[go: up one dir, main page]

JPH04202014A - Production of multiple oxide containing rare earth element - Google Patents

Production of multiple oxide containing rare earth element

Info

Publication number
JPH04202014A
JPH04202014A JP33457290A JP33457290A JPH04202014A JP H04202014 A JPH04202014 A JP H04202014A JP 33457290 A JP33457290 A JP 33457290A JP 33457290 A JP33457290 A JP 33457290A JP H04202014 A JPH04202014 A JP H04202014A
Authority
JP
Japan
Prior art keywords
rare earth
carbonate
particles
hydroxides
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33457290A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sagara
和広 相良
Akifumi Yoshida
吉田 紀史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP33457290A priority Critical patent/JPH04202014A/en
Publication of JPH04202014A publication Critical patent/JPH04202014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To increase working efficiency and to control the shape of particles by adding ammonium carbonate to a slurry of the hydroxides of a rare earth element and a group IVa element, carbonating the hydroxides, making precipitated particles coarse and carrying out thermal decomposition. CONSTITUTION:Alkali is added to an acidic soln. contg. ions of a rare earth element and ions of a group IVa element to coprecipitate the ions as hydroxides. Ammonium carbonate or ammonium hydrogencarbonate is added to the resulting hydroxide slurry and brought into a reaction to carbonate the hydroxides and precipitated particles are made coarse. Working efficiency is improved at the time of filtration and washing and the shape of particles of a double oxide obtd. by thermally decomposing the washed particles is controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 蛍光体の原料として有用な希土類含有複合酸化物の製造
方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a method for producing rare earth-containing composite oxides useful as raw materials for phosphors.

(従来の技術) IV−a族元素のような異種元素を含む希土類酸化物の
製造方法の一つとして共沈法がある。この方法は異種元
素と希土類元素を蓚酸塩もしくは炭酸塩または水酸化物
として共沈せしめ、これを加熱分解して希土類含有複合
酸化物とする方法である。
(Prior Art) A coprecipitation method is one of the methods for producing rare earth oxides containing different elements such as group IV-a elements. In this method, different elements and rare earth elements are co-precipitated as oxalate, carbonate, or hydroxide, and this is thermally decomposed to produce a rare earth-containing composite oxide.

(発明が解決しようとする課題) しかしながらこの方法では異種元素としては難溶性の蓚
酸塩や炭酸塩を持つものに限られ、Ti、Zr等では採
用出来ない。また、Ti、 Zr等を水酸化物として共
沈させる方法では濾過、水洗が困難で、これを加熱分解
して酸化物としても固化してブロックとなり粉砕が必要
で粒子径の制御が困難な上、粒子形状は不規則であるた
め、工業的大量生産は難しい。
(Problems to be Solved by the Invention) However, this method is limited to those having poorly soluble oxalate or carbonate as foreign elements, and cannot be used for Ti, Zr, etc. In addition, in the method of co-precipitating Ti, Zr, etc. as hydroxides, it is difficult to filter and wash with water, and this is thermally decomposed and solidified as an oxide, forming a block that needs to be crushed, making it difficult to control the particle size. Since the particle shape is irregular, industrial mass production is difficult.

本発明はかかる問題点を解決し、粒径分布の狭い板状な
いし球状の複合酸化物を得る方法を提供しようとするも
のである。
The present invention aims to solve these problems and provide a method for obtaining a plate-like or spherical composite oxide having a narrow particle size distribution.

(課題を解決するための手段) 本発明者等はかかる課題を解決する為に水酸化物や炭酸
塩の共沈法の反応条件を検討し、本発明を完成したもの
で、その要旨は、 希土類元素イオンとIV−a族元素イオンを含む溶液に
アルカリを加えて水酸化物として共沈させ、該水酸化物
を炭酸アンモニウムまたは重炭酸アンモニウムと反応さ
せて炭酸塩とし、これを加熱分解することを特徴とする
希土類含有複合酸化物の製造方法である。
(Means for Solving the Problems) In order to solve the problems, the present inventors studied the reaction conditions of the coprecipitation method of hydroxides and carbonates, and completed the present invention.The gist thereof is as follows. An alkali is added to a solution containing rare earth element ions and IV-a group element ions to co-precipitate a hydroxide, and the hydroxide is reacted with ammonium carbonate or ammonium bicarbonate to form a carbonate, which is then thermally decomposed. This is a method for producing a rare earth-containing composite oxide.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

通常、水酸化物共沈法は、希土類元素イオンとIV−a
族元素イオンを含む酸性溶液をアンモニア等のアルカリ
溶液中に滴下し、pHを調整することにより水酸化物と
して共沈させ、これを分離、乾燥、焼成して希土類含有
複合酸化物を製造しているが、この方法で得られた水酸
化物の沈殿粒子は非常に細かく、この濾過、洗浄には長
時間を要する等困難を伴う。また、乾燥および焼成工程
で固化し、粉砕も困難である。また、粒径制御も困難で
、粒子形は不規則形状である。
Usually, in the hydroxide coprecipitation method, rare earth element ions and IV-a
An acidic solution containing Group element ions is dropped into an alkaline solution such as ammonia, and the pH is adjusted to co-precipitate as a hydroxide, which is then separated, dried, and calcined to produce a rare earth-containing composite oxide. However, the precipitated particles of hydroxide obtained by this method are very fine, and filtration and washing are difficult, such as requiring a long time. In addition, it solidifies during the drying and firing process and is difficult to crush. Furthermore, particle size control is difficult, and the particle shape is irregular.

本発明はかかる問題点を解決するために、水酸化物スラ
リー中に炭酸アンモニウムまたは重炭酸アンモニウムの
粉末もしくは水溶液を加え、水酸化物の一部もしくは全
部を炭酸塩化することにより、沈殿粒子を粗大化し、濾
過、洗浄の作業性を改善し、さらに複合酸化物の粒径お
よび粒子形状の制御を可能とした。
In order to solve such problems, the present invention adds powder or aqueous solution of ammonium carbonate or ammonium bicarbonate to a hydroxide slurry to carbonate part or all of the hydroxide, thereby coarsening the precipitated particles. , improved the workability of filtration and cleaning, and also made it possible to control the particle size and shape of the composite oxide.

本発明の適用範囲は、希土類元素についてはYを含むL
a、 Ce、 Pr、 Nd、 Sm、 Eu、 Gc
、 Tb、 Dy、 Ho、 Er、 Tm。
The scope of application of the present invention is that for rare earth elements, L including Y
a, Ce, Pr, Nd, Sm, Eu, Gc
, Tb, Dy, Ho, Er, Tm.

YbおよびLuから選択された1種または2種以上の元
素、IV−a族元素はTi、 Zr、 Hfであり、希
土類元素とTV−a族元素とのモル比は1:0.01〜
1:2の範囲が良い。反応条件は、先ず、水酸化物の反
応は、公知の方法で良(、原料の希土類酸化物とIV−
a族元素金属、塩類もしくは酸化物とを所定の割合に混
合し、無機酸で溶解し、アンモニア等のアルカリ水溶液
中に滴下し、pH8〜12.10〜100℃、0.5〜
24時間反応させて複合水酸化物の沈殿を得る。次いで
本発明の方法により炭酸アンモニウムまたは重炭酸アン
モニウムを複合水酸化物1モル当り1〜20モルを粉末
もしくは水溶液として投入し、10〜100℃、0.5
〜24時間反応させて炭酸塩の結晶を得る。この場合、
生成する炭酸塩としては一部もしくは完全に置換された
ものである。この結晶を常法に従い分離、水洗し、80
0〜1,200℃、1〜5時間かけて大気中で焼成して
複合酸化物を得る。
One or more elements selected from Yb and Lu, the IV-a group elements are Ti, Zr, and Hf, and the molar ratio of the rare earth element to the TV-a group element is 1:0.01~
A range of 1:2 is good. The reaction conditions were as follows: First, the reaction of hydroxide was carried out using a known method (the raw material rare earth oxide and IV-
Group A element metals, salts, or oxides are mixed in a predetermined ratio, dissolved in an inorganic acid, and dropped into an alkaline aqueous solution such as ammonia, pH 8-12.10-100°C, 0.5-
The reaction is carried out for 24 hours to obtain a precipitate of composite hydroxide. Next, according to the method of the present invention, ammonium carbonate or ammonium bicarbonate is added as a powder or an aqueous solution in an amount of 1 to 20 moles per mole of composite hydroxide, and the mixture is heated at 10 to 100°C and 0.5
React for ~24 hours to obtain carbonate crystals. in this case,
The carbonates produced are partially or completely substituted. The crystals were separated according to a conventional method, washed with water,
A composite oxide is obtained by firing in the air at 0 to 1,200°C for 1 to 5 hours.

このようにして得られた複合炭酸塩はその複合結晶粒径
が複合水酸化物粒径よりも粗(なっており、濾過、分離
、水洗が容易となり、コスト低減に寄与する。また、複
合炭酸塩の晶出条件を変えて複合炭酸塩結晶粒径を制御
することにより、焼成後の複合酸化物もその平均粒径な
1〜100μmの範囲に制御することが可能となる。こ
の複合酸化物を原料として作製した蛍光体の応用加工時
の分散性の向上が可能となった。
The composite carbonate thus obtained has a composite crystal grain size coarser than that of the composite hydroxide, making it easier to filter, separate, and wash with water, contributing to cost reduction. By controlling the crystal grain size of the composite carbonate by changing the crystallization conditions of the salt, it becomes possible to control the average grain size of the composite oxide after firing within the range of 1 to 100 μm.This composite oxide It has become possible to improve the dispersibility during applied processing of phosphors made using phosphors as raw materials.

以下、本発明の実施態様を実施例を挙げて具体的に説明
するが、本発明はこれらに限定されるものではない。
Hereinafter, embodiments of the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

(実施例1) 酸化ランタンLa2032.7モル、酸化テルビウムT
b4O70,2モルの硝酸塩溶液と酸化チタンTi02
0.1モルの硫酸水溶液を混合し、アンモニア20モル
の水溶液中に滴下し、pH8〜12.60 ’Cで反応
させて複合水酸化物を得る。この水酸化物スラリー中に
重炭酸アンモニウムの粉末を10モル投入し、生成した
結晶を分離、水洗した。この炭酸塩の組成はほぼ(La
o8aTbo、 +2TLo、 02)2 (CO3)
 3−w(O旧。
(Example 1) Lanthanum oxide La2032.7 mol, terbium oxide T
b4O70, 2 mol nitrate solution and titanium oxide Ti02
A 0.1 mol sulfuric acid aqueous solution is mixed, added dropwise to a 20 mol ammonia aqueous solution, and reacted at pH 8 to 12.60'C to obtain a composite hydroxide. 10 moles of ammonium bicarbonate powder was added to this hydroxide slurry, and the resulting crystals were separated and washed with water. The composition of this carbonate is approximately (La
o8aTbo, +2TLo, 02)2 (CO3)
3-w (O old.

・3H20(ここにx<0.1)であった。この複合炭
酸塩°を900℃、2時間で大気中で焼成する。ここに
得られた複合酸化物は(La、、8sTbo、 +□T
io、 o2)203で、平均粒径20μmで分散性、
流動性のよい粒子群であった。これをテレビ用緑色蛍光
体に加工し、ブラウン管に塗布したところ作業能率が向
」ニし、均一度も高くロスが減少した。
-3H20 (where x<0.1). This composite carbonate is calcined at 900° C. for 2 hours in the air. The composite oxide obtained here is (La,, 8sTbo, +□T
io, o2) 203, average particle size 20 μm, dispersibility,
The particles had good fluidity. When this was processed into a green phosphor for televisions and applied to cathode ray tubes, work efficiency was improved, and it had high uniformity and reduced loss.

(実施例2) 酸化ランタンLa2032.7モル、酸化テルビウムT
b、070.2モルの硝酸塩溶液と酸化チタンTi02
0.1モルの硫酸水溶液を混合し、アンモニア6モルの
水溶液中に滴下し、pH8、lOoCで反応させて複合
水酸化物を得る。この水酸化物スラリー中に重炭酸アン
モニウムの水溶液を3モル投入し、生成した結晶を24
時間熟成後に分離、水洗した。
(Example 2) Lanthanum oxide La2032.7 mol, terbium oxide T
b, 070.2 mol nitrate solution and titanium oxide Ti02
A 0.1 mol sulfuric acid aqueous solution is mixed and added dropwise to a 6 mol ammonia aqueous solution, and the mixture is reacted at pH 8 and lOoC to obtain a composite hydroxide. 3 mol of ammonium bicarbonate aqueous solution was added to this hydroxide slurry, and the resulting crystals were
After time aging, it was separated and washed with water.

この炭酸塩の組成はほぼ(Lao、 56Tbo、 +
zTio、 02)(OH)8(C03)b・H2O(
ここに0.9≦a4b≧1.1)に近い組成であった。
The composition of this carbonate is approximately (Lao, 56Tbo, +
zTio, 02)(OH)8(C03)b・H2O(
Here, the composition was close to 0.9≦a4b≧1.1).

この複合炭酸塩を900°C12時間で大気中で焼成す
る。ここに得られた複合酸化物ば(Lao86Tbo、
 +27io、 02)203で、平均粒径20μmの
丸みを帯びた板状の粒子群であった。これをテレビ用緑
色蛍光体に加工し、ブラウン管に塗布したところ作業能
率が向上し、均一度も高くロスが減少した。
This composite carbonate is calcined at 900° C. for 12 hours in the air. The composite oxides obtained here (Lao86Tbo,
+27io, 02) 203, a group of rounded plate-like particles with an average particle size of 20 μm. When we processed this into a green phosphor for televisions and applied it to cathode ray tubes, we found that work efficiency was improved, the uniformity was high, and loss was reduced.

(発明の効果) 従来の方法では水酸化物の微細沈殿で濾過、洗浄が容易
でな(、複合酸化物の粒径も細か(、凝集塊状になり製
造困難であったが、本発明によれば複合酸化物の製造は
容易となり、粒径、粒子形状を制御することが可能とな
り、産業上その利用価値は極めて高い。
(Effect of the invention) In the conventional method, hydroxide finely precipitated, making it difficult to filter and wash (and the particle size of the composite oxide was also small (and the composite oxide formed into aggregates, making it difficult to manufacture). This makes it easy to manufacture composite oxides, and it becomes possible to control the particle size and shape, so it has extremely high industrial utility value.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素イオンとIV−a族元素イオンを含む溶液にア
ルカリを加えて水酸化物として共沈させ、該水酸化物を
炭酸アンモニウムまたは重炭酸アンモニウムと反応させ
て炭酸塩とし、これを加熱分解することを特徴とする希
土類含有複合酸化物の製造方法。
Add an alkali to a solution containing rare earth element ions and IV-a group element ions to co-precipitate a hydroxide, react the hydroxide with ammonium carbonate or ammonium bicarbonate to form a carbonate, and decompose it by heating. A method for producing a rare earth-containing composite oxide.
JP33457290A 1990-11-30 1990-11-30 Production of multiple oxide containing rare earth element Pending JPH04202014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33457290A JPH04202014A (en) 1990-11-30 1990-11-30 Production of multiple oxide containing rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33457290A JPH04202014A (en) 1990-11-30 1990-11-30 Production of multiple oxide containing rare earth element

Publications (1)

Publication Number Publication Date
JPH04202014A true JPH04202014A (en) 1992-07-22

Family

ID=18278905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33457290A Pending JPH04202014A (en) 1990-11-30 1990-11-30 Production of multiple oxide containing rare earth element

Country Status (1)

Country Link
JP (1) JPH04202014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150135A (en) * 2010-02-24 2010-07-08 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticles
JP2013139384A (en) * 2013-02-19 2013-07-18 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150135A (en) * 2010-02-24 2010-07-08 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticles
JP2013139384A (en) * 2013-02-19 2013-07-18 Sumitomo Osaka Cement Co Ltd Method for producing metal oxide nanoparticle

Similar Documents

Publication Publication Date Title
JP4060791B2 (en) Method for producing barium titanate powder
JPH08119631A (en) Production of spherical oxide of rare earth element and its precursor
JPWO2002044303A1 (en) Method for producing metal oxide phosphor
CN109796045A (en) A method of double tungstates are prepared using from sacrifice template
JP3877922B2 (en) Method for producing rare earth compound
JPH04202014A (en) Production of multiple oxide containing rare earth element
CN113800574A (en) A kind of nickel manganese iron aluminum lithium cathode material and preparation method thereof
JPH06305726A (en) Production of powdery oxide of rare earth element
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JPH0321487B2 (en)
JP2580532B2 (en) Production method of highly homogeneous and high purity yttrium-containing zirconia powder
JP4359531B2 (en) Zirconium-based oxide production method and automobile exhaust gas purification catalyst
JP2843908B2 (en) Method for producing yttrium oxide fine powder
JP4360070B2 (en) Method for producing highly crystalline double oxide powder
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2883522B2 (en) Method for producing rare earth oxide fine powder
CN116655366B (en) Low-temperature solid-phase synthesis of L/B-site co-doped yttrium aluminum garnet powder
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JPH0477313A (en) Multiple oxide containing rare earth element and its production
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPS63222014A (en) Production of oxide fine powder of perovskite type
JPS6345118A (en) Production of sintered abrasive alumina grain
JP3176119B2 (en) Acicular dielectric oxide particles and method for producing the same
JP2001270714A (en) Manufacturing method of YAG fine powder
JPH05116938A (en) Production of oxide of rare earth element