[go: up one dir, main page]

JPH04199870A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPH04199870A
JPH04199870A JP2336193A JP33619390A JPH04199870A JP H04199870 A JPH04199870 A JP H04199870A JP 2336193 A JP2336193 A JP 2336193A JP 33619390 A JP33619390 A JP 33619390A JP H04199870 A JPH04199870 A JP H04199870A
Authority
JP
Japan
Prior art keywords
potential
substrate
circuit
vss
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2336193A
Other languages
Japanese (ja)
Inventor
Hideto Hidaka
秀人 日高
Kazuyasu Fujishima
一康 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2336193A priority Critical patent/JPH04199870A/en
Publication of JPH04199870A publication Critical patent/JPH04199870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To make it possible to obtain a high capability and a high reliability integrated circuit by installing an internal grounding potential conversion circuit in order to raise internal supply grounding potential over external grounding potential. CONSTITUTION:A semiconductor device is formed with conventional dynamic type MOS, RAM or the like on a P type substrate. A substrate voltage generatio circuit is built-in so that this substrate potential may be a lower value than the grounding potential (negative value). The grounding potential of circuit system is set Vss' (> Vss) while the substrate potential is set to outside grounding voltage (Vss). Therefore, no substrate voltage generation circuit is required, which makes it possible to reduce the size of a chip. Furthermore, this construction stabilizes the substrate potential an avoids the adverse effect on the device characteristics induced by the deflection of the substrate potential. It is, therefore, possible to enhance both reliability and operational performance.

Description

【発明の詳細な説明】 この発明は集積回路装置に関し、特に微細化した大規模
集積回路の信頼性及び性能の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to integrated circuit devices, and particularly to improving the reliability and performance of miniaturized large-scale integrated circuits.

〔従来の技術〕[Conventional technology]

従来、大規模集積回路(LSI)ては、MO3型トラン
ジスタのゲート長の短縮化に伴い、電源電圧を一定に保
つと、ホットキャリヤのゲート酸化膜への注入によるト
ランジスタの閾値変化なとの信頼性上の問題、或いは、
トランジスタの耐圧か低くなることによるリーク電流の
増大なとの問題を生ずる。これの解決策として (1)外部供給電源電圧を下げること (2)外部供給電源電圧は保ち、これを素子内部で低い
電圧に変換して内部回路に供給すること。
Conventionally, in large-scale integrated circuits (LSI), as the gate length of MO3 type transistors has become shorter, it has become increasingly difficult to believe that if the power supply voltage is kept constant, the threshold value of the transistor will change due to the injection of hot carriers into the gate oxide film. sexual problems or
This results in a problem of increased leakage current due to the lower breakdown voltage of the transistor. As a solution to this problem, (1) lower the externally supplied power supply voltage, and (2) maintain the externally supplied power supply voltage, convert it to a lower voltage inside the element, and supply it to the internal circuit.

か行われている。しかし、(1)は素子の外部仕様を変
更することであり、実際上の問題か大きい。
or is being done. However, (1) involves changing the external specifications of the element, which is a big problem in practice.

また、(2)の一方法として、内部電源電圧降圧回路を
内蔵する方法か知られている。第4図にその一例を示す
。第4図は従来の電源電圧降圧図を示すものて、5vの
電源電圧を3.5v程度の低電圧に変換し、内部回路に
供給している。
Furthermore, as one method (2), a method of incorporating an internal power supply voltage step-down circuit is known. An example is shown in FIG. FIG. 4 shows a conventional power supply voltage step-down diagram, in which the power supply voltage of 5V is converted to a low voltage of about 3.5V and supplied to the internal circuit.

次に動作について説明する。例えば、CMO3回路を構
成する場合、通常、電源電圧変換回路はその出力インピ
ーダンスが0(零)とはならず、かなり高い値になる。
Next, the operation will be explained. For example, when configuring a CMO3 circuit, the output impedance of the power supply voltage conversion circuit is usually not 0 (zero) but rather high.

この場合、負荷に電流を供給する能力が制限され、これ
以上に電流か流れる場合は、出力電圧が低下する。これ
は、回路内部て“H″電位から“H″電位に変化すべき
ノートの立ち上りを鈍くし、スピードを低下させる要因
となる。CMO3回路系では、通常回路ノートを“L“
から“H′へ立ち上げるのはPチャネル型トランジスタ
で“H”から“L”へ立ち下げるのはnチャネル型トラ
ンジスタで行うか、電子と正孔の移動度の違いなどによ
り、同じサイズ(ゲート幅)で比較するとnチャネル型
よりPチャネル型の方が電流駆動能力か小さい。従って
、通常回路ノード“L′から“H“への遷移と“H”か
ら“L”への遷移の時間をそろえるために、同じ段(例
えばインバータ)を構成するPチャネルトランジスタは
nチャネルトランジスタより、ゲート幅を大きくする。
In this case, the ability to supply current to the load is limited, and if more current flows than this, the output voltage will drop. This slows down the rise of the note that should change from "H" potential to "H" potential within the circuit, causing a reduction in speed. In the CMO3 circuit system, the circuit note is usually set to “L”.
Depending on the difference in the mobility of electrons and holes, it may be necessary to use a P-channel transistor to raise the voltage from ``H'' to ``H'' and an n-channel transistor to lower the voltage from ``H'' to ``L''. When compared in width), the current drive capability of the P-channel type is smaller than that of the N-channel type.Therefore, the time required for the transition from the circuit node "L' to "H" and from "H" to "L" is usually shorter than the n-channel type. In order to align them, the gate width of P-channel transistors forming the same stage (for example, an inverter) is made larger than that of N-channel transistors.

これにさらに上・のような電源電圧の低下かあると、こ
の差はさらに大きくなり、回路動作上支障をきたす場合
が生ずる。
If there is a further drop in the power supply voltage as described above, this difference will become even larger and may cause problems in circuit operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の集積回路装置は以上のように構成されているので
、内部電源電圧の低下か回路性能に及ぼす悪影響か太き
いという問題点かあった。
Since the conventional integrated circuit device is constructed as described above, there is a problem in that the drop in internal power supply voltage has a large negative effect on circuit performance.

この発明は上記のような問題点を解消するためになされ
たもので、高性能で信頼性の高い集積回路装置を得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a high-performance and highly reliable integrated circuit device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる集積回路装置は、内部接地電位を外部
供給接地電位より上げるように内部接地電位変換回路を
設けたものである。
The integrated circuit device according to the present invention is provided with an internal ground potential conversion circuit so that the internal ground potential is higher than the externally supplied ground potential.

〔作用〕[Effect]

この発明における集積回路装置は、外部供給接地電位を
、これより高い電位(を源電圧に近い電位)に変換して
内部回路に供給する。
The integrated circuit device according to the present invention converts an externally supplied ground potential to a higher potential (a potential close to the source voltage) and supplies it to the internal circuit.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の一実施例による外部接地電位を昇
圧して内部回路系に供給する接地電位変換回路図である
。図において、V refは例えば1.5vてあり、内
部接地電位は1.5v程度になり、回路系に加わる電源
電圧は5 V −1,5V = 3.5 Vとなり、従
来例と同じく、ポットキャリヤ注入によるトランジスタ
の劣化等の問題は回避される。
FIG. 1 is a diagram of a ground potential conversion circuit according to an embodiment of the present invention, which boosts an external ground potential and supplies it to an internal circuit system. In the figure, V ref is, for example, 1.5 V, the internal ground potential is about 1.5 V, the power supply voltage applied to the circuit is 5 V - 1,5 V = 3.5 V, and as in the conventional example, the pot Problems such as transistor deterioration due to carrier injection are avoided.

この実施例によれば、従来と同様の理由で、内部接地電
位か浮き上り、回路ノートの“H′→“L”への遷移か
遅くなるか、この補正のために、nチャネルトランジス
タのゲート幅を通常より少し太き目にすることは、元々
、nチャネルトランジスタかPチャネルトランジスタよ
りかなり小さいことを考えると容易である。
According to this embodiment, for the same reason as before, the gate of the n-channel transistor is Making the width a little thicker than usual is easy considering that it is originally much smaller than an n-channel transistor or a p-channel transistor.

第2図は、この発明の他の実施例を示す。P基板CMO
3回路の構成図で、通常ダイナミック型MO3,RAM
等ては、P型基板上に装置を形成し、この基板電位は接
地電位より低い値(負の値)にする。このために基板電
圧発生回路を内蔵している。本実施例では、回路系の接
地電位をV ss’(> V ss)にし、かつ、基板
電位は外部接地電位(V ss)にしている。これによ
り、基板電圧発生回路は不要となりチップサイズの減少
を図ることができ、また、基板電位が非常に安定したも
のとなるので、従来例で生ずる基板電位のゆれによる雑
音発生による素子特性への悪影響を避けることがてきる
FIG. 2 shows another embodiment of the invention. P board CMO
A configuration diagram of 3 circuits, usually dynamic type MO3, RAM
For example, a device is formed on a P-type substrate, and the potential of this substrate is set to a value lower than the ground potential (negative value). For this purpose, it has a built-in substrate voltage generation circuit. In this embodiment, the ground potential of the circuit system is set to V ss'(> V ss), and the substrate potential is set to external ground potential (V ss). This eliminates the need for a substrate voltage generation circuit, making it possible to reduce the chip size.Also, since the substrate potential becomes extremely stable, the device characteristics are not affected by noise caused by fluctuations in the substrate potential, which occurs in the conventional example. Negative effects can be avoided.

第3図(a)はこの発明のさらに他の実施例を示すn基
板CMO3回路の構成図で、n型基板の上にP−ウェル
を形成し、CMO3回路系を実現している。通常、P−
ウェル電位は接地電位にするが、この例では内部回路系
の接地電位はv ss’ にP−ウェル電位は、Vss
(外部接地電位)にしている。
FIG. 3(a) is a block diagram of an n-substrate CMO3 circuit showing still another embodiment of the present invention, in which a P-well is formed on an n-type substrate to realize a CMO3 circuit system. Usually P-
The well potential is set to the ground potential, but in this example, the ground potential of the internal circuit system is Vss', and the P-well potential is Vss
(external ground potential).

こうするとP−ウェル電位か回路系接地電位より低くな
り、CMO3回路系の異常現象であるラッチアップに対
する耐性か著しく増す効果がある。
This makes the P-well potential lower than the circuit system ground potential, which has the effect of significantly increasing the resistance to latch-up, which is an abnormal phenomenon in the CMO3 circuit system.

また、第3図(b)は、第3図(a)のさらに改良例を
示す。ここでは、第3の実施例に加えて、さらに内部回
路の電源電圧v cc’ を外部電源電圧VCCより下
げ、n基板にはVc、(を印加している。これによりさ
らにラッチアップ耐性か増す。これはP基板上のn−ウ
ェル方式についても同様に適用できる。
Moreover, FIG. 3(b) shows a further improved example of FIG. 3(a). Here, in addition to the third embodiment, the power supply voltage V cc' of the internal circuit is further lowered than the external power supply voltage VCC, and Vc, ( is applied to the n-board. This further increases the latch-up resistance. This can be similarly applied to an n-well system on a P substrate.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば内部接地電位を外部供
給接地電位より上げて内部回路に供給するように構成し
たので、信頼性の向上、性能の向上等を実現できる効果
かある。
As described above, according to the present invention, since the internal ground potential is higher than the externally supplied ground potential and is supplied to the internal circuit, it is possible to improve reliability and performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による接地電位昇圧回路を
示す回路図、第2図はこの発明の他の実施例によるP基
板CMO3回路系の構成図、第3図(al、(b)はこ
の発明のさらに他の実施例によるn基板CMO3回路系
の構成図、第4図は従来の電源電圧降圧回路の回路図で
ある。 図において、Vccは外部電源電圧、V cc’ は電
源電圧、Vssは外部接地電位、V ss’ は回路系
の接地電位である。 なお、図中、同一符号は同一、又は相当部分を示す。 代  理  人   大  岩  増  雄栢11■ Ext、Vss        [xt、VssWef
 = 1.5v Vss  −L5 Vcc :外4?電叶膚圧゛ Vcc’  :  @I!f、fe)”r’Vss  
:  タト!6Pg’a りで1ぐ夢ニイ1YSS’ 
 :   IEりS(ト←搏加史イ立−ψ報 第311 5S vss > Vss Vcど(Vcc 第41’ff1 Ext、Vcc         Ext、Vcc  
 ’VrCf = 3.5v
FIG. 1 is a circuit diagram showing a ground potential booster circuit according to one embodiment of the present invention, FIG. 2 is a block diagram of a P-substrate CMO3 circuit system according to another embodiment of the present invention, and FIG. 3 (al, (b)) 4 is a block diagram of an n-board CMO3 circuit system according to yet another embodiment of the present invention, and FIG. 4 is a circuit diagram of a conventional power supply voltage step-down circuit. In the figure, Vcc is an external power supply voltage, and V cc' is a power supply voltage. , Vss is the external ground potential, and V ss' is the ground potential of the circuit system. In the figures, the same symbols indicate the same or equivalent parts. Agent Masu Oiwa Yubaku 11 ■ Ext, Vss [xt , VssWef
= 1.5v Vss -L5 Vcc: Outside 4? Electric skin pressure ゛Vcc': @I! f,fe)”r'Vss
: Tato! 6Pg'a Ride 1gu Yume Nii 1YSS'
: IE RiS(T←搏加しいり-ψreport No. 311 5S vss > Vss Vc do(Vcc No. 41'ff1 Ext, Vcc Ext, Vcc
'VrCf = 3.5v

Claims (1)

【特許請求の範囲】[Claims] 第1の電位と該電位よりも低い第2の電位とが供給され
る集積回路装置において、前記第1又は第2の電位を他
方の電位に近接した第3の電位に変換する変換回路系を
前記集積回路装置内に備え、該集積回路装置内の回路の
うち、少なくとも一部の回路の前記第1又は第2の電位
として、前記第3の電位が用いられることを特徴とする
集積回路装置。
In an integrated circuit device to which a first potential and a second potential lower than the first potential are supplied, a conversion circuit system for converting the first or second potential into a third potential close to the other potential is provided. An integrated circuit device provided in the integrated circuit device, wherein the third potential is used as the first or second potential of at least some of the circuits in the integrated circuit device. .
JP2336193A 1990-11-29 1990-11-29 Integrated circuit device Pending JPH04199870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2336193A JPH04199870A (en) 1990-11-29 1990-11-29 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2336193A JPH04199870A (en) 1990-11-29 1990-11-29 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPH04199870A true JPH04199870A (en) 1992-07-21

Family

ID=18296607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2336193A Pending JPH04199870A (en) 1990-11-29 1990-11-29 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPH04199870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177335A (en) * 1992-12-07 1994-06-24 Nippon Steel Corp I/o circuit of integrated circuit
US6859403B2 (en) 1993-10-14 2005-02-22 Renesas Technology Corp. Semiconductor memory device capable of overcoming refresh disturb

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177335A (en) * 1992-12-07 1994-06-24 Nippon Steel Corp I/o circuit of integrated circuit
US6859403B2 (en) 1993-10-14 2005-02-22 Renesas Technology Corp. Semiconductor memory device capable of overcoming refresh disturb

Similar Documents

Publication Publication Date Title
KR100271844B1 (en) Cmos semiconductor circuit having silicon on insulator structure
US7928759B2 (en) Low power consumption MIS semiconductor device
US6455901B2 (en) Semiconductor integrated circuit
US20040090259A1 (en) CMOS level shifters using native devices
JPH0828477B2 (en) Semiconductor memory device having triple structure
JP5048029B2 (en) Dynamic substrate bias system and method for suppressing negative bias temperature instability
JPH10135814A (en) Semiconductor integrated circuit
JP2004228782A (en) Level conversion circuit
JP2007123881A (en) System for protecting device, method of protecting device, system of micro-electronic circuit and method of setting trickle current (method of avoiding stress of device)
JPS63279491A (en) Semiconductor dynamic ram
JPH08306880A (en) Semiconductor device
US5422507A (en) Electrical isolation in integrated circuits
JPH04199870A (en) Integrated circuit device
US5559356A (en) Semiconductor device with large substrate contact region
KR930009810B1 (en) Semiconductor device with substrate bias circuit
JPH10173064A (en) Semiconductor device
JPH02122562A (en) Semiconductor integrated circuit
JP2000277627A (en) Semiconductor device
JPS5852869A (en) Semiconductor device
JP3334741B2 (en) Semiconductor input circuit
Sachdev Deep sub-micron I/sub DDQ/test options
JP3586985B2 (en) Output circuit of semiconductor device
JP3519506B2 (en) Semiconductor device
JP3190501B2 (en) Semiconductor integrated circuit device
JPS63306594A (en) Cmos integrated circuit device