[go: up one dir, main page]

JPH0419906B2 - - Google Patents

Info

Publication number
JPH0419906B2
JPH0419906B2 JP29537285A JP29537285A JPH0419906B2 JP H0419906 B2 JPH0419906 B2 JP H0419906B2 JP 29537285 A JP29537285 A JP 29537285A JP 29537285 A JP29537285 A JP 29537285A JP H0419906 B2 JPH0419906 B2 JP H0419906B2
Authority
JP
Japan
Prior art keywords
center
scattering plate
spiral
plan
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29537285A
Other languages
Japanese (ja)
Other versions
JPS62201662A (en
Inventor
Osamu Suwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Publication of JPS62201662A publication Critical patent/JPS62201662A/en
Publication of JPH0419906B2 publication Critical patent/JPH0419906B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、円筒状容器の内部等に粒状体、液体
等の材料を均一に散布する粒状体、流体等の散布
方法及び装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and apparatus for dispersing particles, fluid, etc., for uniformly dispersing materials such as particles, liquid, etc. inside a cylindrical container. be.

〔従来技術とその問題点〕[Prior art and its problems]

例えば製鋼所においては、円筒状の溶銑鍋に受
入れた溶銑の上面に保温材としてコークスを散布
することが行なわれている。このコークスの散布
は、溶銑の上面に一定の層厚のコークス層ができ
るように、均等に行われなければならないが、従
来、この作業は機械化されておらず人手に頼つて
いた。このため、コークスの均等散布が困難なば
かりか、作業効率が悪く、作業者の労働負担が多
大であるという不具合があり、また、安全面、環
境衛生上にも問題があつた。
For example, in steel mills, coke is spread as a heat insulator on the top surface of hot metal received in a cylindrical hot metal ladle. This coke must be spread evenly so that a coke layer of a certain thickness is formed on the top of the hot metal, but in the past, this work was not mechanized and relied on manual labor. For this reason, not only was it difficult to uniformly spread the coke, but there were also problems in that the work efficiency was poor and the labor burden on the workers was large, and there were also problems in terms of safety and environmental hygiene.

本発明は上記事情に鑑みてなされたもので、溶
銑鍋の溶銑上にコークスを均等にかつ迅速に散布
することができ、しかも、反応槽における吸着
剤、イオン交換樹脂等の種々の材料の充填、各種
液状の材料の均一散布、サイロにおける粉粒体の
投入等に幅広く応用できる粒状体、液体等の散布
方法及び装置を提供することを目的とする。
The present invention was made in view of the above circumstances, and it is possible to spread coke evenly and quickly over hot metal in a hot metal ladle, and it is also possible to fill the reaction tank with various materials such as adsorbents and ion exchange resins. It is an object of the present invention to provide a method and apparatus for dispersing granules, liquids, etc. that can be widely applied to uniformly dispersing various liquid materials, charging powder and granules into silos, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法は、粒状体、液体等の材料を均一
に散布する粒状体、液体等の散布方法において、
内周縁部が平面図形状において中心からの最長距
離を始点として略1回転してその中心に至るうず
まき状に形成された散布板を、その中心を中心と
して水平方向に一定速度で回転させながら、該散
布板の外周部上に上記材料を定量的に落下供給
し、該散布板の内周縁部から上記材料を流下させ
て散布するようにしたものであり、また、本発明
の装置は、上記材料を定量的に落下させる材料供
給装置を配設し、上記材料供給装置の下方には、
内周縁部が平面図形状において中心からの最長距
離を始点として略1回転してその中心に至るうず
まき状に形成され、上記材料供給装置から落下さ
せられる上記材料を上部に受けて内周縁部から流
下させる散布板を、配設すると共に、上記散布板
に、該散布板をその中心を中心として水平方向に
一定速度で回転させる回転手段を付設て構成した
ものである。
The method of the present invention is a method for dispersing granules, liquids, etc., which uniformly disperses materials such as granules, liquids, etc.
While rotating the scattering plate in the horizontal direction at a constant speed around the center, the scattering plate is formed in a spiral shape, with the inner peripheral edge starting from the longest distance from the center in the plan view and making approximately one rotation to reach the center. The above-mentioned material is quantitatively dropped and supplied onto the outer circumference of the scattering plate, and the above-mentioned material is caused to flow down from the inner circumference of the scattering plate to be spread. A material supply device that drops the material quantitatively is installed, and below the material supply device,
The inner peripheral edge is formed in a spiral shape starting from the longest distance from the center in the plan view and making approximately one revolution to reach the center, and the material dropped from the material supply device is received at the upper part from the inner peripheral edge. A dispersion plate is disposed to allow the spray to flow down, and a rotating means is attached to the dispersion plate to rotate the dispersion plate horizontally at a constant speed about its center.

なお、上記散布板内周縁部の平面図形状とは、
上記散布板を上方の無限遠点から投影することに
よつて平面上に生ずる内周縁部の形状であつて、
通常いわれる平面図に表示した散布板の内周縁部
の形状である。
The plan view shape of the inner peripheral edge of the scattering plate is as follows:
The shape of the inner peripheral edge formed on a plane by projecting the scattering plate from an upward point at infinity,
This is the shape of the inner peripheral edge of the scattering plate shown in a commonly-used plan view.

〔作用〕[Effect]

上記構成において、材料供給装置から粒状体、
液体等の材料を定量的に落下させると、該材料は
散布板の外周部上に落下し、その外周部から内周
縁部に移動して内周縁部から流下し、被散布面上
に落下するが、散布板は、内周縁部の平面図形状
が中心からの最長距離を始点として略一回転して
その中心に至るうずまき状になつており、かつそ
の中心を中心として回転手段により水平方向に一
定速度で回転させられているから、上記材料は散
布板のその中心から最長距離を半径とする円形の
被散布面全体に亘つて均等に分散して落下する。
In the above configuration, the granules are supplied from the material supply device;
When a material such as a liquid is dropped quantitatively, the material falls onto the outer periphery of the spreading plate, moves from the outer periphery to the inner periphery, flows down from the inner periphery, and falls onto the surface to be sprayed. However, the plan view of the inner peripheral edge of the scattering plate has a spiral shape starting from the longest distance from the center and making approximately one revolution to reach the center, and it can be rotated horizontally around the center by rotating means. Since it is rotated at a constant speed, the material falls evenly distributed over the entire circular spread surface whose radius is the longest distance from the center of the spread plate.

〔実施例〕〔Example〕

以下、本発明の装置の第1実施例を第1図ない
し第5図を参照して説明する。
Hereinafter, a first embodiment of the apparatus of the present invention will be described with reference to FIGS. 1 to 5.

図中1は内部に溶銑が入れられた溶銑鍋等の円
筒状の容器であり、その上部は開口している。本
発明に係る散布装置は、上記容器1の内部の溶銑
上面等の円形の被散布面2上にコークス等の粒状
体Aを均一散布するもので、容器1が置かれてい
る階より上方の階の床3に固定して設備されてお
り、粒状体Aを定量的に落下供給する材料供給装
置4と、回転手段5により水平方向に回転させら
れながら、上記材料供給装置4から供給される粒
状体Aを上部に受けて内周縁部から流下させ、上
記被散布面2上に散布する散布板6とを主体に構
成されている。
In the figure, numeral 1 is a cylindrical container such as a hot metal pot containing hot metal, and the top thereof is open. The spreading device according to the present invention uniformly spreads granular material A such as coke onto a circular spread surface 2 such as the upper surface of hot metal inside the container 1, and is designed to uniformly spread granular material A such as coke on a circular surface 2 to be spread, such as the upper surface of hot metal inside the container 1. It is fixedly installed on the floor 3 of the floor, and is supplied from the material supply device 4 while being rotated in the horizontal direction by a material supply device 4 which quantitatively drops and supplies the granular material A, and a rotating means 5. It is mainly composed of a scattering plate 6 which receives the granular material A at the upper part, causes it to flow down from the inner peripheral edge, and scatters it onto the above-mentioned surface 2 to be spread.

上記材料供給装置4は、下方側が逆円錐状をな
し、中心線が上記容器1の軸線(被散布面2の中
心を通る鉛直軸線)と同軸になるように複数の支
持柱7aにより支持されて上記床3上に設置され
た大容量の貯留ホツパ7と、下方側が逆円錐状を
なし、上記貯留ホツパ7の下方部に、これと同軸
状になるように複数の支持部材8aにより懸吊さ
れた小容量の計量ホツパ8とから成る。そして、
上記貯留ホツパ7の下部の取出し口には、ロータ
リ式の排出装置9が備えられ、かつ計量ホツパ8
の下部の排出口には、シリンダ10aにより開閉
されるダンパ10が設けられると共に、計量ホツ
パ8の各支持部材8aの途中には各ロードセル1
1が介在せしめられており、これらロードセル1
1により貯留ホツパ7から計量ホツパ8内に定量
の粒状体Aを取出すことができるようになつてい
る。また、上記計量ホツパ8の下方部には、上方
側が逆円錐状をなし、下方側が鉛直な円筒状をな
す案内シユート12が、その軸線を容器1の軸線
と同軸になるように、上方側を計量ホツパ8の排
出口に臨ませて複数のブラケツト12aにより固
定して取付けられており、該案内シユート12
は、上記床3の容器1の上方に当る部位に形成さ
れた円形の開口部3aに挿通された状態になつて
いる。
The material supply device 4 has an inverted conical shape on the lower side, and is supported by a plurality of support columns 7a so that its center line is coaxial with the axis of the container 1 (vertical axis passing through the center of the surface to be spread 2). A large-capacity storage hopper 7 installed on the floor 3 has an inverted conical shape on the lower side, and is suspended by a plurality of supporting members 8a coaxially with the lower part of the storage hopper 7. It consists of a small capacity weighing hopper 8. and,
A rotary discharge device 9 is provided at the lower outlet of the storage hopper 7, and the weighing hopper 8
A damper 10 that is opened and closed by a cylinder 10a is provided at the lower discharge port of the weighing hopper 8, and each load cell 1 is provided in the middle of each support member 8a of the weighing hopper 8.
1 is interposed, and these load cells 1
1 allows a fixed amount of granular material A to be taken out from the storage hopper 7 into the weighing hopper 8. Further, in the lower part of the weighing hopper 8, there is a guide chute 12 having an inverted conical shape on the upper side and a vertical cylindrical shape on the lower side. It is fixedly attached by a plurality of brackets 12a facing the discharge port of the weighing hopper 8, and the guide chute 12
is inserted into a circular opening 3a formed on the floor 3 above the container 1.

一方、上記回転手段5は、上記床3の開口部3
aに設けられている。すなわち、床3の開口部3
aには、容器1と同軸状になつた所定幅の円環状
の支持台13が固定して設けられ、該支持台13
の上部内周縁には円形のレール14が敷設されて
いる。そして、該レール14上に円環状の回転テ
ーブル15が、上記計量ホツパ8を囲繞した状態
で容器1と同軸状に、かつ下面に周方向に所定の
ピツチで取付けた複数の支持輪16をレール14
上に転動自在に載置せしめられて回転自在に支持
されている。また、該回転テーブル15の外周面
には周方向に亘つてローラチエーン17が巻回さ
れて固着される一方、上記支持台13の上部に
は、該ローラチエーン17にかみ合されたスプロ
ケツト18を備えた駆動装置19が設備されてお
り、該駆動装置19作動により上記回転テーブル
15が周方向に一定速度で回転せしめられるよう
になつている。そして、該回転テーブル15の下
面内周縁に前記散布板6が複数の吊下棒20を介
して設けられている。
On the other hand, the rotation means 5 rotates through the opening 3 of the floor 3.
It is provided in a. That is, the opening 3 in the floor 3
A is fixedly provided with an annular support 13 having a predetermined width and coaxial with the container 1.
A circular rail 14 is laid on the upper inner peripheral edge of the rail. An annular rotary table 15 is mounted on the rail 14, and a plurality of support wheels 16 are mounted on the rail 14, coaxially with the container 1, surrounding the weighing hopper 8, and mounted on the lower surface at a predetermined pitch in the circumferential direction. 14
It is rotatably supported by being rotatably placed on the top. Further, a roller chain 17 is wound around and fixed to the outer peripheral surface of the rotary table 15 in the circumferential direction, while a sprocket 18 meshed with the roller chain 17 is mounted on the upper part of the support base 13. A drive device 19 is provided, and the rotary table 15 is rotated at a constant speed in the circumferential direction by the operation of the drive device 19. The scattering plate 6 is provided on the inner periphery of the lower surface of the rotary table 15 via a plurality of hanging rods 20 .

上記散布板6は、内周縁部6aの平面図形状
が、容器1の軸線、つまり被散布面2の中心を通
る鉛直軸上に中心Oを有し、 r=r0√1−(2) …… ただしrとθは極座標の変数、r0は散布板の平
面図形状における中心Oからの最長距離 を満たすうずまき曲線により規定される板材から
成るもので、その中心Oを頂部とし、下方になる
にしたがつて縮径された逆円錐状をなしており、
平面図形状が被散布面2より若干大径の円形をな
すその外周縁部上には円筒形のガイド板6bが周
設されている。また、上記散布板6の上方には、
下縁部の平面図形状が被散布面2より若干大径で
散布板6の外周縁部より若干小径の円形をなす円
錐状の上部案内板21が、その中心(頂部)を被
散布面2の中心を通る鉛直軸上に位置させ、かつ
下縁部が上記ガイド板6b円筒内面と散布板6外
周部上面とに対して隙間を設けて配設され、該上
部案内板21と上記散布板6とガイド板6bと
は、前記吊下棒20の下端に連設されたガイド板
を兼ねる複数の連結板22により相互に連結され
ている。なお、図中23は円筒状のフードであ
る。
In the above-mentioned scattering plate 6, the plan view shape of the inner peripheral edge 6a has a center O on the axis of the container 1, that is, the vertical axis passing through the center of the surface to be sprayed 2, r=r 0 √1−(2) ...... However, r and θ are variables of polar coordinates, and r 0 is a plate defined by a spiral curve that satisfies the longest distance from the center O in the plan view of the scattering plate, with the center O as the top and downward. It has an inverted conical shape that gradually decreases in diameter,
A cylindrical guide plate 6b is provided on the outer peripheral edge of the circular shape having a slightly larger diameter in plan view than the surface 2 to be sprayed. Moreover, above the scattering plate 6,
A conical upper guide plate 21 whose lower edge has a slightly larger diameter than the spread surface 2 and a circular shape slightly smaller than the outer peripheral edge of the scattering plate 6 has its center (top) connected to the spread surface 2. The upper guide plate 21 and the scattering plate are positioned on a vertical axis passing through the center of the upper guide plate 21, and the lower edge is arranged with a gap between the cylindrical inner surface of the guide plate 6b and the upper surface of the outer peripheral part of the scattering plate 6. 6 and the guide plate 6b are connected to each other by a plurality of connecting plates 22 that are connected to the lower end of the hanging rod 20 and also serve as guide plates. Note that 23 in the figure is a cylindrical hood.

ここで、前述の式について詳細に説明する。 Here, the above equation will be explained in detail.

先ず、中心部が開口した逆円錐状の傾斜面Cに
おいて、その周部に粒状体Aを均等に落すと、該
粒状体Aは傾斜面Cの周部から中心部の開口に向
つてその母線に沿つて流下していき、落下する。
このような逆円錐状の傾斜面Cの内周縁(中心部
の開口縁)を第3図aの如く平面図形状がうずま
き状になるように形成する。そして、この内周縁
がうずまき状になつた逆円錐状の傾斜面Cにおい
て、第3図bのように中心角θaが同一の任意の
2つの傾斜面T1,T2について考える。これら傾
斜面T1,T2においてその中心O(逆円錐の中心)
から内周縁部までの最大及び最小の距離を第3図
bのようにそれぞれ、傾斜面T1に対してはr1
r2、傾斜面T2に対してはr3,r4とする。該各傾斜
面T1,T2をその中心Oを中心として水平方向に
一定速度で一回転させながらその外周部に粒状体
Aを定量的に落下させると、粒状体Aは、傾斜面
T1では距離r1からr2までの内周縁部、傾斜面T2
では距離r3からr4までの内周縁部をそれぞれ経て
落下する。ここで、傾斜面T1,T2は共に中心角
θaが同じであるから角内周縁部から落下する粒
状体Aの量は同一であり、傾斜面T1からは面積
がπ(r1 2−r2 2)なる円環帯上に、傾斜面T2から
は面積がπ(r3 2−r4 2)なる円環帯上にそれぞれ粒
状帯Aが散布されることになる。したがつて、こ
れらの円環帯の面積が互いに等しくなるように内
周縁部の形状を決めると、これらの円環帯上の粒
状体Aの散布量は互いに均一となる。
First, when granules A are evenly dropped on the periphery of an inverted conical slope C with an opening at the center, the granules A will move along its generatrix from the periphery of the slope C toward the opening at the center. It flows down along the road and falls.
The inner peripheral edge (the opening edge at the center) of such an inverted conical inclined surface C is formed so that its plan view shape is spiral as shown in FIG. 3a. In this inverted conical inclined surface C having a spiral inner peripheral edge, consider two arbitrary inclined surfaces T 1 and T 2 having the same central angle θa as shown in FIG. 3b. The center O (center of the inverted cone) of these inclined surfaces T 1 and T 2
As shown in Fig. 3b, the maximum and minimum distances from to the inner peripheral edge are r 1 and r 1 for the inclined surface T 1 ,
r 2 , and r 3 and r 4 for the inclined surface T 2 . When the granular material A is quantitatively dropped onto the outer periphery of each of the inclined surfaces T 1 and T 2 while rotating the inclined surfaces T 1 and T 2 once at a constant speed in the horizontal direction about the center O, the granular material A is
At T 1 , the inner periphery from distance r 1 to r 2 , sloped surface T 2
In this case, it falls through the inner peripheral edge portions from distance r 3 to r 4 respectively. Here, since both the inclined surfaces T 1 and T 2 have the same central angle θa, the amount of granular material A falling from the inner peripheral edge of the corner is the same, and the area from the inclined surface T 1 is π(r 1 2 -r 2 2 ), and the granular bands A are scattered from the inclined surface T 2 onto an annular zone having an area of π(r 3 2 −r 4 2 ). Therefore, if the shapes of the inner peripheral edges are determined so that the areas of these annular bands are equal to each other, the amount of the granular material A to be spread on these annular bands becomes uniform.

すなわち、第4図において、中心角θの傾斜面
Tの外周部上に供給された粒状体Aが弧P0Pから
落下し、該傾斜面Tが中心Oを中心として一定速
度で一回転する間、切れ間なく粒状体Aが供給さ
れていれば、最長の半径r0と半径rの間の円環帯
域に粒状体Aが散布されたことになる。この円環
帯域の面積Sは、 S=π(r0 2−r2) …… となり、また、この円環帯域の面積Sに散布され
た粒状体Aの量と中心角θの傾斜面Tに沿つて流
下した粒状体Aの量とは等しいので、最長の半径
r0で形成される被散布面2の全面積をS0とする
と、 θ/2π=S/S0 すなわち S=(θ/2π)S0 …… であるから、これらの式より (θ/2π)S0=π(r0 2−r2) となる。この式に、 S0=πr2 …… なる関係式を代入すると、 r2=r2 0{1−(θ/2π)} すなわち r=r0√1−(2) …… が得られる。そして、このうずまき曲線で内周縁
部の平面図形状が規定される逆円錐状の散布板6
によれば、被散布面2の全体に粒状体Aを均一に
散布することができる。
That is, in FIG. 4, the granular material A supplied onto the outer periphery of the slope T with the center angle θ falls from an arc P 0 P, and the slope T rotates once around the center O at a constant speed. If the granules A are continuously supplied during this period, the granules A will be scattered in the annular zone between the longest radius r 0 and the radius r. The area S of this annular zone is S = π(r 0 2 - r 2 ) ..., and the amount of granules A scattered on the area S of this annular zone and the slope T of the central angle θ is equal to the amount of granular material A that has flowed down along, so the longest radius
If the total area of the dispersion surface 2 formed by r 0 is S 0 , then θ/2π=S/S 0 , that is, S=(θ/2π)S 0 ... From these equations, (θ/ 2π) S 0 = π(r 0 2 − r 2 ). By substituting the relational expression S 0 =πr 2 ... into this equation, r 2 = r 2 0 {1-(θ/2π)}, that is, r=r 0 √1-(2) ... is obtained. Then, an inverted conical scattering plate 6 whose plan view shape of the inner peripheral edge is defined by this spiral curve.
According to the method, it is possible to uniformly spray the granules A over the entire surface 2 to be sprayed.

さらに、上記散布板6は、内周縁部の平面図形
状を上記式に基づいて形成するのが理想的であ
るが、実際には式に基づいてうずまき形状を作
成するのは難しい。そこで、式によらず、次の
ような簡易方法を用いてうずまき形状を作成する
こともできる。すなわち、第5図に示すように、
先ず、円をn等分に分割して等しい面積を有する
n個の扇形を形成する如く分割線を書く。次い
で、上記円をそれぞれの面積が等しくなるように
環状にn分割する分割同心円を書く。つまり上記
円上でn分割された各円環帯(1つは小さな円)
の面積M1,M2,…,Mnが互いに等しくなるよ
うに各円環帯の幅l1,l2,…,ln(l1<l2<…<ln)
を決め、n−1個の分割同心円を描く。そして、
円のある分割線と上記円の外周上の交点を始点と
して、その分割線の例えば第5図において反時計
回り側の隣りの分割線と上記円外周の内方側の隣
りの分割同心円との交点、さらに反時計回り側の
隣りの分割線と上記分割同心円より内方側の隣り
の分割同心円との交点と…を、順次なだらかな曲
線で結んでいくと、始点から360度まわつて上記
円の中心に至る第5図のうずまき曲線Rが得られ
る。また、上記の各交点を直線で結んでいくと、
第5図のうずまき状の線分R′が得られる。これ
らうずまき曲線Rあるいはうずまき状の線分
R′は共に前記式で規定されるうずまき形の近
似曲線あるいは線分であるが、これらを用いて散
布板6の内周縁部6aの形状を決めることができ
る。
Furthermore, although it is ideal that the plan view shape of the inner peripheral edge of the scattering plate 6 is formed based on the above formula, it is actually difficult to create a spiral shape based on the formula. Therefore, the spiral shape can also be created using the following simple method without relying on the formula. That is, as shown in Figure 5,
First, divide a circle into n equal parts and draw dividing lines to form n fan shapes with equal areas. Next, draw dividing concentric circles that divide the above circle into n annular parts so that each area is equal. In other words, each annular zone divided into n on the above circle (one is a small circle)
The width of each ring band l 1 , l 2 , ..., ln (l 1 < l 2 <... < ln) so that the areas M 1 , M 2 , ..., Mn are equal to each other.
Determine and draw n-1 divided concentric circles. and,
Starting from the intersection of a certain dividing line of a circle and the outer periphery of the circle, the adjacent dividing line on the counterclockwise side of the dividing line in FIG. If you connect the intersection point, and then the intersection point of the adjacent dividing line on the counterclockwise side and the adjacent dividing concentric circle on the inner side of the dividing concentric circle, with a gentle curve, the above circle will be formed by turning 360 degrees from the starting point. A spiral curve R shown in FIG. 5 is obtained that reaches the center of . Also, if you connect each of the above intersection points with a straight line,
The spiral line segment R' shown in FIG. 5 is obtained. These spiral curves R or spiral line segments
Both R' are spiral-shaped approximate curves or line segments defined by the above formula, and the shape of the inner peripheral edge 6a of the scattering plate 6 can be determined using these.

次に、本発明の方法の一実施例を説明する。 Next, one embodiment of the method of the present invention will be described.

本発明の方法は、上記構成の散布装置を用いて
好適に実施される。すなわち、上記構成の散布装
置において、先ず、被散布面2上に散布すべき粒
状体Aの定量を貯留ホツパ7から取出して計量ホ
ツパ8に収容しておく。次に、駆動装置19を作
動して回転テーブル15をその軸線を中心として
周方向に回転させ、これにより散布板6を上部案
内板21と共に被散布面2の中心を通る鉛直軸を
中心として第2図で矢印で示す如く水平方向に一
定速度で回転させる。また、散布板6の回転と同
時に、計量ホツパ8に収容した上記定量の粒状体
Aを、ダンパ10を開放して定量的に落下供給す
る。すると、粒状体Aは、案内シユート12を通
じて上部案内板21の頂部に供給され、該頂部か
ら周方向に均等に分散して滑り落ちてその外周下
縁部から散布板6の外周部上に落下し、さらに散
布板6の傾斜した面を滑り落ちてその内周縁部6
aから落下して被散布面2上に散布される。ここ
で、上記散布板6の内周縁部6aは前記式によ
つて規定されるうずまき状の平面図形状を有して
おり、かつ該散布板6は、被散布面2の中心を通
る鉛直軸上にくるその中心Oを中心として周方向
に一定速度で回転させられるので、該散布板6の
内周縁部6aから落下する粒状体Aは、被散布面
2の全体に亘つて均一に散布される。
The method of the present invention is suitably carried out using the spraying device configured as described above. That is, in the spraying device configured as described above, first, a fixed amount of the granules A to be sprayed onto the surface 2 to be sprayed is taken out from the storage hopper 7 and stored in the weighing hopper 8. Next, the drive device 19 is activated to rotate the rotary table 15 in the circumferential direction around its axis, thereby moving the spreading plate 6 together with the upper guide plate 21 around the vertical axis passing through the center of the surface 2 to be spread. It is rotated at a constant speed in the horizontal direction as shown by the arrow in Figure 2. Simultaneously with the rotation of the scattering plate 6, the damper 10 is opened to quantitatively drop and supply the above-mentioned amount of the granular material A stored in the weighing hopper 8. Then, the granules A are supplied to the top of the upper guide plate 21 through the guide chute 12, are evenly distributed in the circumferential direction from the top, slide down, and fall onto the outer periphery of the scattering plate 6 from the lower edge of the outer periphery. Then, it further slides down the inclined surface of the scattering plate 6 and the inner peripheral edge 6
It falls from a and is sprayed onto the surface 2 to be sprayed. Here, the inner peripheral edge 6a of the scattering plate 6 has a spiral shape in plan view defined by the above formula, and the scattering plate 6 has a vertical axis passing through the center of the surface 2 to be spread. Since it is rotated at a constant speed in the circumferential direction around the center O located above, the granules A falling from the inner peripheral edge 6a of the scattering plate 6 are uniformly dispersed over the entire surface 2 to be sprayed. Ru.

なお、上記において、散布板6と上部案内板2
1の各傾斜角α1,α2、これらの回転数N及び粒状
体Aの落下供給量Qは、それぞれ実機テスト等に
よつて決定すべきもので、粒状体Aの種類、性状
等種々の条件によつて異なるが、粒状体Aが、例
えば粒径が3〜4cmまでのコークスである場合に
は、α1=α2=35°、N=4.8rpmで、また、落下供
給量Qは、散布板6の一回転につき133程度と
するのが好ましい。
In addition, in the above, the scattering plate 6 and the upper guide plate 2
1, the respective inclination angles α 1 and α 2 , the number of revolutions N, and the falling supply amount Q of the granular material A should be determined through actual machine tests, etc., and are subject to various conditions such as the type and properties of the granular material A. For example, if the granular material A is coke with a particle size of 3 to 4 cm, α 1 = α 2 = 35°, N = 4.8 rpm, and the falling feed rate Q is: It is preferable that the number of rotations per rotation of the scattering plate 6 is about 133.

また、上記において、逆円錐状の散布板6は、
該散布板外周部に粒状体Aが定量的に供給され、
かつ該散布板の傾斜面を連続的に流下するのであ
れば、特に直円錐状でなくともよい。
In addition, in the above, the inverted conical scattering plate 6 is
The granular material A is quantitatively supplied to the outer periphery of the scattering plate,
In addition, as long as it flows continuously down the inclined surface of the scattering plate, it does not need to be shaped like a right circular cone.

次に、本発明の他のいくつかの実施例を説明す
る。
Next, some other embodiments of the present invention will be described.

第6図は第2実施例を示すもので、この実施例
は、前記第1実施例において上部案内板21の代
りに、円環状の供給口を有する環状シユート24
を散布板6の上方に配設し、材料供給装置4から
の粒状体Aを該環状シユート24を通じて散布板
6の外周部上に均等に落下供給するようにしたも
のである。なお、第6図において、25は複数個
組合された状態で環状シユート24の供給口を閉
止する各開閉板で、各シリンダ25aにより開閉
されるようになつている。
FIG. 6 shows a second embodiment, in which an annular chute 24 having an annular supply port is used instead of the upper guide plate 21 in the first embodiment.
is disposed above the scattering plate 6, and the granules A from the material supply device 4 are evenly dropped and supplied onto the outer circumference of the scattering plate 6 through the annular chute 24. In FIG. 6, reference numeral 25 denotes opening/closing plates which close the supply ports of the annular chute 24 in a plurality of assembled state, and are opened/closed by respective cylinders 25a.

また、第7図及び第8図は第3実施例を示すも
ので、この実施例では、散布板26は、平面図形
状が前記散布板6と同じであるが水平な平板状を
なし、上部案内板27も同じく平面図形状が前記
上部案内板21と同じであるが水平な平板状をな
している。そして、上記散布板26にはこれを振
動させる加振装置28が付設されている。この加
振装置28は、例えば板バネ28aにより所定方
向に付勢された磁性金属製の加振部材28bを、
スリツプリング28cを介して供給される交流電
流により励磁されたり励磁が解かれる電磁石28
dにより、吸引したり吸引を解いたりして、該加
振部材28bを上下動して上記散布板26を上部
案内板27と共に振動させるようにしたもので、
加振部材28bは上記散布板26に、散布板26
の回転を許容した状態で係止部材28eにより係
止されており、また、板バネ28aと電磁石28
dを取付けた装置本体28fはブラケツト28g
を介して所要の固定部に固定されている。この実
施例では、加振装置28により散布板26を振動
させながら回転手段5によりこれを周方向に回転
させ、計量ホツパ8から案内シユート12を通じ
て上部案内板27の中心上に粒状体Aを落下送給
する。すると、該粒状体Aは、上部案内板27の
振動によりその径方向に放射状に広がり、その外
周縁部から散布板26の外周部上に落下するが、
散布板26も同時に振動しているから粒状体Aは
その中心に向かつて移動し、その内周縁部から落
下し、被散布面2上に散布される。なお、加振装
置28は所要の固定部ではなく、散布板26自体
や上部案内板27自体に固定してもよい。また、
加振装置28に供給する電流は、例えば回転テー
ブル15のレールを二本にして該レールから取つ
てもよい。さらに、上記加振装置28を前記第1
実施例の散布板6に付加すると、粒状体Aが散布
板6上を流下し難いような場合、あるいは、粒状
体Aの散布速度を速めることが要求されるような
場合などにおいて、該加振装置28を必要に応じ
て作動させて粒状体Aの流下を促進することがで
き、好都合である。
7 and 8 show a third embodiment. In this embodiment, the scattering plate 26 has the same plan view shape as the above-mentioned scattering plate 6, but has a horizontal flat plate shape, and has an upper part. The guide plate 27 also has the same plan view shape as the upper guide plate 21, but is shaped like a horizontal flat plate. A vibrating device 28 for vibrating the dispersing plate 26 is attached to the dispersing plate 26. This vibration device 28 moves a magnetic metal vibration member 28b biased in a predetermined direction by a leaf spring 28a, for example.
An electromagnet 28 that is energized and de-energized by an alternating current supplied via a slip ring 28c.
d, the vibration excitation member 28b is moved up and down by suction or release of suction, and the dispersion plate 26 is vibrated together with the upper guide plate 27.
The vibrating member 28b is attached to the scattering plate 26.
The plate spring 28a and the electromagnet 28
The device body 28f with d attached has a bracket of 28g.
It is fixed to the required fixed part via. In this embodiment, the scattering plate 26 is vibrated by the vibrator 28 and rotated in the circumferential direction by the rotating means 5, and the granules A are dropped from the weighing hopper 8 through the guide chute 12 onto the center of the upper guide plate 27. send. Then, the granular material A spreads radially in the radial direction due to the vibration of the upper guide plate 27, and falls from its outer periphery onto the outer periphery of the scattering plate 26.
Since the scattering plate 26 is also vibrating at the same time, the granules A move toward its center, fall from its inner peripheral edge, and are scattered onto the surface 2 to be sprayed. Note that the vibration device 28 may be fixed to the dispersion plate 26 itself or the upper guide plate 27 itself instead of the required fixed part. Also,
The current supplied to the vibration device 28 may be taken from two rails of the rotary table 15, for example. Furthermore, the vibration device 28 is
When added to the scattering plate 6 of the embodiment, the vibration excitation can be used in cases where it is difficult for the granules A to flow down on the scattering plate 6, or when it is required to increase the dispersion speed of the granules A. Advantageously, the device 28 can be activated as required to facilitate the flow of the particulate material A.

また、本発明はコークスのような粒状体Aの散
布に対してのみ適用できるというものではなく、
各種液状体などを散布する際にも適用できること
は言うまでもない。
Furthermore, the present invention is not only applicable to the dispersion of granular material A such as coke;
Needless to say, this method can also be applied to spraying various liquids.

また、前記第1実施例ないし第3実施例におい
ては、平面図形状において中心からの最長距離が
被散布面の半径に略等しい散布板を用いて説明し
たが、本発明はそれに限定されることなく、広い
被散布面に対して散布板を一定速度で移動するよ
うにしてもよい。例えば、環状の被散布面に対し
ては、自転と公転の如く回転手段で回転させられ
ている分散板を材料供給装置と共に一定速度で環
状に移動するようにしてもよく、さらに広い被散
布面をその形状に合せて順次移動させれば種々の
形状の被散布面に対して均一に材料を散布でき
る。
Further, in the first to third embodiments, the explanation was given using a scattering plate whose longest distance from the center in the plan view shape is approximately equal to the radius of the surface to be spread, but the present invention is not limited thereto. Alternatively, the scattering plate may be moved at a constant speed over a wide spread surface. For example, for an annular spread surface, a dispersion plate rotated by a rotating means such as rotation and revolution may be moved in an annular shape together with a material supply device at a constant speed. By sequentially moving the material according to its shape, the material can be uniformly spread on surfaces of various shapes.

また、各実施例において本発明の材料供給装置
を貯留ホツパ7と計量ホツパ8とにより構成した
が、貯留ホツパ7とその下部に備えられた排出装
置9のみで構成してもよく、要は散布板の中心部
に定量的に材料を供給できるものであればよい。
Further, in each of the embodiments, the material supply device of the present invention is composed of the storage hopper 7 and the weighing hopper 8, but it may also be composed only of the storage hopper 7 and the discharging device 9 provided below it. Any material that can quantitatively supply the material to the center of the plate may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、内周縁部が平
面図形状においてうずまき状に形成された散布板
を回転手段により水平方向に一定速度で回転させ
ながら、材料供給装置によつて粒状体等の材料を
上記散布板上に定量的に落下供給し、散布板の内
周縁部から上記材料を流下させて散布するように
したものであるから、一度に広い範囲に亘つて材
料を均等にかつ迅速に散布することができ、ま
た、装置は構造が簡単で、大きな運転動力を必要
とすることもない等の効果を奏する。
As explained above, in the present invention, a material supply device rotates a scattering plate whose inner periphery is spiral-shaped in a plan view at a constant speed in the horizontal direction, while a material supply device collects granules, etc. The material is quantitatively dropped and supplied onto the above-mentioned scattering plate, and the material is distributed by flowing down from the inner peripheral edge of the scattering plate, so that the material can be spread evenly and quickly over a wide area at once. In addition, the device has a simple structure and does not require large operating power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は本発明の一実施例を示す
もので、第1図は散布装置の全体断面図、第2図
は散布板の平面図、第3図a,b及び第4図はう
ずまき曲線を説明するための説明図、第5図はう
ずまき形状の簡易作成方法の説明図、また、第6
図は第2実施例を示す部分図、第7図及び第8図
は第3実施例を示すもので、第7図は全体断面
図、第8図は加振装置部分の拡大断面図である。 2……被散布面、A……粒状体、4……材料供
給装置、5……回転手段、6,26……散布板。
Figures 1 to 5 show an embodiment of the present invention, in which Figure 1 is an overall sectional view of the dispersion device, Figure 2 is a plan view of the scattering plate, Figures 3a, b, and 4. Figure 5 is an explanatory diagram for explaining a spiral curve, Figure 5 is an explanatory diagram of a simple method for creating a spiral shape, and Figure 6 is an explanatory diagram for explaining a spiral curve.
The figure shows a partial view of the second embodiment, FIGS. 7 and 8 show the third embodiment, FIG. 7 is an overall sectional view, and FIG. 8 is an enlarged sectional view of the vibration device part. . 2... Surface to be spread, A... Granular body, 4... Material supply device, 5... Rotating means, 6, 26... Spreading plate.

Claims (1)

【特許請求の範囲】 1 粒状体、液体等の材料を均一に散布する粒状
体、液体等の散布方法において、内周縁部が平面
図形状において中心からの最長距離を始点として
略1回転してその中心に至るうずまき状に形成さ
れた散布板を、その中心を中心として水平方向に
一定速度で回転させながら、該散布板の外周部上
に上記材料を定量的に落下供給し、該散布板の内
周縁部から上記材料を流下させて散布することを
特徴とする粒状体、液体等の散布方法。 2 散布板の内周縁部のうずまき状の平面図形状
が、 r=r0√1−(2) ただしrとθは極座標の変数、r0は散布板の平
面図形状における中心からの最長距離 を満たすうずまき曲線により規定されることを特
徴とする特許請求の範囲第1項記載の粒状体、液
体等の散布方法。 3 散布板の内周縁部のうずまき状の平面図形状
が、 r=r0√1−(2) ただしrとθは極座標の変数、r0は散布板の平
面図形状における中心からの最長距離 を満たすうずまき曲線上の複数の点を直線で結ん
だうずまき形状により規定されることを特徴とす
る特許請求の範囲第1項記載の粒状体、液体等の
散布方法。 4 粒状体、液体等の材料を均一に散布する粒状
体、液体等の散布装置において、上記材料を定量
的に落下させる材料供給装置が配設され、上記材
料供給装置の下方には、内周縁部が平面図形状に
おいて中心からの最長距離を始点として略1回転
してその中心に至るうずまき状に形成され、上記
材料供給装置から落下させられる上記材料を上部
に受けて内周縁部から流下させる散布板が、配設
されると共に、上記散布板には、該散布板をその
中心を中心として水平方向に一定速度で回転させ
る回転手段が付設されていることを特徴とする粒
状体、液体等の散布装置。 5 散布板の内周縁部のうずまき状の平面図形状
が、 r=r0√1−(2) ただしrとθは極座標の変数、r0は散布板の平
面図形状における中心からの最長距離 を満たすうずまき曲線により規定されることを特
徴とする特許請求の範囲第4項記載の粒状体、液
体等の散布装置。 6 散布板の内周縁部のうずまき状の平面図形状
が、 r=r0√1−(2) ただしrとθは極座標の変数、r0は散布板の平
面図形状における中心からの最長距離 を満たすうずまき曲線上の複数の点を直線で結ん
だうずまき形状により規定されることを特徴とす
る特許請求の範囲第4項記載の粒状体、液体等の
散布装置。
[Claims] 1. In a method for dispersing granules, liquids, etc., for uniformly dispersing materials such as granules, liquids, etc., the inner peripheral edge portion rotates approximately once from the longest distance from the center in a plan view as a starting point. While rotating the scattering plate formed in a spiral shape to the center at a constant speed in the horizontal direction around the center, the above-mentioned material is quantitatively dropped and supplied onto the outer circumference of the scattering plate. A method for dispersing granules, liquids, etc., characterized in that the above-mentioned material is dispersed by flowing down from the inner peripheral edge of the material. 2 The spiral plan shape of the inner peripheral edge of the scattering plate is r=r 0 √1−(2) where r and θ are polar coordinate variables, and r 0 is the longest distance from the center of the scattering plate in the plan view. The method for dispersing granules, liquids, etc. according to claim 1, characterized in that the method is defined by a spiral curve that satisfies the following. 3 The spiral plan shape of the inner peripheral edge of the scattering plate is r=r 0 √1−(2) where r and θ are polar coordinate variables, and r 0 is the longest distance from the center of the scattering plate in the plan view. The method for dispersing granules, liquids, etc. according to claim 1, characterized in that the method is defined by a spiral shape formed by connecting a plurality of points on a spiral curve satisfying the following with straight lines. 4. In a granular material, liquid, etc. dispersion device that uniformly spreads granular material, liquid, etc., a material feeding device that drops the above-mentioned material quantitatively is provided, and below the material feeding device, an inner peripheral edge is provided. The part is formed in a spiral shape starting from the longest distance from the center in a plan view and making approximately one revolution to reach the center, and receives the material dropped from the material supply device at the upper part and causes it to flow down from the inner peripheral edge. A granular material, a liquid, etc., characterized in that a dispersion plate is provided, and the dispersion plate is provided with a rotating means for rotating the dispersion plate in a horizontal direction at a constant speed about its center. Spraying equipment. 5 The spiral plan shape of the inner peripheral edge of the scattering plate is r=r 0 √1−(2) where r and θ are polar coordinate variables, and r 0 is the longest distance from the center of the scattering plate in the plan view. The device for dispersing granules, liquids, etc. according to claim 4, characterized in that the device is defined by a spiral curve that satisfies the following. 6 The spiral plan shape of the inner peripheral edge of the scattering plate is r=r 0 √1−(2) where r and θ are polar coordinate variables, and r 0 is the longest distance from the center of the scattering plate in the plan view. The device for dispersing granules, liquids, etc. according to claim 4, characterized in that the device is defined by a spiral shape formed by connecting a plurality of points on a spiral curve satisfying the following with straight lines.
JP29537285A 1985-11-08 1985-12-25 Method and device for spreading granular material, liquid or the like Granted JPS62201662A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25044285 1985-11-08
JP60-250442 1985-11-08

Publications (2)

Publication Number Publication Date
JPS62201662A JPS62201662A (en) 1987-09-05
JPH0419906B2 true JPH0419906B2 (en) 1992-03-31

Family

ID=17207933

Family Applications (3)

Application Number Title Priority Date Filing Date
JP29537385A Granted JPS62201663A (en) 1985-11-08 1985-12-25 Method and device for spreading granular material, liquid or the like
JP29537485A Granted JPS62201664A (en) 1985-11-08 1985-12-25 Method and device for spreading granular material, liquid or the like
JP29537285A Granted JPS62201662A (en) 1985-11-08 1985-12-25 Method and device for spreading granular material, liquid or the like

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP29537385A Granted JPS62201663A (en) 1985-11-08 1985-12-25 Method and device for spreading granular material, liquid or the like
JP29537485A Granted JPS62201664A (en) 1985-11-08 1985-12-25 Method and device for spreading granular material, liquid or the like

Country Status (1)

Country Link
JP (3) JPS62201663A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145345A (en) * 1974-10-15 1976-04-17 Naigai Rokogyo Kk

Also Published As

Publication number Publication date
JPH052390B2 (en) 1993-01-12
JPH0416216B2 (en) 1992-03-23
JPS62201663A (en) 1987-09-05
JPS62201664A (en) 1987-09-05
JPS62201662A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
RU2067065C1 (en) Device for filling container with loose product or loose solid matter
US4972884A (en) Method and apparatus for uniformly loading particulate material into cylindrical beds
JPH0472571B2 (en)
US5296202A (en) Apparatus for uniformly loading particulate material into cylindrical beds
CA2107542C (en) Particle loader
US20040025966A1 (en) Method and apparatus for uniform particle loading of vessels
US4207943A (en) Countercurrent solid-to-solid heat transfer apparatus and method
JP4447643B2 (en) Powder and particle feeder
JPH0419906B2 (en)
JP3133672B2 (en) Particle scattering device
US2538556A (en) Furnace loading mechanism
RU165927U1 (en) DEVICE FOR LOADING BULK MATERIAL
JPS58174220A (en) Moving bed filter for purifying gaseous and/or steam like medium
US4174054A (en) Volumetric feeder for metering particulate material
JP3474367B2 (en) Particle filling state prediction method
US4561818A (en) Apparatus for handling blended dry particulate materials
SU1355577A1 (en) Feeder for loose materials
ES350403A1 (en) Apparatus for introducing granules in a cigarette filter
JPS604586Y2 (en) Flowing type mixing device
JPS61220721A (en) moving bed reactor
SU1643937A1 (en) Metering device for powdered materials
RU1819666C (en) Plate granulator
SU725690A1 (en) Mixer
JPS61229722A (en) Fixed amount supply method and apparatus for particles such as grains or the like
JP2944720B2 (en) Granulator