンN−013重量部(オリエント
化学社製) 上記の原料を実施例1と同様な方法で処理し、5〜25
μm(モ均粒径11,3μm)のトナーを得lこ。
Example 3 (Preparation of Toner C) - 100 parts by weight of styrene/n-butyl methacrylate, both base resin (seven thousand equal parts) Mn: 4500, Mw/Mn: 60, softening point 121°C, glass transition point 60 ℃) ・Carbon black M, 118 8 parts by weight (manufactured by Mitsubishi Kasei Corporation) ・Offset inhibitor Viscoel 5 parts by weight 550P
(manufactured by Sanyo Chemical Industries, Ltd.) - Charge control agent Pontron N-013 parts by weight (manufactured by Orient Chemical Co., Ltd.) The above raw materials were treated in the same manner as in Example 1, and 5 to 25 parts by weight were added.
A toner with a particle diameter of 11.3 μm was obtained.

上記のトナー100を量部に疎水性粒子(d)0゜1重
量部を加え、ヘンシェル混合機中120Orpmで1分
間混合処理した(得られたトナーをト・ナーCとする) (現像剤評価) トナーC36gを実施例1において調製したキャリア[
13564gと混合し、二成分現像剤を調製し、実施例
1と同様な評価に供した。
0.1 part by weight of hydrophobic particles (d) was added to 100 parts of the above toner and mixed for 1 minute at 120 rpm in a Henschel mixer (the obtained toner is referred to as Toner C) (Developer evaluation ) Toner C 36g was prepared in Example 1 using the carrier [
13,564 g to prepare a two-component developer, which was subjected to the same evaluation as in Example 1.

実施例4一 実施例3のトナーC100t量部に疎水性微粒子(e)
 0 、5重量部を加え実施例1と同様な方法で混合処
理した。得られたトナーをトナーDとする。
Example 4 - Hydrophobic fine particles (e) were added to 100 tons of toner C of Example 3.
0.5 parts by weight were added and mixed in the same manner as in Example 1. The obtained toner is referred to as Toner D.

(現像剤評価) トナーD36gを実施例Jのキャリア(13564gと
混合し、二成分現像剤を調製し、実施例1と同様な評価
に供した。
(Developer Evaluation) 36 g of Toner D was mixed with 13564 g of the carrier of Example J to prepare a two-component developer, and the same evaluation as in Example 1 was performed.

衷裏章± 実施例1のトナーA100重量部に疎水性微粒子(d)
0.15重量部を加え、実施例1と同様な方法で混合処
理した。得られたトナーをトナーEとする。
Inner back chapter ± Hydrophobic fine particles (d) in 100 parts by weight of toner A of Example 1
0.15 parts by weight was added and mixed in the same manner as in Example 1. The obtained toner is referred to as Toner E.

(現像剤評価) トナーC36gと実施例1のキャリア[1)564gを
混合し、二成分現像剤を調製し、実施例■と同様な評価
に供した。
(Developer evaluation) A two-component developer was prepared by mixing 36 g of toner C and 564 g of carrier [1] of Example 1, and subjected to the same evaluation as in Example 2.

実施例6 実施例1のトナーA100重量部に疎水性微粒子(h)
 0 、2 を量部を加え、実施例1と同様な方法でト
ナーを調製した。得られたトナーをトナーIとする。
Example 6 Hydrophobic fine particles (h) were added to 100 parts by weight of toner A of Example 1.
A toner was prepared in the same manner as in Example 1 by adding 0 and 2 parts. The obtained toner is referred to as Toner I.

(現像剤評価) トナー136gを実施例1のキャリア[11564gと
混合し、二成分現像剤を調製し、実施例1と同様な評価
に供した。
(Developer Evaluation) 136 g of toner was mixed with 11,564 g of the carrier of Example 1 to prepare a two-component developer, and the same evaluation as in Example 1 was performed.

比較例1 実施例3のトナーC1001i量部l二疎水性微粒子(
e)0.1!量部を加え、実施例1と同様な方法でトナ
ーを調製した。得られたトナーをトナーFとする。
Comparative Example 1 Toner C1001i of Example 3 parts l dihydrophobic fine particles (
e) 0.1! A toner was prepared in the same manner as in Example 1. The obtained toner is referred to as toner F.

(現像剤評価) トナーF36gを実施例1のキャリア[11564gと
混合し、二成分現像剤を調製し、実施例1き同様な評価
に供した。
(Developer Evaluation) 36 g of toner F was mixed with 11,564 g of the carrier of Example 1 to prepare a two-component developer, and subjected to the same evaluation as in Example 1.

比較例2 実施例1のトナーA100重量部に疎水性微粒子(f)
 1重量部を加え、実施例1と同様な方法でトナーを調
製した。得られたトナーをトナーGとする。
Comparative Example 2 Hydrophobic fine particles (f) were added to 100 parts by weight of toner A of Example 1.
A toner was prepared in the same manner as in Example 1 by adding 1 part by weight. The obtained toner is referred to as toner G.

(現像剤評価) トナーG36gを実施例1のキャリア[11564gと
混合し、二成分現像剤を調製し、実施例1と同様な評価
に供した。
(Developer Evaluation) 36 g of toner G was mixed with 11,564 g of the carrier of Example 1 to prepare a two-component developer, which was subjected to the same evaluation as in Example 1.

比較例3 実施例1のトナーA100重量部に疎水性微粒子(g)
 0 、2重量部を加え、実施例1と同様な方法でトナ
ーを調製した6得られたトナーをトナー1(とする。
Comparative Example 3 Hydrophobic fine particles (g) were added to 100 parts by weight of toner A of Example 1.
A toner was prepared in the same manner as in Example 1 by adding 0.0 and 2 parts by weight.The obtained toner was referred to as Toner 1 (toner 1).

(現像剤評価) トナーH36gを実施例1のキャリア[13564gと
混合し、二成分現像剤を調製し、実施例1と同様な評価
に供した。
(Developer Evaluation) 36 g of toner H was mixed with 13,564 g of the carrier of Example 1 to prepare a two-component developer, and the same evaluation as in Example 1 was performed.

帯電立ち上がり性の評価 キャリア[1] とトナー(a)〜(h)とから、トナ
ー混合比21i量%に調製した現像剤を用い、電子写真
学会誌、第27巻、第3号(1988)、「現像剤帯電
速度の決定」に記載されている方法により、現像剤混合
時間における帯電量(q)を測定1゜−二。
Evaluation of charging rise property Using a developer prepared from carrier [1] and toners (a) to (h) at a toner mixing ratio of 21i%, Electrophotography Society Journal, Vol. 27, No. 3 (1988) The amount of charge (q) during developer mixing time was measured by the method described in ``Determination of developer charging speed''.

その測定f−夕をもとに、log(qm −q)とtと
の関係を第9図に示した。ここでqmは飽和(あるいは
極大)帯電量を示す。
Based on the measured f-t, the relationship between log(qm-q) and t is shown in FIG. Here, qm indicates the saturation (or maximum) charge amount.

図中、・は、トナー(A)〜(E)、(1)とから得ら
れた平均値を、・はトナーCF)〜(H)とから得られ
た平均値を示しである。
In the figure, . represents the average value obtained from toners (A) to (E) and (1), and . represents the average value obtained from toners CF) to (H).

log(qm−q)は時間りに対して、直線性を示し、
その傾きで帯電立ち上がり速度の大小を表すことができ
る。直線の傾きが急な程帯電の立ち上がりが速いことを
示す。
log(qm-q) shows linearity with respect to time,
The magnitude of the charging rise speed can be expressed by the slope. The steeper the slope of the straight line, the faster the charge rises.

!喪夏風箪!寒 温度25℃で湿度50%、温度〕0℃で湿度30%、温
度35℃で湿度85%の帯電量変化を調べた。結果を第
10図に示した。
! Mourning summer style banquet! Changes in the amount of charge were investigated at a cold temperature of 25° C. and humidity of 50%, a temperature of 0° C. and humidity of 30%, and a temperature of 35° C. and humidity of 85%. The results are shown in Figure 10.

実施例では帯電量の変化幅が少ないのに対して、比較例
は変化幅が大きく、特に比較例4は、温度35℃、湿度
85%の環境で帯電量が低下し、トナー飛散が発生した
In the example, the range of change in the amount of charge was small, while in the comparative example, the range of change was large. In particular, in comparative example 4, the amount of charge decreased in an environment of a temperature of 35° C. and a humidity of 85%, and toner scattering occurred. .

耐刷テスト 実施例1.5及び比較例2〜4をEP−870Z(ミノ
ルタカメラ社製)を用い、更施例3.4及び比較f!l
lをEP−4300(、ミノルタカメラ社製)を用い、
実施例2については、EP−5502(ミノルタカメラ
社製)の定を器をオイル塗布タイプに改造し、それぞれ
40万枚の耐刷テストを行なった。このときの帯電量と
画質(トナー飛散)j;ついて評価し、た。トナー飛散
は目視で観察し、以下のごとくランク付を行なった。
Printing durability test Example 1.5 and Comparative Examples 2 to 4 were carried out using EP-870Z (manufactured by Minolta Camera Co., Ltd.), and Printing Durability Test Example 3.4 and Comparative Example f! l
l using EP-4300 (manufactured by Minolta Camera Co., Ltd.),
As for Example 2, an EP-5502 (manufactured by Minolta Camera Co., Ltd.) was modified to an oil coating type, and a printing durability test of 400,000 copies was conducted for each. At this time, the amount of charge and image quality (toner scattering) were evaluated. Toner scattering was visually observed and ranked as follows.

O:はとんどトナー飛散が認められない。O: Almost no toner scattering was observed.

△:若干トナー飛散が認められる。Δ: Slight toner scattering is observed.

(S周上使用可) ×:トナー飛散が多く、複写機内の汚れがひどい(実用
上使用不可) 以上の評価結果を表1に示した。
(Can be used on the S circumference) ×: There is a lot of toner scattering, and the inside of the copying machine is heavily soiled (unusable for practical use) The above evaluation results are shown in Table 1.

発明の効果− 本発明により、疎水化度分布を有する無機微粒子をトナ
ーに添加することにより、トナー流動性−帯電立ち上が
り、帯電均一性、環境安定性に優れたトナーを得ること
ができる。
Effects of the Invention - According to the present invention, by adding inorganic fine particles having a hydrophobic degree distribution to a toner, a toner having excellent toner fluidity, charging rise, charging uniformity, and environmental stability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は疎水化度分布を示す図である。 第9図は帯電の立ち上がり性を示す図である。 第1O図は、環箋安定性を示す図である。 特許出願人 ミノルタカメラ株式会社 代 理 人 弁理士 青白 葆 (ほか1名)第9図 ミ毘合 時間 7社 第 1 図 醜氷化度c%) 箪2図 疎水化度(%) 掌3図 錬氷化度(%) 第4図 に未化虐(%) 第5図 源氷化度(%) 第6図 子し未イヒ刈1(′10) 第7図 豐蒙未イヒ度(Olo) 第 8(′71 部水化度(%) FIGS. 1 to 8 are diagrams showing the hydrophobicity distribution. FIG. 9 is a diagram showing the rise property of charging. FIG. 1O is a diagram showing ring stability. Patent applicant: Minolta Camera Co., Ltd. Representative Patent Attorney Aobai Ao (and 1 other person) Figure 9 Time 7 companies Figure 1 Ugly frost degree c%) Chest 2 Hydrophobicity degree (%) Palm 3 Temperature degree (%) Figure 4 Uninformed cruelty (%) Figure 5 Source freezing degree (%) Figure 6 Koshimi Ihigari 1 ('10) Figure 7 Olo No. 8 ('71 Partial water content (%)

Claims (1)

【特許請求の範囲】 1、流動化剤を含有するトナーにおいて、流動化剤が疎
水化度分布を有する無機微粒子であることを特徴とする
静電荷像現像用トナー。 2、流動化剤は、全疎水化度X_1(%)が20%〜8
0%の範囲にあり、ぬれ特性が5%以上となるときの疎
水化度X_2と全疎水化度X_1との差(ΔX)が15
%以上の開きを有する疎水化度分布を有することを特徴
とする請求項1記載のトナー。
[Scope of Claims] 1. A toner for developing electrostatic images containing a fluidizing agent, characterized in that the fluidizing agent is inorganic fine particles having a hydrophobic degree distribution. 2. The fluidizing agent has a total hydrophobicity X_1 (%) of 20% to 8
0% range, and the difference (ΔX) between the hydrophobicity degree X_2 and the total hydrophobicity degree X_1 when the wetting property is 5% or more is 15
2. The toner according to claim 1, wherein the toner has a hydrophobicity distribution having a difference of % or more.
JP02337541A 1990-11-30 1990-11-30 Toner for developing electrostatic images Expired - Fee Related JP3123076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02337541A JP3123076B2 (en) 1990-11-30 1990-11-30 Toner for developing electrostatic images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02337541A JP3123076B2 (en) 1990-11-30 1990-11-30 Toner for developing electrostatic images

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11632399A Division JP3216628B2 (en) 1999-04-23 1999-04-23 Electrostatic image developing toner and method for hydrophobizing inorganic fine particles externally added to the toner

Publications (2)

Publication Number Publication Date
JPH04204750A true JPH04204750A (en) 1992-07-27
JP3123076B2 JP3123076B2 (en) 2001-01-09

Family

ID=18309627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02337541A Expired - Fee Related JP3123076B2 (en) 1990-11-30 1990-11-30 Toner for developing electrostatic images

Country Status (1)

Country Link
JP (1) JP3123076B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437954A (en) * 1993-02-17 1995-08-01 Fuji Xerox Co., Ltd. Toner composition for electrophotography with zinc oxide additive
EP0713153A2 (en) 1994-11-08 1996-05-22 Canon Kabushiki Kaisha Toner for developing electrostatic images, two component type developer, developing method, image forming method, heat fixing method, and process for producing toner
US6383704B1 (en) 2000-01-14 2002-05-07 Fuji Xerox Co., Ltd. Full color electrophotographic toner, full color electrophotographic developer and image forming method
US7026085B2 (en) 2003-03-20 2006-04-11 Fuji Xerox Co., Ltd. Dry toner for electrostatic latent image developer, developer and image forming method
JP2006178410A (en) * 2004-11-26 2006-07-06 Konica Minolta Business Technologies Inc Image forming method and image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437954A (en) * 1993-02-17 1995-08-01 Fuji Xerox Co., Ltd. Toner composition for electrophotography with zinc oxide additive
EP0713153A2 (en) 1994-11-08 1996-05-22 Canon Kabushiki Kaisha Toner for developing electrostatic images, two component type developer, developing method, image forming method, heat fixing method, and process for producing toner
US5707770A (en) * 1994-11-08 1998-01-13 Canon Kabushiki Kaisha Toner for developing electrostatic images, two component type developer, developing method, image forming method, heat fixing method, and process for producing toner
US5824442A (en) * 1994-11-08 1998-10-20 Canon Kabushiki Kaisha Developing method, image forming method, and heat fixing method, with toner
US6383704B1 (en) 2000-01-14 2002-05-07 Fuji Xerox Co., Ltd. Full color electrophotographic toner, full color electrophotographic developer and image forming method
US7026085B2 (en) 2003-03-20 2006-04-11 Fuji Xerox Co., Ltd. Dry toner for electrostatic latent image developer, developer and image forming method
JP2006178410A (en) * 2004-11-26 2006-07-06 Konica Minolta Business Technologies Inc Image forming method and image forming apparatus

Also Published As

Publication number Publication date
JP3123076B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US5192637A (en) Electrophotographic toner composition
JPS62206561A (en) Toner composition
JPH0469384B2 (en)
JPS6323166A (en) Electrophotographic toner
JPS581157A (en) Preparation of electrophotographic toner
JPH04204750A (en) Electrostatic charge image developing toner
CN103998989B (en) Two-component color developer and image formation device using same
US5863684A (en) Developer, image forming method, and multicolor image forming method
JPH04335357A (en) Developer for electrostatic charge image
US5004665A (en) Toner containing polymeric-magnetic coordination complex
JP6287959B2 (en) toner
JPH04335359A (en) Electrophotographic developer
JPH04340972A (en) Electrostatic charge image developing toner
JP3943750B2 (en) toner
KR100728020B1 (en) Developer for electrophotography
JP3216628B2 (en) Electrostatic image developing toner and method for hydrophobizing inorganic fine particles externally added to the toner
JP3901914B2 (en) Electrophotographic carrier, method for producing the same, and electrophotographic developer
JP4072986B2 (en) Electrophotographic carrier and electrophotographic developer
JP2019061100A (en) Toner and method for manufacturing the same
JP2003345067A (en) Toner for developing electrostatic images
JP2001060014A (en) Electrostatic latent image developer and image forming method using the same
JPH0266565A (en) Toner for developing electrostatic charge image
JP3344211B2 (en) Electrostatic latent image developer and image forming method
JP2000267355A (en) Toner composition, developer and image forming method
JP2022086714A (en) Toner and two-component developer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees