JPH04203523A - Magnetic bearing spindle - Google Patents
Magnetic bearing spindleInfo
- Publication number
- JPH04203523A JPH04203523A JP2331830A JP33183090A JPH04203523A JP H04203523 A JPH04203523 A JP H04203523A JP 2331830 A JP2331830 A JP 2331830A JP 33183090 A JP33183090 A JP 33183090A JP H04203523 A JPH04203523 A JP H04203523A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- spindle
- gap
- protective
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001681 protective effect Effects 0.000 claims abstract description 35
- 239000000919 ceramic Substances 0.000 claims abstract description 10
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 7
- 230000035945 sensitivity Effects 0.000 claims abstract description 5
- 230000003321 amplification Effects 0.000 abstract description 11
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 3
- 238000013016 damping Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0442—Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/043—Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C39/00—Relieving load on bearings
- F16C39/02—Relieving load on bearings using mechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Sliding-Contact Bearings (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、磁気軸受スピンドルにおいて保護ベアリング
を改良することにより、性能を向上させたものに関する
。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a magnetic bearing spindle whose performance is improved by improving the protective bearing.
(従来の技術)
能動形磁気軸受には、制御装置の故障や過大な外乱なと
不慮の事故に対処するため、保護ベアリングが取付けら
れている。(Prior Art) A protective bearing is attached to an active magnetic bearing in order to cope with an unexpected accident such as a failure of a control device or an excessive disturbance.
保護ベアリングにはころがり軸受が採用されており、こ
のころがり軸受と軸との隙間は0.1m−ないし場合に
よっては1.0■鵬程度まで、軸受としては非常に広く
とられている。これはスピンドルとして成立させるため
には、不慮の事態には保護ベアリングのころがり軸受が
軸を支持できることと、通常の運転では軸が保護ベアリ
ングに接触することがないように、安全上の観点からほ
ぼこのような値になっている。A rolling bearing is used as the protective bearing, and the clearance between the rolling bearing and the shaft is from 0.1 m to about 1.0 m in some cases, which is extremely wide for a bearing. In order for this to work as a spindle, it is necessary to ensure that the rolling bearing of the protective bearing can support the shaft in an unexpected situation, and that the shaft does not come into contact with the protective bearing during normal operation, from a safety standpoint. The value is like this.
磁気軸受を構成する電磁石のロータとステータとの隙間
は、保護ベアリングが接触しても当たらないようにさら
に広くされている。The gap between the rotor and stator of the electromagnets constituting the magnetic bearing is further widened so that even if the protective bearing comes into contact with it, it will not hit.
(発明が解決しようとする課題)
上述の従来技術のように広い隙間では、軸の位置を検出
するセンサの感度(増幅回路の電圧増幅度)を上げるこ
とができない、すなわち、このような広い隙間で制御回
路の増幅度を上げると、軸の位置が設定より少しでもず
れると増幅回路がすぐ飽和してしまい制御不能となるか
らである。(Problem to be Solved by the Invention) With a wide gap as in the above-mentioned conventional technology, it is not possible to increase the sensitivity of the sensor (voltage amplification degree of the amplifier circuit) that detects the position of the axis. This is because if the amplification degree of the control circuit is increased, if the axis position deviates even slightly from the setting, the amplification circuit will quickly become saturated and control will become impossible.
このため、軸の位置が隙間内の全領域を変化しても飽和
しない程度の増幅度までしか上げることができず、結果
的に軸受性能とくに軸受の精度、剛性を向上させること
ができない。このため、工作機械用スピンドルのように
主軸の精度、剛性を必要とする用途には不十分であった
。For this reason, even if the position of the shaft changes over the entire area within the gap, the degree of amplification can only be increased to a level that does not saturate, and as a result, the bearing performance, particularly the accuracy and rigidity of the bearing, cannot be improved. For this reason, it was insufficient for applications that require precision and rigidity of the spindle, such as spindles for machine tools.
本発明は、保護ベアリングの形式、構造および材質を改
善して許容隙間を可能な限り狭(し、それに伴って増幅
回路の感度を上げ、磁気軸受スピンドルの精度、剛性を
太き(向上させるものである。The present invention improves the type, structure, and material of the protective bearing to narrow the allowable clearance as much as possible, thereby increasing the sensitivity of the amplifier circuit, and increasing the accuracy and rigidity of the magnetic bearing spindle. It is.
(課題を解決するための手段)
このため本発明は、特許請求の範囲に記載した磁気軸受
スピンドルを提供することにより従来技術の課題を解決
した。(Means for Solving the Problems) Therefore, the present invention has solved the problems of the prior art by providing a magnetic bearing spindle as set forth in the claims.
(実施例) 第1図ないし第3図に本発明の一実施例を示す。(Example) An embodiment of the present invention is shown in FIGS. 1 to 3.
図において1はスピンドルの主軸、2は外筒、3は主軸
を駆動するモータ、4はスピンドルヘッド側のラジアル
磁気軸受、5はスピンドルテール側のラジアル磁気軸受
、6はスラスト磁気軸受、7および8は各ラジアル方向
の軸位置を検出するセンサ、9はスピンドルの前蓋、1
0は同じく後蓋を示している。In the figure, 1 is the main shaft of the spindle, 2 is the outer cylinder, 3 is the motor that drives the main shaft, 4 is the radial magnetic bearing on the spindle head side, 5 is the radial magnetic bearing on the spindle tail side, 6 is the thrust magnetic bearing, 7 and 8 9 is a sensor that detects the axis position in each radial direction, 9 is a front cover of the spindle, 1 is
0 also indicates the rear lid.
ここに使用される保護ベアリングは、ラジアル方向、ス
ラスト方向とも耐熱、耐摩耗の材質からなるセラミック
すべり軸受であり、主軸の高速回転中の接触にも耐えら
れるようになっている。The protective bearing used here is a ceramic sliding bearing made of heat-resistant and wear-resistant material in both the radial and thrust directions, and is designed to withstand contact during high-speed rotation of the main shaft.
主軸1が前蓋9を貫通している個所には、その詳細を第
2図に示すようにスピンドルヘッド側の保護ベアリング
が設けられている。前蓋9にはセラミック製の保護ベア
リングステータ12が嵌合固着されており、これと対向
して主軸1にはセラミック製の保護ベアリングロータ1
1が嵌合固着されている。このスピンドルヘッド側はと
くに磁気ベアリングの剛性を高くする必要から、保護ベ
アリングにおけるロータ11とステータ12との隙間は
、10μmに設定されている。なお、13は保護ベアリ
ングの部分を覆う前カバーであり、14は主軸に嵌合さ
れてセンサターゲットとなるスリーブである。また、ス
ピンドルテール側の保護ベアリングはその詳細を第3図
に示す、外筒2の内径側にスラスト磁気軸受のステータ
に隣接して固定された取付リング15に、セラミック製
の保護ベアリングステータ16が嵌合固着され、止め輪
18で抜は止めされている。保護ベアリングステータ1
6に対向して主軸1にはセラミック製の保護ベアリング
ロータ17が嵌合固着されている。この保護ベアリング
ロータ17の内寄に隣接してスラストに対抗するセラミ
ック製カラー19が主軸に嵌合固着され、さらに、保護
ベアリングロータ17の端寄に隣接して逆方向のスラス
トに対抗するセラミック製カラー20が主軸に嵌合され
ていて、スラスト磁気軸受のロータディスク21を介し
て二重ナツト22により締結固定されている。なお、2
3はスラスト磁気軸受のステータである。このスピンド
ルテール側の保護ベアリングの各隙間は、ロータ17と
ステータ16の間、ステータ16とカラー19の間およ
びステータ16とカラー20の間はそれぞれ100μm
であり、スピンドルヘッド側の隙間に比べ大きくされて
いる。At the location where the main shaft 1 passes through the front cover 9, a protective bearing on the spindle head side is provided, as shown in detail in FIG. A ceramic protective bearing stator 12 is fitted and fixed on the front cover 9, and a ceramic protective bearing rotor 1 is mounted on the main shaft 1 opposite to this.
1 is fitted and fixed. Since it is necessary to particularly increase the rigidity of the magnetic bearing on the spindle head side, the gap between the rotor 11 and the stator 12 in the protective bearing is set to 10 μm. Note that 13 is a front cover that covers the protective bearing portion, and 14 is a sleeve that is fitted onto the main shaft and serves as a sensor target. The details of the protective bearing on the spindle tail side are shown in FIG. 3. A ceramic protective bearing stator 16 is attached to a mounting ring 15 fixed to the inner diameter side of the outer cylinder 2 adjacent to the stator of the thrust magnetic bearing. It is firmly fitted and secured, and is prevented from being removed by a retaining ring 18. Protective bearing stator 1
A protective bearing rotor 17 made of ceramic is fitted and fixed to the main shaft 1 opposite to the rotor 6 . A ceramic collar 19 adjacent to the inner end of the protective bearing rotor 17 to counter the thrust is fitted and fixed to the main shaft, and a ceramic collar 19 adjacent to the end of the protective bearing rotor 17 to counter the thrust in the opposite direction is fitted and fixed to the main shaft. A collar 20 is fitted onto the main shaft and fastened and fixed with a double nut 22 via a rotor disk 21 of a thrust magnetic bearing. In addition, 2
3 is a stator of the thrust magnetic bearing. Each clearance of the protective bearing on the spindle tail side is 100 μm between the rotor 17 and stator 16, between the stator 16 and collar 19, and between the stator 16 and collar 20.
, which is larger than the gap on the spindle head side.
制御回路は第4図に示すように一般的なPDI方式のフ
ィードバック制御であり、センサアンプから電流アンプ
までの全体の周波数特性は、比例回路P、微分回路D、
積分回路Iを適当な増幅率で加電すると第5図に示すよ
うな特性を得る。第5図において、■成分とP成分の交
点の周波数をf、、P成分とD成分の交点Uの周波数を
fl、D成分の上限の点Vの周波数をftとすると、P
成分は剛性を、D成分はダンピング(′$i衰)を与え
るものであるから、U点におけるダンピングを十分きか
せるためには、■点の周波数f2を普通U点の周波数を
f、の10倍程度のところに設定する。7点が高いとダ
ンピングはよくきくが回路全体がそれだけ不安定になる
。また、■点が低すぎるとダンピング効果が得られない
。このような特性をもつ制御回路にセンサと電磁石を接
続し、フィードバンクループを形成してスピンドル主軸
を能動的に保持するとき、系全体のブロック線図は第6
図のようになる。ここにSo 、Sr % Szはそ
れぞれ第5図における周波数f。、f、、f。The control circuit is a general PDI type feedback control as shown in Fig. 4, and the overall frequency characteristics from the sensor amplifier to the current amplifier are composed of a proportional circuit P, a differential circuit D,
When integrating circuit I is energized with a suitable amplification factor, characteristics as shown in FIG. 5 are obtained. In Fig. 5, if the frequency at the intersection of the ■ component and the P component is f, the frequency at the intersection U between the P and D components is fl, and the frequency at the upper limit point V of the D component is ft, then P
The component gives stiffness, and the D component gives damping ('$i damping). Therefore, in order to obtain sufficient damping at point U, the frequency f2 at point ■ should be set to 10 times the frequency at point U, f. Set it at a certain level. If the 7 point is high, the damping will be good, but the whole circuit will become unstable. Furthermore, if the ■ point is too low, no damping effect can be obtained. When a sensor and an electromagnet are connected to a control circuit with such characteristics to form a feed bank loop and actively hold the spindle main shaft, the block diagram of the entire system is shown in Fig. 6.
It will look like the figure. Here, So, Sr%Sz are the frequencies f in FIG. 5, respectively. ,f,,f.
に相等するラプラス空間における値である。このような
構成の能動形磁気スピンドルに外乱または回転誤差X′
が入力されたとき、系全体としてこのX′をゼロにする
ようにフィードバックが働くのであるが、完全にX′=
0になるわけではなく、いまXという値に収束したと仮
定すると、X /X′という値は第5図の周波数特性と
密接な関係があり、x/x’の周波数特性を、制御回路
全体の増幅度Kをro、 1、f2および質量Mに関連
させて適当に決めることによって、外乱補正量の周波数
特性を第7図のように設定することができる。すなわち
、V意思上の周波数では全く誤差を補正する能力はなく
、またtJ点においては誤差を1/10程度まで圧縮す
ることが可能なように設定するのである。従って、回転
精度1μmのスピンドルを実現するためには、まずセン
サターゲットの精度をlum程度としバランスを良(す
る。is the value in Laplace space equivalent to . Disturbance or rotational error
When is input, feedback works to make this X' to zero for the entire system, but it is completely
Assuming that it does not become 0 but has now converged to the value of X, the value of By appropriately determining the amplification degree K in relation to ro, 1, f2, and mass M, the frequency characteristics of the disturbance correction amount can be set as shown in FIG. That is, at the intended frequency of V, there is no ability to correct the error at all, and at the tJ point, the setting is made so that the error can be compressed to about 1/10. Therefore, in order to realize a spindle with a rotation accuracy of 1 μm, first the accuracy of the sensor target should be set to about lum to achieve a good balance.
これによって7点以上の周波数における誤差は1μmが
保証される。U点においては10μmまでの誤差が許さ
れるのであるから、タッチダウンベアリングとしての保
護ベアリングの隙間を10μmとする。保護ベアリング
の隙間を目標精度の10倍程度というのはこの理由によ
る。このとき、U点において保護ベアリングの隙間の範
囲内で主軸の位置を移動させてみて、回路がまだ飽和し
ていなければfo、f、、ftの値をもっと高いところ
に移動させ、逆に飽和してしまうようならfo、ft、
ftの値を低くして、Kの値を飽和点に達しない限界ま
で調整する。This guarantees an error of 1 μm at frequencies of 7 or more points. Since an error of up to 10 μm is allowed at point U, the gap between the protective bearing as a touchdown bearing is set to 10 μm. This is the reason why the gap between the protective bearings is set to about 10 times the target accuracy. At this time, try moving the position of the main shaft within the gap between the protective bearings at point U, and if the circuit is not yet saturated, move the values of fo, f, and ft to a higher value, and vice versa. If you end up doing it, fo, ft,
Lower the value of ft and adjust the value of K to a limit that does not reach the saturation point.
本発明において、保護ベアリングの隙間を10μmにせ
ばめ、かつ制御回路の増幅度を主軸がこの10μmの範
囲内を変位しても飽和しない最大値に設定することによ
って剛性が格段に向上した。In the present invention, the rigidity has been significantly improved by narrowing the gap between the protective bearings to 10 μm and setting the amplification degree of the control circuit to the maximum value that does not saturate even if the main shaft is displaced within this 10 μm range.
第8図に従来の能動型磁気軸受と今回のものとの比較を
しめず。一般に磁気軸受の剛性は周波数特性をもつ。最
も重要なのは動剛性の最小値であり静剛性ではない、従
来のものでは動剛性の最小値は100gf/μmという
のがベストのデータであったが、本発明のものはIKg
f/μmをかるくこえる。Figure 8 shows a comparison between a conventional active magnetic bearing and this one. Generally, the stiffness of magnetic bearings has frequency characteristics. The most important thing is the minimum value of dynamic stiffness, not static stiffness.The best data for the conventional model was that the minimum value of dynamic stiffness was 100 gf/μm, but the one of the present invention has IKg
Slightly exceeds f/μm.
精度については低速回転での精度は格段に向上した。第
9図にリサージ二波形での本発明と従来のものとの比較
をしめす、ただ問題はセンサターゲットの精度が直接現
れて、高速回転では外筒の振動が大きくなる。これはま
た別の問題でありターゲットの加工精度向上等で対処す
べきものである。Regarding accuracy, the accuracy at low speed rotation has been significantly improved. FIG. 9 shows a comparison between the present invention and the conventional one using two resurge waveforms. However, the problem is that the accuracy of the sensor target directly appears, and the vibration of the outer cylinder increases at high speed rotation. This is another problem that should be addressed by improving the processing accuracy of the target.
(発明の効果)
本発明においては、磁気軸受スピンドルの保護ベアリン
グを耐熱・耐摩耗性のセラミック滑り軸受とするととも
に、主軸と保護ベアリングの隙間を目標精度の10倍程
度とし、かつ制御装置の増幅回路の感度を隙間内で主軸
をどの位置に変位させても回路が飽和しない最大値に設
定しているので、磁気軸受スピンドルの運転中の軸受隙
間を非常に狭く設定することが可能となり、それに伴っ
てスピンドル主軸の精度、剛性を格段に向上させること
ができる。(Effects of the Invention) In the present invention, the protective bearing of the magnetic bearing spindle is a heat-resistant and wear-resistant ceramic sliding bearing, the gap between the main shaft and the protective bearing is set to about 10 times the target accuracy, and the control device is amplified. Since the sensitivity of the circuit is set to the maximum value at which the circuit will not become saturated no matter what position the spindle is displaced within the gap, it is possible to set the bearing gap during operation of the magnetic bearing spindle to be extremely narrow, and Accordingly, the accuracy and rigidity of the spindle main shaft can be significantly improved.
第1図は本発明の一実施例を示す縦断面図、第2図は第
1図の■部分の拡大図、第3図は第1図のm部分の拡大
図、第4図は制御回路の構成の概略図、第5図は制御回
路の増幅度の周波数特性を示すグラフ、第6図は系全体
のブロック図、第7図は系全体での誤差補正量の周波数
特性を示すグラフ、第8図は磁気軸受の剛性の周波数特
性について本発明と従来技術との比較を示すグラフ、第
9図はりサージュ波形の比較図である。
1・・・主軸、2・・・外筒、3・・・モータ、4.5
・・・ラジアル磁気軸受、6・・・スラスト磁気軸受、
7.8・・・センサ、11.17・・・保護ベアリング
ロータ、12.16・・・保護ベアリングステータ、1
9.20・・・保護ベアリングカラー。
代理人 弁理士 河 内 潤 二
第1図
第2図 第3図
第4図
第5図
Sa数[H2]−−
制御回路のMllll数
箱性図
第7図
llI2!数(Hzl −
外乱補正量の局波数特性
第8図
1 10 100
+KMJI数[Hzココ
−気軸受の剛性のMa数時特
性9WJ
2 )rm /div 2 pm/d
iv(A)本発明による磁気軸受 (B)
従来の磁気軸受リサージ二波形による回転精度Fig. 1 is a vertical cross-sectional view showing an embodiment of the present invention, Fig. 2 is an enlarged view of the part ■ in Fig. 1, Fig. 3 is an enlarged view of the m part in Fig. 1, and Fig. 4 is a control circuit. 5 is a graph showing the frequency characteristics of the amplification degree of the control circuit, FIG. 6 is a block diagram of the entire system, and FIG. 7 is a graph showing the frequency characteristics of the error correction amount in the entire system. FIG. 8 is a graph showing a comparison between the present invention and the prior art regarding the frequency characteristics of the rigidity of a magnetic bearing, and FIG. 9 is a comparison diagram of surge waveforms. 1...Main shaft, 2...Outer cylinder, 3...Motor, 4.5
...Radial magnetic bearing, 6...Thrust magnetic bearing,
7.8... Sensor, 11.17... Protective bearing rotor, 12.16... Protective bearing stator, 1
9.20...Protective bearing collar. Agent Patent Attorney Jun Kawachi Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Sa number [H2] -- Mllll number box diagram of control circuit Figure 7 llI2! number (Hzl - Local wave number characteristics of disturbance correction amount Figure 8 1 10 100
+ KMJI number [Hz Coco-air bearing stiffness Ma number time characteristic 9WJ 2 ) rm /div 2 pm/d
iv (A) Magnetic bearing according to the present invention (B)
Rotational accuracy due to conventional magnetic bearing Lissurge dual waveform
Claims (1)
動形磁気軸受と、能動形磁気軸受における主軸の位置を
制御する制御装置と、主軸の位置が制御不能となったと
きに主軸に接触して支持する保護ベアリングを備えた磁
気軸受スピンドルにおいて、保護ベアリングを耐熱・耐
摩耗性のセラミック滑り軸受とするとともに、前記主軸
と保護ベアリングの隙間を目標精度の10倍程度とし、
かつ制御装置の増幅回路の感度を前記隙間内で主軸をど
の位置に変位させても回路が飽和しない最大値に設定し
たことを特徴とする磁気軸受スピンドル。A motor that rotates the spindle, an active magnetic bearing that supports the spindle without contact, a control device that controls the position of the spindle in the active magnetic bearing, and a motor that contacts the spindle when the spindle position becomes uncontrollable. In a magnetic bearing spindle equipped with a protective bearing that supports the spindle, the protective bearing is a heat-resistant and wear-resistant ceramic sliding bearing, and the gap between the main shaft and the protective bearing is about 10 times the target accuracy,
A magnetic bearing spindle, characterized in that the sensitivity of the amplifier circuit of the control device is set to a maximum value at which the circuit does not become saturated no matter what position the main shaft is displaced within the gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331830A JPH04203523A (en) | 1990-11-29 | 1990-11-29 | Magnetic bearing spindle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331830A JPH04203523A (en) | 1990-11-29 | 1990-11-29 | Magnetic bearing spindle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04203523A true JPH04203523A (en) | 1992-07-24 |
Family
ID=18248125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2331830A Pending JPH04203523A (en) | 1990-11-29 | 1990-11-29 | Magnetic bearing spindle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04203523A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007032443A1 (en) * | 2007-07-10 | 2009-01-15 | Voith Patent Gmbh | Hybrid bearing and method for its production |
CN104806631A (en) * | 2015-03-01 | 2015-07-29 | 北京航空航天大学 | Radial and axial integrated flexible protective bearing for magnetic suspension high-speed rotating equipment |
WO2019034187A1 (en) * | 2017-08-15 | 2019-02-21 | Rieter Cz S.R.O. | Device for protecting parts of a system of a spinning rotor with a magnetic bearing |
-
1990
- 1990-11-29 JP JP2331830A patent/JPH04203523A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007032443A1 (en) * | 2007-07-10 | 2009-01-15 | Voith Patent Gmbh | Hybrid bearing and method for its production |
US8330312B2 (en) | 2007-07-10 | 2012-12-11 | Voith Patent Gmbh | Hybrid bearing and method for the production thereof |
CN104806631A (en) * | 2015-03-01 | 2015-07-29 | 北京航空航天大学 | Radial and axial integrated flexible protective bearing for magnetic suspension high-speed rotating equipment |
WO2019034187A1 (en) * | 2017-08-15 | 2019-02-21 | Rieter Cz S.R.O. | Device for protecting parts of a system of a spinning rotor with a magnetic bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5142177A (en) | Magnetically controlled bearing unit | |
JPH0272216A (en) | Magnetic bearing system for high-speed rotary vacuum pump | |
JPH07256503A (en) | Spindle apparatus | |
JPH04203523A (en) | Magnetic bearing spindle | |
EP0193609A1 (en) | Controlled radial magnetic bearing device | |
JP3463218B2 (en) | Magnetic bearing device | |
CN100430623C (en) | Active suppression method and device for machine tool spindle runout | |
JP3773709B2 (en) | High-speed rotating body balance correction method | |
Hendrickson et al. | Application of magnetic bearing technology for vibration free rotating machinery | |
JP4318395B2 (en) | Method of operating a rotor having a magnetic bearing device | |
JPH04185910A (en) | Magnetic bearing spindle | |
JP3301619B2 (en) | Magnetic bearing device | |
JP3395170B2 (en) | Apparatus and method for controlling thrust magnetic bearing | |
JP2000205259A (en) | Revolving speed detecting device for magnetic levitation rotor | |
WO1990001122A1 (en) | Electromagnetic bearings | |
JP2004324895A (en) | Static pressure magnetic combined bearing | |
JP2000257633A (en) | Magnetic bearing control device | |
JPS61286609A (en) | Control device of control type radial magnetic bearing | |
JPH02113117A (en) | Magnetic bearing device | |
JP7028975B2 (en) | Equipment and methods for magnetically unloading rotor bearings | |
JP2006194203A (en) | Air turbine spindle | |
JPH1113761A (en) | Hydrostatic magnetic composite bearing | |
JP2573853B2 (en) | 5-axis control type magnetic bearing | |
JP3517846B2 (en) | Magnetic bearing control device | |
JPH05231428A (en) | Magnetic bearing control method and control device |