JPH04199302A - Neural network learning method in fuzzy control - Google Patents
Neural network learning method in fuzzy controlInfo
- Publication number
- JPH04199302A JPH04199302A JP2331273A JP33127390A JPH04199302A JP H04199302 A JPH04199302 A JP H04199302A JP 2331273 A JP2331273 A JP 2331273A JP 33127390 A JP33127390 A JP 33127390A JP H04199302 A JPH04199302 A JP H04199302A
- Authority
- JP
- Japan
- Prior art keywords
- deviation
- neural network
- fuzzy
- value
- membership function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Feedback Control In General (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、プラントの制御や大型装置又は設備の制御に
関し、尚詳しくは神経回路網を構成するニューラルネッ
トワークを用いた情報処理に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the control of plants and large equipment or equipment, and more specifically to information processing using a neural network that constitutes a neural network. .
[従来の技術]
今日、エキスパートシステムと称するファジィ推論に基
く種々の情報処理か行なわれる様になって来た。[Prior Art] Today, various types of information processing based on fuzzy reasoning called expert systems have come to be performed.
このファジィ推論により、例えばプロセス制御を行なう
には、制御の対称となる装置の状態、即ち現在の制御量
の目標値に対する偏差と、その偏差の変化量や適合度を
ファジィ集合として前件部メンバーシップ関数を定め、
且つ、操作量を後件部メンバーシップ関数として定めて
おき、観測値(a足値)を前件部メンバーシップ関数に
対応させることによりグレートを求め、ファジィ推論を
行なって後件部重心を算出し、制御対象となる装との運
転状態を理想状態に近づける様に制御な行なう様にして
いる。Using this fuzzy inference, for example, in order to perform process control, the state of the equipment to be controlled, that is, the deviation of the current control amount from the target value, the amount of change in that deviation, and the degree of conformance are set as fuzzy sets as antecedent members. Define the ship function,
In addition, the amount of manipulation is determined as a consequent membership function, the observed value (a foot value) is associated with the antecedent membership function to find the great, and fuzzy inference is performed to calculate the consequent centroid. However, the control is performed so that the operating state of the equipment to be controlled approaches the ideal state.
このファジィ推論による制御や判断をより一層確実に行
なう為、推論装置による制御の即応性を改良すること(
例えば特開昭63−113.733号)や。In order to perform control and judgment based on this fuzzy inference even more reliably, it is necessary to improve the responsiveness of control by the inference device (
For example, JP-A-63-113.733).
測定値に含まれるノイズの除去(例えば特開平1−11
.9.803号)か試みられている。Removal of noise included in measured values (for example, Japanese Patent Application Laid-Open No. 1-11
.. 9.803) is being attempted.
他方、従来からのノイマン型コンピュータに代り、人間
の頭脳をモデルとして神経回路網を形成するニューラル
コンピュータが開発及び使用される様になって来た。On the other hand, in place of the conventional von Neumann computer, neural computers that form a neural network using the human brain as a model have come to be developed and used.
このニューラルコンピュータは、第14図に示す様なプ
ロセッシングエレメントと称する素子(以下中にPE素
子という)の多数個をもって層を形成することとし、入
力層及び出力層を形成すると共に、該入力層と出力層と
の間に隠れ層を形成したニューラルネットワークを用い
るものてあり、第15図に示す様に、入力層と出力層と
の間に一層の隠れ層を形成する場合、更には隠れ層を多
層とする場合が有り、各PE素子には他のPE素子から
の各入力に重み係数を乗して入力し、各PE素子は入力
の総和か所定の閾値kを越えると興奮状態となって信号
rlJを出力する様に構成されている。In this neural computer, layers are formed by a large number of elements called processing elements (hereinafter referred to as PE elements) as shown in FIG. 14, and an input layer and an output layer are formed. This method uses a neural network in which a hidden layer is formed between the input layer and the output layer. In some cases, the PE element has multiple layers, and each PE element receives each input from other PE elements multiplied by a weighting coefficient, and each PE element becomes excited when the sum of the inputs exceeds a predetermined threshold value k. It is configured to output a signal rlJ.
尚、興奮状態となって「1」を出力するPE素子は、発
火素子と呼ばれ、信号「1」を出力している状態は発火
状態とも呼ばれる。又、各PE素子への入力は、当該P
E素子を興奮状態にさせる興奮性信号の場合と、静止状
態(出力「0」)とさせる抑制性信号の場合とか有る。Note that a PE element that is in an excited state and outputs "1" is called a firing element, and a state in which it outputs a signal "1" is also called a firing state. In addition, the input to each PE element is
There are cases of excitatory signals that make the E element excited, and cases of inhibitory signals that make it rest (output "0").
この神経回路網ては、各PE素子に入力される信号に重
み係数を与えることにより、所望の固有出力を発生させ
る様にしており、この各結合の重み係数を求めることを
学習と称し、比較的少ないデータ量て学習を行なう為に
、ハックプロパゲーション法や最急降下法の種々の方法
か採用されている(例えば特開平1−282.678号
)。This neural network generates a desired unique output by giving a weighting coefficient to the signal input to each PE element. Obtaining the weighting coefficient of each connection is called learning, and comparison is performed. In order to perform learning with a small amount of data, various methods such as the hack propagation method and the steepest descent method are employed (for example, Japanese Patent Application Laid-Open No. 1-282.678).
[発明か解決しようとする課題]
ファジィ推論を採用したエキスパートシステムを利用す
る制御は、プラント等の大型設備における制御プログラ
ムの作成を容易とし、検出要素の数が極めて多い場合等
の制御や判断を可使とすることかてきるも、制御対称と
なる設備固有の特性又は検出装置等の特性による軽微な
制御誤差や判断誤差か生しる場合か有り、この様な制御
誤差等の修正をも行なうことは未だ困難であった。[Problem to be solved by the invention] Control using an expert system that employs fuzzy reasoning facilitates the creation of control programs for large-scale equipment such as plants, and facilitates control and judgment when the number of detection elements is extremely large. Although it may be possible to make it usable, there may be slight control errors or judgment errors due to the inherent characteristics of the equipment to be controlled or the characteristics of the detection device, etc., and it is necessary to correct such control errors. It was still difficult to do.
[課題を解決するための手段]
本発明はニューラルコンピュータを用いてファジィ推論
の演算を行なわせることにより、各種装置の制御や情報
判断を行ない、制御や判断を繰り返す毎にファジィ推論
の判断基準となるファジィ集合を変化させる様にPE素
子の結合係数を変更する様にしてニューラルネットワー
クの学習を行なわせることとする。[Means for Solving the Problems] The present invention uses a neural computer to perform fuzzy inference calculations to control various devices and make information judgments, and each time the control or judgment is repeated, the fuzzy inference judgment criteria are determined. The neural network is trained by changing the coupling coefficients of the PE elements so as to change the fuzzy set.
[作用]
本発明はファジィ推論による制御や判断を行なう故、高
度な制御や判断か可使にして、ニューラルネットワーク
の学習機部を利用して推論の基礎となるファジィ集合を
変化させる故、制御や判断を繰り返すことにより、当該
装置に適した一層正確な制御や判断を容易に実現するこ
とかてきる。[Operation] Since the present invention performs control and judgment based on fuzzy inference, advanced control and judgment are enabled, and the learning machine part of the neural network is used to change the fuzzy set that is the basis of inference. By repeating the process and judgment, it is possible to easily realize more accurate control and judgment suitable for the device in question.
[実施例]
本発明の実施例は、出力層と入力層との間に複a層の隠
れ層を有し、各層を構成するPE素子間に結合の無いニ
ューラルネットワークを用いてフ)・シイ推論を行なわ
せるものであり、該ニューラルネットワークにおいて、
隠れ層を形成する特定層のPE素子を、第2図に示す様
に横軸を目標値との誤差である偏差に、又、縦軸を偏差
の微分値に割当てた位相平面を形成させる様に振り分け
る。[Embodiment] An embodiment of the present invention uses a neural network that has a multi-A hidden layer between an output layer and an input layer and has no coupling between PE elements constituting each layer. It is a neural network that allows inference to be made, and in this neural network,
The PE elements of the specific layer forming the hidden layer are arranged to form a phase plane in which the horizontal axis is the deviation from the target value and the vertical axis is the differential value of the deviation, as shown in Figure 2. Allocate to.
即ちこの位相平面は1例えばセメント工場におけるキル
ンの温度制御を行なう場合、位相平面の中心を原点とし
、横軸に測定値と目標値との偏差を対応させ、縦軸に変
化量として前記偏差の微分値を対応させ、更にこの位相
平面において、複数のPE素子毎にブロックを形成させ
ることにより該ブロックを判別領域として後述するメン
バーシップ関数の修正単位とするものである。In other words, this phase plane is 1. For example, when controlling the temperature of a kiln in a cement factory, the center of the phase plane is the origin, the horizontal axis corresponds to the deviation between the measured value and the target value, and the vertical axis represents the amount of change of the deviation. By making the differential values correspond and further forming a block for each of a plurality of PE elements in this phase plane, the block is used as a discrimination region and a correction unit of a membership function to be described later.
そしてこのニューラルネットワークにおいては、入力と
出力との関係を、例え、ばミニマックス合成法等による
ファジィ演算に基くものとし、第3図に示す様に、測定
値Yか目標値よりも大変大きいとするメンバーシップ関
数(偏差か正て極大: LB)、 目標値よりも大き
いとするメンバーシップ関数(偏差か正て大: LM)
、 目標値よりも少し大きいとするメンバーシップ関数
(偏差か正て小: LS)、適正であるとするメンバー
シップ関数(偏差はO:MM)、 目標値よりも少し小
さいとするメンバーシップ関数(偏差か負て小。In this neural network, the relationship between input and output is based on fuzzy calculations such as the minimax synthesis method, and as shown in Figure 3, if the measured value Y is much larger than the target value, Membership function that is larger than the target value (deviation or positive maximum: LM)
, Membership function that is slightly larger than the target value (deviation or positive: LS), Membership function that is appropriate (deviation is O:MM), Membership function that is slightly smaller than the target value ( Deviation or negative.
SS)、 目標値よりも小さいとするメンバーシップ
関数(偏差が負で大: SM)、及び目標値よりも大変
小さいとするメンバーシップ関数(偏差か負で極大:
SB)を設定しておき、且つ、偏差の微分値ΔYに関し
ても、同様に正て極大(LB)、正て大(LM)、正で
小(LS)、0(MM)、負て小(SS) 、負て大(
SM)、負で極大(SB)の各メンバーシップ関数を設
定し、又、第4図に示す様に燃料の操作量を定めるファ
ジィ集合のメンバーシップ関数を定め、このメンバーシ
ップ関数は、燃料の供給量を現状維持とするZE、僅か
に増加させるPS、増加量を極大とするPPや僅かに減
少させるNS、大きく減少させるNB等の変化量をメン
バーシップ関数として定めるものである。SS), a membership function that is smaller than the target value (large when the deviation is negative: SM), and a membership function that is much smaller than the target value (maximum when the deviation is negative:
Similarly, for the differential value ΔY of the deviation, positive is maximum (LB), positive is large (LM), positive is small (LS), 0 (MM), negative is small ( SS), large negative (
SM), negative maximum (SB), and a fuzzy set membership function that determines the amount of fuel operation as shown in Figure 4. The amount of change is determined as a membership function, such as ZE, which maintains the current supply amount, PS, which slightly increases it, PP, which maximizes the amount of increase, NS, which slightly decreases it, and NB, which greatly decreases it.
更に、前述の測定値における偏差や微分値を前件部とし
、燃料操作量を後件部とし、以て前件部となる測定温度
か目標温度よりも高い場合には供給する燃料を減少させ
、測定温度が高いほど減少量即ち操作量を大きくする後
件部ファジィ集合を割り当ることとし、測定温度か目標
温度よりも低い場合には供給する燃料を増加させ、測定
温度か低い程増加量を大きくするファジィ集合を割り当
て、又、測定温度が目標温度よりも小さくても測定温度
か上昇中の場合には操作量を0、測定温度が目標温度よ
りも少し大きくても測定温度が降下中の場合も操作量を
0とし、測定温度か目標温度と等しくても温度が上昇し
て来たときは供給量を減少させ、温度が降下して来たと
きは供給量を増加させるものとし、測定温度が高く、且
つ上昇中の場合は供給量を減少させる操作量を極大に、
測定温度が低く且つ降下中の場合は供給量を増加させる
操作量を極大とする様に定め、例えば第5図に示す様に
前件部メンバーシップ関数と後件部メンバーシップ関数
とを関係付けるチーフルを設定する。Furthermore, the deviation or differential value of the above-mentioned measured value is used as the antecedent part, and the fuel operation amount is used as the consequent part, so that if the measured temperature, which is the antecedent part, is higher than the target temperature, the supplied fuel is reduced. , a consequent fuzzy set is assigned that increases the decrease amount, that is, the manipulated variable, as the measured temperature is higher, and increases the amount of fuel supplied when the measured temperature is lower than the target temperature, and increases the amount of increase as the measured temperature decreases. In addition, if the measured temperature is smaller than the target temperature but the measured temperature is rising, the manipulated variable is set to 0, and even if the measured temperature is slightly larger than the target temperature, the measured temperature is falling. In this case, the manipulated variable is set to 0, and even if the measured temperature is equal to the target temperature, when the temperature rises, the supply amount is decreased, and when the temperature falls, the supply amount is increased, If the measured temperature is high and rising, maximize the operation amount to reduce the supply amount.
When the measured temperature is low and falling, the operation amount to increase the supply amount is set to be maximum, and the antecedent membership function and the consequent membership function are related, for example, as shown in Fig. 5. Set chiful.
そして前記テーブルにより、例えば条件文をIF Y
=SS、ΔY=LM
THEN D=NS等とするファジィ演算の結論を出
力させる様に各PE素子の結合係数を定めるものである
。Then, according to the table, for example, if the conditional statement is IF Y
The coupling coefficient of each PE element is determined so as to output the conclusion of the fuzzy operation such as =SS, ΔY=LM THEN D=NS, etc.
尚、このファジィ演算の内容は、第6図に示す様に、測
定値yの値によってメンバーシップ関数の適合度を求め
、メンバーシップ関数SMに対する適合度α11が0.
7てメンバーシップ関数SSに対する適合度α12が0
.3てあり、微分値Δyの値によってもメンバーシップ
関数の適合度を同様に求め、LSに対する適合度α21
が0.9にしてLMに対する適合度α22か0.1の場
合(第7図参照)、前記テーブルに基〈
IF Y二SM、ΔY=LM
THEN D=ZE
IF Y二SS、ΔY=LM
THEN D=’N5
IF Y=SM、 ΔY=LS
THEN D=PS
IF Y= SS、 ΔY=LSTHEN
D=ZE
の各条件文に基き、先ずY=SMの適合度α11−0.
7とΔY=LMの適合度α22= 0.1とをミニ合成
し、適合度α22の値をもってメンバーシップ関数ZE
をマスターテーブルからコピーし、このコピーしたメン
バーシップ関数ZEを第8UAAに示す様にα−カット
し、同様にY=SSの適合度α12= O,:lとΔY
=LMの適合度α22=0.1とをミニ合成した適合度
の値をもって第8図Bに示す様にマスターテーブルから
コピーしたメンバーシップ関数NSをα−カットし、同
様にY=SMの適合度α11=0.7とΔY=LSの適
合度α21= 0.9とをミニ合成した適合度の値をも
ってマスターテーブルからコピーしたメンバーシップ関
数PSをα−カット(第8図C参照)、y=ssの適合
度α】2とΔY=LSの適合度α21とのミニ合成によ
る適合度の値をもってマスターテーブルからコピーした
メンバーシップ関数ZEをα−カット(第8図り参照)
する。然る後、α−カットされた各後件部を第9図に示
す様にマックス合成し、この合成集合の重心ωを算出し
て操作量を求め、この操作量を出力とするものである。As shown in FIG. 6, the content of this fuzzy operation is to determine the degree of fitness of the membership function based on the value of the measured value y, and to determine whether the degree of fitness α11 for the membership function SM is 0.
7, the fitness α12 for the membership function SS is 0.
.. 3, and the goodness of fit of the membership function is similarly determined by the value of the differential value Δy, and the goodness of fit for LS α21
is 0.9 and the fitness for LM is α22 or 0.1 (see Figure 7). Based on the table above, IF Y2SM, ΔY=LM THEN D=ZE IF Y2SS, ΔY=LM THEN D='N5 IF Y=SM, ΔY=LS THEN D=PS IF Y= SS, ΔY=LSTHEN
Based on each conditional statement of D=ZE, first the fitness of Y=SM α11-0.
7 and the fitness α22=0.1 of ΔY=LM, and the membership function ZE is calculated using the value of fitness α22.
is copied from the master table, the copied membership function ZE is α-cut as shown in the 8th UAA, and the fitness of Y=SS α12=O,:l and ΔY are similarly calculated.
= LM's fitness α22 = 0.1 and the membership function NS copied from the master table is α-cut as shown in FIG. α-cut the membership function PS copied from the master table using the fitness value obtained by mini-synthesizing the fitness degree α11=0.7 and the fitness degree α21=0.9 of ΔY=LS (see Figure 8C), y α-cut the membership function ZE copied from the master table using the mini-composite fitness value of = ss fitness α]2 and ΔY = LS fitness α21 (see diagram 8)
do. After that, each of the α-cut consequents is max-synthesized as shown in Figure 9, the center of gravity ω of this composite set is calculated to obtain the manipulated variable, and this manipulated variable is output. .
本実施例ては、上述の様にニューラルネットワークを用
いてファジィ推論に基く操作量を出力させると共に、前
述の位相平面におけるPE素子の発火状態によりキルン
の温度変化における経歴を知り、後件部メンバーシップ
関数の修正を行なうものであり、この修正は、第2図に
示した位相平面において測定値か目標値よりも大きく且
つ上昇する為に偏差が正であり且つ偏差の微分値も正の
領域では各判別領域に従ってマスターテーブルからコピ
ーした後件部メンバーシップ関数の集中化を、偏差か負
てあり偏差の微分値も負の領域てはコピーした後件部メ
ンバーシップ関数の拡大化を、偏差か負て微分値か正の
領域及び偏差か正て微分値が負の領域てはコピーした後
件部メンバーシップ関数の明暗強化を行なうものとする
。In this embodiment, as described above, the neural network is used to output the manipulated variable based on fuzzy inference, and the history of the temperature change of the kiln is known from the firing state of the PE element in the above-mentioned phase plane, and the consequent member The ship function is corrected, and this correction is performed in a region where the measured value is larger than the target value and rises in the phase plane shown in Figure 2, so the deviation is positive and the differential value of the deviation is also positive. Then, we will concentrate the consequent membership function copied from the master table according to each discriminant region, and if the deviation is negative, and if the differential value of the deviation is also negative, then we will expand the consequent membership function copied from the master table. In regions where the differential value is negative and the differential value is positive, and in regions where the differential value is negative and the deviation is positive, the brightness and darkness of the copied consequent membership function is enhanced.
この集中化等は、測定温度の偏差及び偏差の微分値によ
る位相平面を形成させた各PE素子の発火回数を記録す
るテーブルを設け、前記位相平面を分割した判別領域内
でn周期の期間内における特定PE素子の発火回数かa
にして、当該判別領域て他のPE素子が最大発火回数す
を有するとき、係数α= b / aとして係数αを定
め、CON演算により出力ファジィ集合のカーブを急勾
配とするものであり、他方、拡大化は係数β−a /
bとし、係数βをもってDIL演算を行なって勾配を緩
くし、又、明暗強化は前記係数αもってINT演算を行
なって高グレードの幅を広く、低グレートの幅を狭く変
化させるものである。This concentration is achieved by setting up a table that records the number of firings of each PE element that forms a phase plane based on the deviation of the measured temperature and the differential value of the deviation, and within a period of n cycles within a discrimination area obtained by dividing the phase plane. The number of firings of a specific PE element in a
Then, when other PE elements have the maximum number of firings in the discrimination region, the coefficient α is determined as α = b / a, and the curve of the output fuzzy set is made steep by the CON operation, and the other , the expansion is done by the coefficient β−a/
b, a DIL operation is performed using the coefficient β to make the gradient gentler, and for contrast enhancement, an INT operation is performed using the coefficient α to widen the width of the high grade and narrow the width of the low grade.
尚、特定PE素子か当該判別領域で最大発火回数を有す
る場合はα−β−1てあり、出力ファジィ集合を変化さ
せることはない。Note that if the specific PE element has the maximum number of firings in the relevant discrimination region, it is α-β-1, and the output fuzzy set is not changed.
又、上記CON演算は第10図に示す様にファジィ集合
Aのグレートを下げ、カーブを急勾配とする演算てあり
、CON (A) −A2.で表され、DIL演算は第
11図に示す様にファジィ集合Aのグレートを上げ、カ
ーブを緩やかにする演算であり、D I L (A)
=A05.て表され、INT@算は第12図に示す様に
ファジィ集合Aの高いグレートを更に上げ低いグレート
を更に下げるものであり、0≦1LA(y)≦0.5の
場合I NT (A) −2A2,0.5≦川A (y
)≦1の場合INT(A)=12 (mA) 2の演算
を行なうものである。Moreover, the above CON operation is an operation that lowers the grade of the fuzzy set A and makes the curve steeper, as shown in FIG. 10, and CON (A) -A2. As shown in FIG. 11, the DIL operation is an operation that increases the grade of the fuzzy set A and makes the curve gentler, and D I L (A)
=A05. As shown in Figure 12, INT@ calculation further increases the high grades of fuzzy set A and further lowers the low grades, and when 0≦1LA(y)≦0.5, I NT (A) −2A2,0.5≦River A (y
)≦1, the calculation INT(A)=12 (mA) 2 is performed.
この様に、偏差及び偏差の微分値か正の領域は集中化で
あるCON演算により抑制化を行なうものであり、偏差
及び偏差の微分値か正、即ち測定温度か目標温度よりも
高く且つ温度上昇の場合は抑制を行なう様に修正を、又
、偏差及び偏差の微分値か負の領域は拡大化であるDI
L演算により興奮化を行なうものであり、偏差及び偏差
の微分値か負、即ち測定温度が目標温度よりも低く且つ
温度降下の場合は増大を行なう様に修正することがてき
るものである。In this way, the area where the deviation and the differential value of the deviation is positive is suppressed by the CON operation which is concentration, and the area where the deviation and the differential value of the deviation is positive, that is, the measured temperature is higher than the target temperature and the temperature is In the case of an increase, correction is made to suppress it, and the deviation and the differential value of the deviation or the negative area are enlarged DI.
Excitation is performed by the L calculation, and it can be corrected to increase if the deviation and the differential value of the deviation are negative, that is, if the measured temperature is lower than the target temperature and the temperature is dropping.
尚、判別領域は、第2図に示す様に位相平面の全面を分
割する様に多数の判別領域を設ける場合に限るものでな
く、第13図に示す様に、位相平面の特定範囲のみを判
別領域として係数αや係数βを算出する場合も有る。Note that the discrimination area is not limited to the case where a large number of discrimination areas are provided so as to divide the entire surface of the phase plane as shown in FIG. In some cases, a coefficient α or a coefficient β is calculated as a discrimination area.
更に、ファジィ推論による演算は、α−カットに限るこ
となく、グレードα(適合度)の値を乗算する場合も有
り、又、合成集合から数値を算出する場合も、重心法に
限ることなく、面積法やエントロピー法等によることも
てきる。Furthermore, calculations based on fuzzy inference are not limited to α-cuts, and may include multiplication of grade α (degree of fitness) values, and calculations of numerical values from composite sets are not limited to the centroid method. The area method, entropy method, etc. can also be used.
この様に1本実施例は所定の周期内て特定PE素子の発
火回数と、該特定PE素子を含み判別領域で他のPE素
子か最大発火回数を有している場合は当該判別領域の最
大発火回数との比に基いてマスターテーブルから各判別
領域毎にコピーした各出力ファジィ集合に修正を加え、
該修正したファジィ集合に基く演算を行って出力信号を
出力する様に興奮性素子群や抑制性素子群との結合係数
を変更する学習を行なわせる故、制御を繰り返すことに
より制御対象となる装置の特性に応した制御を行ない、
且つ、制御装置や検出装置の特性をも加味した制御に制
御量を修正することかできる。In this way, this embodiment calculates the number of firings of a specific PE element within a predetermined period, and if the other PE element in the discrimination area including the specific PE element has the maximum number of firings, the maximum number of firings in the discrimination area. Modify each output fuzzy set copied from the master table for each discrimination area based on the ratio with the number of firings,
The device to be controlled by repeating the control performs learning to change the coupling coefficient with the excitatory element group and the inhibitory element group so as to perform calculations based on the modified fuzzy set and output an output signal. control according to the characteristics of
In addition, the control amount can be modified to take into account the characteristics of the control device and the detection device.
[発明の効果]
本発明は、神経回路網によりファジィ演算に基く制御を
行なわせると共に、制御を繰り返した経歴に基いてファ
ジィ集合を修正して制御を行なう様に神経回路網の学習
を行なわせる故、被制御装置の特性のみてなく、検出装
置の特性も加味し、制御誤差や判断誤差を除く様に学習
して適正な制御やf4r!I+に導くことかてきる。[Effects of the Invention] The present invention allows a neural network to perform control based on fuzzy operations, and also causes the neural network to learn to perform control by modifying fuzzy sets based on a history of repeated control. Therefore, not only the characteristics of the controlled device but also the characteristics of the detection device are taken into account, learning is done to eliminate control errors and judgment errors, and proper control and f4r! It can lead to I+.
第1図は本発明の実施例を示すフローチャート図てあり
、第2図は位相平面を示す図、第3図は前件部メンバー
シップ関数の一例を示す図にして、第4図は後件部メン
バーシップ関数の一例を示す図であり、第5図は前件部
メンバーシップ関数と後件部メンバーシップ関数との条
件式における関係を示す一例にして、第6図乃至第9図
はファジィ推論の一例を示す図、第10図乃至第12図
は修正演算の例を示す図であり、第13図は他の実施例
を示す図、第14VAはPE素子の模式図であって、f
515図は神経回路網の簡略図である。
特許出願人 宇部興産株式会社
1 :
代理人弁理士 北 村 仁
、・!
才゛2図
71Y
−ΔY
第5図
測定値(Y)
SB SM SS MM LS LM L
Bpp 正て極大
PB、正て大
PM、正て中
ps 正て小
ZE・ゼロ
NS:負て小
NM:負て中
NB:負て大
NN:負て極大
牙8■
A
図面の浄書(内容に変更なし)
?↑2図
? 13 m
ΔY
−八Y
オT4■
才151m
手続補正書(方式)
%式%
工 事件の表示
特願平2−331273号
2、発明の名称
ファジィ制御における神経回路網の学習方式3 補正を
する者
事件との関係 出願人
山口県宇部市西木町l−12−32
(020) 宇部興産株式会社
4、代理人
東京都中央区日本橋久松町13番3号 木下ビル平成
3年2月25日
(平成3年3月12日発送)
6、補正の対象
(1)明細書に添付した図面
7、補正の内容
(1)願書に添付した図面の第1図及び第12図を別紙
のとおり訂正する(内容に変更無し)。FIG. 1 is a flowchart showing an embodiment of the present invention, FIG. 2 is a diagram showing a phase plane, FIG. 3 is a diagram showing an example of an antecedent membership function, and FIG. 4 is a diagram showing an example of a consequent membership function. FIG. 5 is a diagram showing an example of a conditional expression between an antecedent membership function and a consequent membership function, and FIGS. 6 to 9 are diagrams showing fuzzy FIGS. 10 to 12 are diagrams showing examples of correction calculations, FIG. 13 is a diagram showing another embodiment, and 14th VA is a schematic diagram of a PE element,
Figure 515 is a simplified diagram of a neural network. Patent applicant Ube Industries Co., Ltd. 1: Representative patent attorney Hitoshi Kitamura...! Figure 2 71Y -ΔY Figure 5 Measured value (Y) SB SM SS MM LS LM L
Bpp Positive maximum PB, positive large PM, positive medium ps Positive small ZE/Zero NS: Negative small NM: Negative medium NB: Negative large NN: Negative maximum Fang 8 ■ A Engraving of drawings (contents) (no change)? ↑Figure 2? 13 m ΔY -8Y O T4 ■ 151 m Procedural amendment (method) % formula % Engineering Display of the case Patent application No. 2-331273 2, Title of invention Learning method of neural network in fuzzy control 3 Person making the correction Relationship to the case Applicant: 1-12-32 Nishikicho, Ube City, Yamaguchi Prefecture (020) Ube Industries Co., Ltd. 4, Agent: Kinoshita Building Heisei, 13-3 Hisamatsucho, Nihonbashi, Chuo-ku, Tokyo
February 25, 1991 (shipped on March 12, 1991) 6. Subject of amendment (1) Drawing 7 attached to the specification, contents of amendment (1) Figures 1 and 12 of the drawing attached to the application The figure is corrected as shown in the attached sheet (no change in content).
Claims (1)
ら成り、入力層と出力層との間に複数層に形成された隠
れ層を備え、隣接する層のPE素子間で相互に結合を有
し、且つ、各層内には結合を有しない神経回路網を用い
て制御を行なうに際し、中央に原点を有し、且つ、計測
値の目標値に対する偏差と該偏差の微分値とを軸とする
位相平面を前記隠れ層に想定し、各結合の重み係数に初
期値を与えることにより、前記偏差と偏差の微分値に基
くメンバーシップ関数に従ったファジィ推論による結果
を前記出力層から出力させるものとし、更に計測値の前
記位相平面における軌跡に基いて前記重み係数を変更す
ることによりファジィ集合の集中化、拡大化、及び明暗
強化を行なうことを特徴とするファジィ制御における神
経回路網の学習方式。Each layer consists of a plurality of PE elements (processing elements), includes a plurality of hidden layers formed between an input layer and an output layer, and has mutual coupling between PE elements of adjacent layers, and When performing control using a neural network that has no connections in each layer, a phase plane that has an origin at the center and whose axes are the deviation of the measured value from the target value and the differential value of this deviation is defined as By assuming a hidden layer and giving an initial value to the weighting coefficient of each connection, the output layer outputs a result by fuzzy inference according to the membership function based on the deviation and the differential value of the deviation, and further performs measurement. A learning method for a neural network in fuzzy control, characterized in that the weighting coefficients are changed based on the trajectory of values in the phase plane to centralize, expand, and strengthen the brightness of a fuzzy set.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331273A JPH04199302A (en) | 1990-11-29 | 1990-11-29 | Neural network learning method in fuzzy control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331273A JPH04199302A (en) | 1990-11-29 | 1990-11-29 | Neural network learning method in fuzzy control |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04199302A true JPH04199302A (en) | 1992-07-20 |
Family
ID=18241850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2331273A Pending JPH04199302A (en) | 1990-11-29 | 1990-11-29 | Neural network learning method in fuzzy control |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04199302A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4433593A1 (en) * | 1993-11-30 | 1995-06-01 | Buehler Ag | Controlling the output of a food processing unit, e.g. extruder |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02140802A (en) * | 1988-11-22 | 1990-05-30 | Yaskawa Electric Mfg Co Ltd | Self correction type fuzzy control method |
JPH02189635A (en) * | 1989-01-18 | 1990-07-25 | Yamaha Corp | Fuzzy inference device |
JPH02275501A (en) * | 1989-04-17 | 1990-11-09 | Toshiba Corp | Process controller |
-
1990
- 1990-11-29 JP JP2331273A patent/JPH04199302A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02140802A (en) * | 1988-11-22 | 1990-05-30 | Yaskawa Electric Mfg Co Ltd | Self correction type fuzzy control method |
JPH02189635A (en) * | 1989-01-18 | 1990-07-25 | Yamaha Corp | Fuzzy inference device |
JPH02275501A (en) * | 1989-04-17 | 1990-11-09 | Toshiba Corp | Process controller |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4433593A1 (en) * | 1993-11-30 | 1995-06-01 | Buehler Ag | Controlling the output of a food processing unit, e.g. extruder |
DE4433593B4 (en) * | 1993-11-30 | 2007-10-04 | Bühler AG | Method for controlling an extruder and device thereto |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pearce et al. | Expressive priors in Bayesian neural networks: Kernel combinations and periodic functions | |
Jenkins et al. | A simplified neural network solution through problem decomposition: The case of the truck backer-upper | |
Kim et al. | A new approach to fuzzy modeling | |
Thrift | Fuzzy Logic Synthesis with Genetic Algorithms. | |
Zhang et al. | An effective LS-SVM-based approach for surface roughness prediction in machined surfaces | |
CN108008627B (en) | Parallel optimization reinforcement learning self-adaptive PID control method | |
Rigatos et al. | Mobile robot motion control in partially unknown environments using a sliding-mode fuzzy-logic controller | |
CN106970636B (en) | Control system and control method for controlling speed of aircraft | |
Haber et al. | Nonlinear internal model control using neural networks: An application for machining processes | |
CN111221311B (en) | Complex network distributed pulse synchronization method and system based on parameter variational method | |
Palan et al. | Fitting a linear control policy to demonstrations with a Kalman constraint | |
US6768927B2 (en) | Control system | |
Kabini et al. | Review of ANFIS and its Application in Control of Machining Processes | |
Zweiri | Optimization of a three-term backpropagation algorithm used for neural network learning | |
JPH04199302A (en) | Neural network learning method in fuzzy control | |
da Costa Peixoto et al. | Fault-tolerant dynamic output feedback control of LPV systems via fault hiding | |
CN107145154B (en) | Control system and control method for controlling attitude angle of aircraft | |
Ballesteros et al. | Differential neural network identification for homogeneous dynamical systems | |
Ho et al. | Multivariable internal model adaptive decoupling controller with neural network for nonlinear plants | |
JPH0635510A (en) | Model reference adaptive controller using neural network | |
JPS63279302A (en) | Fuzzy inference system | |
JP3276035B2 (en) | A sequential accelerated learning method for neural network models | |
JPH0464138A (en) | Learning system for neural circuit network in fuzzy control | |
Jeong et al. | Adaptive sliding mode control based on FLS | |
CN114609915B (en) | Time-varying multi-agent cooperative control method with unknown control direction |