[go: up one dir, main page]

JPH04204521A - Flexible electrochromic element - Google Patents

Flexible electrochromic element

Info

Publication number
JPH04204521A
JPH04204521A JP2329886A JP32988690A JPH04204521A JP H04204521 A JPH04204521 A JP H04204521A JP 2329886 A JP2329886 A JP 2329886A JP 32988690 A JP32988690 A JP 32988690A JP H04204521 A JPH04204521 A JP H04204521A
Authority
JP
Japan
Prior art keywords
electrolyte
flexible
thin film
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2329886A
Other languages
Japanese (ja)
Inventor
Keiichi Koseki
恵一 古関
Yoshiki Mizuno
祥樹 水野
Kumiko Mukoda
向田 久美子
Satoshi Sakurada
櫻田 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP2329886A priority Critical patent/JPH04204521A/en
Publication of JPH04204521A publication Critical patent/JPH04204521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可撓性エレクトロクロミック素子に関する。[Detailed description of the invention] [Industrial application field] FIELD OF THE INVENTION The present invention relates to flexible electrochromic devices.

さらに詳しく述べるならば、本発明は、空孔中にイオン
導電体を充填した多孔性高分子薄膜を電解質として用い
た可撓性のエレクトロクロミック素子に関する。
More specifically, the present invention relates to a flexible electrochromic device using a porous polymer thin film whose pores are filled with an ionic conductor as an electrolyte.

〔従来の技術〕[Conventional technology]

電圧によって物質の色が可逆的に変化するエレクトロク
ロミック(EC)現象を応用した素子に関心が高まって
いる。エレクトロクロミック素子(ECD)は明るく見
易い、大面積表示が可能である、メモリー性がある(消
費電力が少ない)などの特徴を有し、このような特徴を
活かした応用として、株価表示、メツセージボード、案
内板などの大型表示板、また自動車の防眩ミラー、調光
ガラス(窓)、サングラスなどの調光素子がある。特に
基板を可撓性有機フィルムで構成したものは、ガラスに
張って用いたり、曲面状に成形して住宅用、建築用、自
動車用のカーテンレス窓に応用可能であるなどの利点が
あるため、注目を集めている。
There is growing interest in devices that apply the electrochromic (EC) phenomenon, in which the color of a material changes reversibly depending on voltage. Electrochromic devices (ECDs) have characteristics such as being bright and easy to read, capable of large-area display, and having memory properties (low power consumption). Applications that take advantage of these characteristics include stock price displays and message boards. , large display boards such as information boards, and light control elements for automobile anti-glare mirrors, light control glass (windows), sunglasses, etc. In particular, substrates made of flexible organic films have the advantage of being able to be applied to curtainless windows for homes, architecture, and automobiles by being used by attaching them to glass or by forming them into curved shapes. , is attracting attention.

ECDの構造はエレクトロクロミック電極(Wo+)と
対極の間に電解質を配置して成り、両電極間に電圧を印
加するとhotが電解質からのイオンと電源からの電子
でカソード還元されて着色するものである。対極は、こ
れもエレクトロクロミック電極で構成して着色表示に利
用することもできる。
The structure of ECD consists of an electrolyte placed between an electrochromic electrode (Wo+) and a counter electrode, and when a voltage is applied between both electrodes, hot is cathodically reduced by ions from the electrolyte and electrons from the power source, resulting in coloring. be. The counter electrode can also be constituted by an electrochromic electrode and used for colored display.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電解質は液体電解質と固体電解質とに分けられる。液体
電解質はイオン電導度が大きいので応答性に優れている
が、素子中に液体が入ることは構成上好ましくない。素
子の構造及び組立て上、液漏れ対策が必要となり、また
液漏れ対策をしても、破損によりあるいは使用中に液漏
れが生じないとは限らず、液漏れが発生すると周辺部品
の汚損などの問題もある。固体電解質ではこのような液
体を取扱う上での問題はないが、イオン電導度の大きい
固体電解質がないため、応答性が悪いという問題がある
Electrolytes are divided into liquid electrolytes and solid electrolytes. A liquid electrolyte has high ionic conductivity and therefore has excellent responsiveness, but it is undesirable for liquid to enter the element from a structural standpoint. Due to the structure and assembly of the element, measures against liquid leakage are required, and even if measures against liquid leakage are taken, there is no guarantee that liquid leakage will not occur due to damage or during use, and if liquid leakage occurs, it may cause staining of surrounding parts etc. There are also problems. Solid electrolytes do not pose any problems when handling such liquids, but there is a problem of poor responsiveness because there is no solid electrolyte with high ionic conductivity.

そこで、本発明はイオン電導率が高い固体電解質を有す
る可撓性のECDを提供することを目的とする。
Therefore, an object of the present invention is to provide a flexible ECD having a solid electrolyte with high ionic conductivity.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、上記目的を達成するために、固体高分子多孔
性薄膜の空孔中にイオン導電体を充填してなる電解質薄
膜を電解質として用い、かつ電極基材として可撓性有機
フィルムを用いたことを特徴とする可撓性エレクトロク
ロミック素子を提供する。
In order to achieve the above object, the present invention uses an electrolyte thin film formed by filling the pores of a solid polymer porous thin film with an ionic conductor as an electrolyte, and uses a flexible organic film as an electrode base material. A flexible electrochromic element is provided.

本発明に用いられる電解、質は、固体高分子多孔性薄膜
の空孔中にイオン導電体を充電してなる電解質薄膜から
なる。この電解質薄膜は全体としては固体として取扱う
ことができ、液漏れの心配がなく、しかもイオン電導性
に優れることができる。
The electrolyte used in the present invention consists of an electrolyte thin film formed by charging ionic conductors into the pores of a solid polymer porous thin film. This electrolyte thin film can be handled as a solid as a whole, there is no fear of liquid leakage, and it has excellent ionic conductivity.

また、薄膜化が可能である。Further, it is possible to make the film thinner.

このような固体高分子多孔性薄膜としては、膜厚が0.
1廂〜50廂、空孔率が40%〜90%、破断強度が2
00kg/af1以上、平均貫通孔径が0.OObm+
〜0.7陶のものが好ましく使用される。
Such a solid polymer porous thin film has a film thickness of 0.
1-50 feet, porosity 40%-90%, breaking strength 2
00kg/af1 or more, average through hole diameter is 0. OObm+
-0.7 porcelain is preferably used.

薄膜の厚さは一般に0.1 tnn〜50μmであり、
好ましくは0.1 tm〜25節である。厚さが0.1
 tnn未満では支持膜としての機械的強度の低下およ
び取り扱い性の面から実用に供することが難しい。一方
、50廂を超える場合に実効抵抗を低く抑えるという観
点から好ましくない。多孔性薄膜の空孔率は、40%〜
90%とするのがよく、好ましくは60%〜90%の範
囲である。空孔率が40%未満では電解質としてのイオ
ン導電性が不十分となり、一方90%を超えると支持膜
としての機能的強度が小さくなり実用に供することが難
しい。
The thickness of the thin film is generally 0.1 tnn to 50 μm,
Preferably it is 0.1 tm to 25 knots. Thickness is 0.1
If it is less than tnn, it is difficult to put it into practical use because of the reduction in mechanical strength as a support film and the ease of handling. On the other hand, if it exceeds 50 feet, it is not preferred from the viewpoint of keeping the effective resistance low. The porosity of the porous thin film is 40%~
It is good to set it to 90%, preferably in the range of 60% to 90%. If the porosity is less than 40%, the ionic conductivity as an electrolyte will be insufficient, while if it exceeds 90%, the functional strength as a support membrane will be low, making it difficult to put it into practical use.

平均貫通孔径は、空孔中にイオン導電体を固定化できれ
ばよいが、一般にO,0011M1〜0゜7Nlである
。好ましい平均貫通孔径は高分子膜の材質や孔の形状に
もよる。高分子膜の破断強度は一般に200kg/c+
f1以上、より好ましくは500kg/ci以上を有す
ることにより支持膜としての実用化に好適である。
The average diameter of the through-holes is generally 0.0011M1 to 0.7Nl, although it is sufficient that the ionic conductor can be immobilized in the holes. The preferred average through-hole diameter depends on the material of the polymer membrane and the shape of the pores. The breaking strength of polymer membranes is generally 200 kg/c+
Having f1 or more, more preferably 500 kg/ci or more, is suitable for practical use as a support membrane.

本発明に用いる多孔性薄膜は上記のようなイオン導電体
の支持体としての機能をもち、機械的強度のすぐれた高
分子材料からなる。
The porous thin film used in the present invention functions as a support for the ion conductor as described above, and is made of a polymeric material with excellent mechanical strength.

化学的安定性の観点から、例えばポリオレフィン、ポリ
テトラフルオロエチレン、ポリフッ化ビニリデンを用い
ることができるが、本発明の多孔構造の設計や薄膜化と
機械的強度の両立の容易さの観点から好適な高分子材料
の1例は、特に重量平均分子量が5×105以上のポリ
オレフィンである。すなわち、オレフィンの単独重合体
または共重合体の、結晶性の線状ポリオレフィンで、そ
の重量平均分子量が5×105以上、好ましくは1×1
06〜1×107のものである。例えば、ポリエチレン
、ポリプロピレン、エチレン−プロピレン共重合体、ポ
リブデンー1、ポリ4−メチルペンテン−1などがあげ
られる。これらのうちでは重量平均分子量が5X10’
以上のポリエチレンまたはポリプロピレンが好ましい。
From the viewpoint of chemical stability, for example, polyolefin, polytetrafluoroethylene, polyvinylidene fluoride can be used, but from the viewpoint of the design of the porous structure of the present invention and the ease of achieving both thinning and mechanical strength, suitable materials are used. One example of a polymeric material is a polyolefin, especially one with a weight average molecular weight of 5 x 105 or more. That is, a crystalline linear polyolefin, which is an olefin homopolymer or copolymer, and whose weight average molecular weight is 5 x 105 or more, preferably 1 x 1
06 to 1×107. Examples include polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, poly-4-methylpentene-1, and the like. Among these, the weight average molecular weight is 5X10'
The above polyethylene or polypropylene is preferred.

ポリオレフィンの重量平均分子量は、得られる透過膜の
機械的強度に影響する。超高分子量ポリオレフィンは、
超延伸により極薄で高強度の製膜を可能とし、実効抵抗
の低い高イオン導電性薄膜の支持体とする。重量平均分
子量が5X10’未満のポリオレフィンを同時に用いる
ことができるが、重量平均分子量が5×105以上のポ
リオレフィンを含まない系では、超延伸による極薄高強
度の膜が得られない。
The weight average molecular weight of the polyolefin influences the mechanical strength of the resulting permeable membrane. Ultra-high molecular weight polyolefins are
Ultra-stretching enables the formation of ultra-thin and high-strength films, which can be used as supports for highly ionic conductive thin films with low effective resistance. Although a polyolefin having a weight average molecular weight of less than 5 x 10' can be used at the same time, in a system that does not contain a polyolefin having a weight average molecular weight of 5 x 105 or more, an ultra-thin and high strength film cannot be obtained by ultra-stretching.

上記のような多孔性薄膜は次のような方法で製造できる
。超高分子量ポリオレフィンを流動パラフィンのような
溶媒中に1重量%〜15重景%を加熱溶解して均一な溶
液とする。この溶液からシートを形成し、急冷してゲル
状シートとする。このゲル状シート中に含まれる溶媒量
を、塩化メチレンのような揮発性溶剤で抽出処理して1
0重量%〜90重量%とする。このゲル状シートをポリ
オレフィンの融点以下の温度で加熱し、面倍率で10倍
以上に延伸する。この延伸膜中に含まれる溶媒を、塩化
メチレンのような揮発性溶剤で抽出除去した後に乾燥す
る。
The porous thin film as described above can be manufactured by the following method. An ultra-high molecular weight polyolefin is heated and dissolved in a solvent such as liquid paraffin in an amount of 1% to 15% by weight to form a uniform solution. A sheet is formed from this solution and rapidly cooled to form a gel-like sheet. The amount of solvent contained in this gel-like sheet is extracted with a volatile solvent such as methylene chloride.
0% to 90% by weight. This gel-like sheet is heated at a temperature below the melting point of the polyolefin and stretched to an areal magnification of 10 times or more. The solvent contained in this stretched film is extracted and removed with a volatile solvent such as methylene chloride, and then dried.

別の好適な高分子材料の例はポリカーボネートで、この
場合の固体高分子多孔性薄膜はポリカーボネート薄膜に
対し原子炉中で荷電粒子を照射し、荷電粒子が通過した
飛跡をアルカリエツチングして孔を形成する方法で作製
することもできる。このような薄膜は例えばニュークリ
ボアー・メンブレンとしてポリカーボネート及びポリエ
ステル製品が上布されている。
Another example of a suitable polymeric material is polycarbonate, in which the solid polymer porous thin film is made by irradiating the polycarbonate thin film with charged particles in a nuclear reactor and etching the tracks of the charged particles with alkali to form pores. It can also be produced by a method of forming. Such membranes are coated with polycarbonate and polyester products, for example as nucleopore membranes.

そのほか、ポリエステル、ポリメタアクリレート、ポリ
アセタール、ポリ塩化ビニリデン、テトラフルオロポリ
エチレン等を用いることができる。
In addition, polyester, polymethacrylate, polyacetal, polyvinylidene chloride, tetrafluoropolyethylene, etc. can be used.

明細書の浄書(内容に変更なし) 本発明で用いるイオン導電体としてはアルカリ金属塩ま
たはプロトン酸と、ポリエーテル、ポリエステル、ポリ
イミン等の極性高分子との複合体、及びベンジルシアナ
ミド等の芳香族化合物とアルカリ金属塩またはプロトン
酸の複合体、あるいはこれらの高分子をセグメントとし
て含有する網目状、又は架橋状高分子との複合体を用い
ることが     “できる。ポリエーテルベ例えばポ
リエチレングリコールまたはポリプロピレングリコール
あるいはそれらの共重合体は分子量および重合度の異な
る液状および粉末状の試薬が市販されており、簡便に用
いることができる。すなわち、ポリエチレングリコーノ
ペポリエチレングリコール・モノエーテノベポリエチレ
ングリコールφジエーテル、ポリプロピレングリコール
、ポリプロピレングリコール・モノエーテル、ポリプロ
ピレングリコール・ジエーテル等のポリエーテル類、ま
たはこれらのポリエーテル類の共重合体であるポリ (
オキシエチレン・オキシプロピレン)グリコール、ポリ
(オキシエチレン・オキシプロピレン)グリコ−明細書
の浄書(内容に変更なし) ル・モノエーテル、またはポリ (オキシエチレン・オ
キシプロピレン)グリコール・ジエーテノベこれらのポ
リオキシアルキレン類と、エチレンジアミンとの縮合物
、りん酸エステルや飽和脂肪酸または芳香族エステル等
を用いることができる。さらにポリエチレングリコール
とジアルキルシロキサンの共重合体(例えば、成瀬ら、
PolymerPreprints、 Japan V
ow、34. No、 7.2021〜2024(19
85)、および特開昭60−217263号公報)、ポ
リエチレングリコールと無水マレイン酸の共重合体く例
えばC,C,Leeら、Polymer、  1982
.  Vol、23 May681〜689) 、およ
びポリエチレングリコールのモノメチルエーテルとメタ
クリル酸との共重合体(例えば、N、 Kobayas
hiら、J、Physical Chemistry。
Ionic conductors used in the present invention include complexes of alkali metal salts or protonic acids and polar polymers such as polyether, polyester, and polyimine, and aromatic compounds such as benzyl cyanamide. Complexes of compounds and alkali metal salts or protic acids, or complexes with network or crosslinked polymers containing these polymers as segments can be used. Liquid and powdered reagents with different molecular weights and degrees of polymerization are commercially available and can be easily used. Namely, polyethylene glycol, polyethylene glycol, monoether, polyethylene glycol φ diether, polypropylene glycol, Polyethers such as polypropylene glycol monoether and polypropylene glycol diether, or poly(
oxyethylene/oxypropylene) glycol, poly(oxyethylene/oxypropylene) glyco - engraving of specifications (no changes to the contents) monoether, or poly(oxyethylene/oxypropylene) glycol dietenove These polyoxyalkylenes and ethylenediamine, phosphoric acid esters, saturated fatty acids, aromatic esters, etc. can be used. Furthermore, copolymers of polyethylene glycol and dialkylsiloxane (for example, Naruse et al.
Polymer Preprints, Japan V
ow, 34. No. 7.2021-2024 (19
85) and JP-A No. 60-217263), copolymers of polyethylene glycol and maleic anhydride, e.g. C. C. Lee et al., Polymer, 1982
.. Vol, 23 May 681-689), and copolymers of monomethyl ether of polyethylene glycol and methacrylic acid (e.g., N, Kobayas
hi et al., J. Physical Chemistry.

Vol、89. No、6.987〜991(1985
)はそれぞれアルれており、本発明に有用な薄膜電解質
を構成する材料として好適である。
Vol, 89. No. 6.987-991 (1985
) are suitable as materials constituting the thin film electrolyte useful in the present invention.

上記のポリエーテル類は分子量150以上の偏分明細書
の浄書(内容に変更なし) 子量のものであってよく、また上記高分子にはプロピレ
ンカーボネート、γ−ブチロラクトン、エチレンカーボ
ネート、メチルフラン、ジメトキシエタン、ジオキソラ
ン、テトラヒドロフラン、アセトニトリノヘベンゾニト
リノペジメチルホルムアミド、ジメチルサルホキシト、
メチルテトラヒドロフラン、スルホラン、メチルチオフ
ェン、メチルチアゾール、エトキシメトキシエタン、ベ
ンジルシアナイド、安息香酸エチノペα−トリニトリル
の1種またそれ以上の溶媒を加えて用いてもよい。
The above-mentioned polyethers may have a molecular weight of 150 or more (no change in content), and the above-mentioned polymers include propylene carbonate, γ-butyrolactone, ethylene carbonate, methylfuran, Dimethoxyethane, dioxolane, tetrahydrofuran, acetonitrinohebenzonitrinopedimethylformamide, dimethylsulfoxide,
One or more solvents selected from methyltetrahydrofuran, sulfolane, methylthiophene, methylthiazole, ethoxymethoxyethane, benzyl cyanide, etinope benzoate and α-trinitrile may be added.

これらの高分子化合物と複合体を形成するものとしては
、アルカリ金属またはアルカリ土類金属塩またはプロト
ン酸を用いることができる。陰イオンとしてはハロゲン
イオン、過塩素酸イオン、チオシアン酸イオン、トリフ
ッ化メタンスルホン酸イオン、ホウフッ化イオン等があ
る。フッ化リチウム(LiF) 、ヨウ化ナトリウム(
Nal) 、ヨウ化リチウム(Lil) 、過塩素酸リ
チウム(LiC1口、)、チオシアン酸ナトリウム(N
aSCN) 、)リッツ化メ明細書の浄書(内容に変更
なし) タンスルホン酸リチウム(LiCF3SO3) 、ホウ
フッ化リチウム(LiBF、) 、ヘキサフッ化りん酸
リチウム(L+PFe) 、りん酸(l13PO3) 
、硫酸(H2S04)、トリフッ化メタンスルホン酸、
テトラフッ化エチレンスルホン酸〔C2F4(SO3H
)2 ) 、ヘキサフッ化ブタンスルホン酸〔C2F6
(S03H)4〕、などを具体例として挙げることがで
きる。
An alkali metal or alkaline earth metal salt or a protonic acid can be used to form a complex with these polymer compounds. Examples of anions include halogen ions, perchlorate ions, thiocyanate ions, trifluoromethanesulfonate ions, and borofluoride ions. Lithium fluoride (LiF), sodium iodide (
Nal), lithium iodide (Lil), lithium perchlorate (1 mouth of LiC), sodium thiocyanate (N
aSCN) ,) Copying of the litz chemical specification (no changes to the contents) Lithium tansulfonate (LiCF3SO3), Lithium borofluoride (LiBF, ), Lithium hexafluorophosphate (L+PFe), Phosphoric acid (l13PO3)
, sulfuric acid (H2S04), trifluoromethanesulfonic acid,
Tetrafluoroethylene sulfonic acid [C2F4(SO3H
)2), hexafluorobutanesulfonic acid [C2F6
(S03H)4], etc. can be cited as a specific example.

高分子薄膜中にイオン導電体を充填する方法としては、
■溶媒に溶解させたイオン導電体、または溶媒中にゾル
状またはゲル状に微分散させたイオン導電体を固体高分
子多孔性薄膜に含浸させるか、塗布またはスプレーした
後溶剤を除去する、■多孔性薄膜の製造工程でイオン導
電体の溶液または、そのゾルまたはゲル状の分散溶液を
混合した後製膜する、■イオン導電体の単量体や可溶性
プレカーサーを固体高分子多孔性薄膜に含浸させるか、
塗布またはスプレーした後、゛空孔内で反応させる、等
の方法を用いることができる。
As a method of filling ionic conductors into a polymer thin film,
■Remove the solvent after impregnating, coating or spraying an ionic conductor dissolved in a solvent, or an ionic conductor finely dispersed in a solvent in the form of a sol or gel, into a solid polymer porous thin film;■ In the porous thin film manufacturing process, a film is formed after mixing a solution of an ionic conductor or its sol or gel-like dispersion solution. ■ Impregnation of a monomer or soluble precursor of an ionic conductor into a solid polymer porous thin film. Do you want me to do it?
After coating or spraying, a method such as ``reacting within the pores'' can be used.

本発明のエレクトロクロミック素子のもう1つの特徴は
電極基材が可撓性有機フィルムからなる可撓性有機フィ
ルムとしては、ポリエステル、ポリカーボネート、ポリ
アクリレート、ポリエーテルサイフオンなどが用いられ
、特に透過率の高い(80%以上)、シート抵抗が10
0Ω以下のものが適当であるが、特にシート抵抗は50
Ω以下がより望ましい。
Another feature of the electrochromic device of the present invention is that the electrode base material is a flexible organic film.As the flexible organic film, polyester, polycarbonate, polyacrylate, polyether siphon, etc. are used. High (over 80%) and sheet resistance of 10
A sheet resistance of 0 Ω or less is suitable, but in particular, a sheet resistance of 50 Ω or less is suitable.
Ω or less is more desirable.

有機フィルムの厚みは可撓性、透明性の点で薄いことが
望ましく、200JMl以下が適当であるが、特に10
0p以下がより望ましい。
The thickness of the organic film is desirably thin from the point of view of flexibility and transparency, and is suitably 200 JMl or less, but especially 10
0p or less is more desirable.

エレクトロクロミック電極(電極■)は酸化チタンTi
O2、酸化バナジウムV2O5、酸化ネオジウムNd2
O5、酸化タングステンWO3、酸化モリブデンMOO
3、あるいはタングステン、コバルト、モリブデン、バ
ナジウムの1種もしくは2種以上を含むヘテロポリ酸を
製膜して用いることができる。
Electrochromic electrode (electrode ■) is titanium oxide Ti
O2, vanadium oxide V2O5, neodymium oxide Nd2
O5, tungsten oxide WO3, molybdenum oxide MOO
Alternatively, a heteropolyacid containing one or more of tungsten, cobalt, molybdenum, and vanadium can be used by forming a film.

対極(電極■)は酸化発色する酸化イリジウムIr[b
+、酸化ニッケルN1Ox、酸化クロムCrh、酸化コ
バル)COOX、 酸化マンガンMn0X、 酸化o 
シウムRhOx 、及びプルシアンブルー、フタロシア
ニン、明細書の浄書(内容に変更なし) ビオロゲン、及びこれらの誘導体などの鉄、コバルト系
有機金属化合物が用いられる。また、ポリピロール、ポ
リアニリンを用いることもできる。
The counter electrode (electrode ■) is an iridium oxide Ir[b
+, nickel oxide N1Ox, chromium oxide Crh, cobal oxide) COOX, manganese oxide Mn0X, oxide o
Iron and cobalt-based organometallic compounds such as siaum RhOx, Prussian blue, phthalocyanine, viologen, and derivatives thereof are used. Moreover, polypyrrole and polyaniline can also be used.

さらに、還元反応する電極と、発色しない酸化電極、例
えば、酸化ジルコニアZrOxを用いることもできる。
Furthermore, it is also possible to use an electrode that undergoes a reduction reaction and an oxidizing electrode that does not develop color, such as zirconia oxide ZrOx.

以上の如き固体電解質薄膜と電極付有機フィルムは単に
密着積層してエレクトロクロミック素子を構成すること
ができる。
The solid electrolyte thin film and the organic film with electrodes as described above can be simply laminated in close contact to form an electrochromic device.

〔作 用〕[For production]

本発明のECDは、電解質が環境温度、例えば、=10
℃〜30℃において十分なイオン導電性を有するため、
作動温度範囲が広く、また電解質及び電極付基材が柔軟
性を有する固体状薄膜であるため、組立ておよび取扱い
が容易である。従って、液漏れがなく、均質な厚さをも
ち、大面積の素子を与えることが容易にでき、また曲面
への適用が容易であり、かつ形状もさまざまに選ぶこと
が可能であり、表示素子のみでなく、カーテンレス窓な
ど明細書の浄書(内容に変更なし) の種々の用途に適する。
In the ECD of the present invention, the electrolyte is at an ambient temperature, for example, =10
Because it has sufficient ionic conductivity at ℃~30℃,
It has a wide operating temperature range and is easy to assemble and handle because the electrolyte and the substrate with electrodes are flexible solid thin films. Therefore, it is possible to easily provide a device with no liquid leakage, a uniform thickness, and a large area.It is also easy to apply to curved surfaces, and various shapes can be selected, making it possible to use display devices. It is also suitable for various uses such as curtainless windows and engraving specifications (no change in content).

〔実施例〕〔Example〕

図面を参照して説明する。第1図は実施例の可撓性エレ
クトロクロミック素子10の斜視図と、その断面の模式
展開図である。
This will be explained with reference to the drawings. FIG. 1 is a perspective view of a flexible electrochromic device 10 according to an example, and a schematic developed view of its cross section.

基材として大きさ30 cm X 40 cm、厚さ1
00廁、透過率84%のポリエステルフィルム1に1T
Oを製膜2したシート(シート抵抗88Ω)を用い、I
T○抵抗を下げるために低温焼成銀ペーストを格子状に
印刷して焼成し、その上に酸化タングステン(1’+0
3>を電極I、  3としてポリアニリンを電極I[、
4として製膜した。ITO電極2の厚さは800〜25
00人、電極I、  3の厚さは800〜7000人、
電極I[、4の厚さは800〜7000 Aである。
As a base material, size: 30 cm x 40 cm, thickness: 1
00 Liao, 1T on polyester film 1 with transmittance of 84%
Using a sheet (sheet resistance 88Ω) on which O was formed,
To lower the T○ resistance, low-temperature firing silver paste is printed in a grid pattern and fired, and then tungsten oxide (1'+0
3> as electrode I, and polyaniline as electrode I[,
A film was formed as No. 4. The thickness of ITO electrode 2 is 800~25
00 people, the thickness of electrode I, 3 is 800-7000 people,
The thickness of electrode I[, 4 is 800-7000 Å.

固定化液膜電解質5は9廂厚、細孔径0.02j−のポ
リエチレン微多孔膜にポリエチレングリコールジメチル
エーテルとLiCF3SO3による電解質溶液を固定化
して製作した。
The immobilized liquid film electrolyte 5 was manufactured by immobilizing an electrolyte solution of polyethylene glycol dimethyl ether and LiCF3SO3 on a polyethylene microporous membrane having a thickness of 9 walls and a pore diameter of 0.02J.

得られた可撓性エレクトロクロミック素子の特印可電圧
は、酸化タングステン(回。)還元に対してL5V、酸
化に対して−0,1Vとし矩形波定電圧制御を行なった
。印可サイクルは酸化還元とも10秒とした。
The special voltage applied to the obtained flexible electrochromic element was L5V for reduction of tungsten oxide (times) and -0.1V for oxidation, and rectangular wave constant voltage control was performed. The application cycle was 10 seconds for both redox and oxidation.

エレクトロクロミック素子の応答は、l1109酸化状
態から7秒以内で透過率20%となった。サイクル寿命
は、1.5V〜−0,1V印可で104回以上可能であ
った。
The response of the electrochromic device was 20% transmittance within 7 seconds from the l1109 oxidation state. The cycle life was 104 times or more when 1.5V to -0.1V was applied.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固体薄膜電解質を用いた可撓性のEC
Dが提供され、この可撓性ECDは液漏れ対応が必要な
くかつ柔軟であるので取扱い性、安全性に優れ、かつE
CDの応答性も向上し、しかも曲面に適用でき応用性が
高い。
According to the present invention, flexible EC using solid thin film electrolyte
D is provided, and this flexible ECD does not require leakage measures and is flexible, so it is easy to handle, safe, and
The responsiveness of CD is also improved, and it can be applied to curved surfaces, making it highly applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の可撓性エレクトロクロミック素子の斜
視図と、その断面の模式展開図である。 2・・・IT○電極、 3・・・電極工、 4・・・電極■、 5・・・固定化液膜電解質、 10・・・可撓性エレクトロクロミック素子。
FIG. 1 is a perspective view of a flexible electrochromic device according to an example, and a schematic developed view of its cross section. 2... IT○ electrode, 3... Electrode work, 4... Electrode ■, 5... Immobilized liquid film electrolyte, 10... Flexible electrochromic element.

Claims (1)

【特許請求の範囲】 1、固体高分子多孔性薄膜の空孔中にイオン導電体を充
填してなる電解質薄膜を電解質として用い、かつ電極基
材として可撓性有機フィルムを用いたことを特徴とする
可撓性エレクトロクロミック素子。 2、表示素子である請求項1記載の可撓性エレクトロク
ロミック素子。 3、調光素子である請求項1記載の可撓性エレクトロク
ロミック素子。
[Claims] 1. A thin electrolyte film formed by filling the pores of a solid polymer porous thin film with an ionic conductor is used as the electrolyte, and a flexible organic film is used as the electrode base material. Flexible electrochromic device. 2. The flexible electrochromic device according to claim 1, which is a display device. 3. The flexible electrochromic device according to claim 1, which is a light control device.
JP2329886A 1990-11-30 1990-11-30 Flexible electrochromic element Pending JPH04204521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329886A JPH04204521A (en) 1990-11-30 1990-11-30 Flexible electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329886A JPH04204521A (en) 1990-11-30 1990-11-30 Flexible electrochromic element

Publications (1)

Publication Number Publication Date
JPH04204521A true JPH04204521A (en) 1992-07-24

Family

ID=18226354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329886A Pending JPH04204521A (en) 1990-11-30 1990-11-30 Flexible electrochromic element

Country Status (1)

Country Link
JP (1) JPH04204521A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058861A4 (en) * 1998-02-25 2004-03-10 Ashwin Ushas Corp Inc Electrochromic display device
JP2007534162A (en) * 2003-11-19 2007-11-22 ユニバーシティ・オブ・フロリダ・リサーチ・ファンデーション・インコーポレーテッド Method of contacting pattern electrode on porous substrate and element thereof
JP2018132718A (en) * 2017-02-17 2018-08-23 株式会社リコー Electrochromic element
CN114326239A (en) * 2021-12-07 2022-04-12 北京工业大学 Flexible integrated electrochromic device and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058861A4 (en) * 1998-02-25 2004-03-10 Ashwin Ushas Corp Inc Electrochromic display device
JP2007534162A (en) * 2003-11-19 2007-11-22 ユニバーシティ・オブ・フロリダ・リサーチ・ファンデーション・インコーポレーテッド Method of contacting pattern electrode on porous substrate and element thereof
JP2018132718A (en) * 2017-02-17 2018-08-23 株式会社リコー Electrochromic element
CN114326239A (en) * 2021-12-07 2022-04-12 北京工业大学 Flexible integrated electrochromic device and preparation method thereof

Similar Documents

Publication Publication Date Title
US6245847B1 (en) Electrolyte
EP0519921A1 (en) Electrochromic element, materials for use in such an element, manufacturing method of such an element and such materials and the use of such an element in an electrochromic device.
US4807977A (en) Multi-color electrochromic cells having solid polymer electrolytes and a distinct electrochromic layer
Vondrák et al. Polymer gel electrolytes for electrochromic devices
EP0461685A2 (en) Electrochromic window, based on a polymeric polyepoxy electrolyte
Ozer et al. An “all-gel” electrochromic device
US4933394A (en) Modified electrically conductive polymers
JPH04204521A (en) Flexible electrochromic element
CA1148638A (en) Electrochromic display device
JPH04328723A (en) Electrochromic element
JPH0367227A (en) electrochromic element
JPH06102540A (en) Electrochromic device
JPH06202167A (en) Electrochromic device
JP2626350B2 (en) Ion conductive polymer compound
JPH06202164A (en) Electrochromic device and electrolyte membrane
JPH06250230A (en) Electrochromic device and manufacturing method thereof
JPH06242474A (en) Method for producing electrochromic device and polymer electrolyte thin film
JPH04324841A (en) electrochromic element
JPH0553154A (en) Electrochromic element
JPH0720504A (en) Electrode and electrochemical display device using the same
JPH08110533A (en) Electrochromic device
JPH0534732A (en) Electrolyte thin film
JPH05107566A (en) Electrochromic element
JPH0547210A (en) High molecular solid electrolyte
JPH0564775B2 (en)