[go: up one dir, main page]

JPH04198842A - Stress relaxation measuring apparatus - Google Patents

Stress relaxation measuring apparatus

Info

Publication number
JPH04198842A
JPH04198842A JP33234590A JP33234590A JPH04198842A JP H04198842 A JPH04198842 A JP H04198842A JP 33234590 A JP33234590 A JP 33234590A JP 33234590 A JP33234590 A JP 33234590A JP H04198842 A JPH04198842 A JP H04198842A
Authority
JP
Japan
Prior art keywords
test piece
value
change
birefringence
double refraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33234590A
Other languages
Japanese (ja)
Inventor
Nobuhiro Mochida
持田 悦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP33234590A priority Critical patent/JPH04198842A/en
Publication of JPH04198842A publication Critical patent/JPH04198842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure a minute change by detecting the change of the internal stress at the center part of a test piece as the change of the double refraction of light. CONSTITUTION:A laser 18 is started and measuring polarized light (j) modulated in phase is incident to a test piece 1. Next, a stretching part 7 is operated and the test piece 1 is instantaneously stretched by grips 5, 6 and the tensile displacement of the test piece 1 is held as it is. After the stretching of the test piece 1 is completed, plastic deformation is generated in the test piece 1 so that the tensile stresses in respective parts become uniform and the tensile stress at the center part of the test piece 1 is relaxed with the elapse of time and the double refraction of transmitted light is also successively reduced in a state almost proportional to tensile stress. The change state of this double refraction is inputted to a computer 4 as the change of the AC component Iw outputted from a lock-in amplifier 27 at each time when a reference signal (h) is inputted to the amplifier 27 that of the DC component IDC not passed through an AC amplifier 26 and these signals are analyzed to repeatedly calculate the value of double refraction phase difference at every definite time interval and, further, the value of stress corresponding to each value of double refraction phase difference is calculated.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はプラスチック等の高分子材料を延伸した際、材
料の塑性変形によって生ずる応力緩和現象を測定する装
置、特に測定の感度が高く、且つ材料の内部状態の微小
な変化に迅速に追従して応力の緩和状態を正確に把握し
得る応力緩和測定装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus for measuring the stress relaxation phenomenon caused by plastic deformation of a polymer material such as plastic when it is stretched, and in particular, an apparatus having high measurement sensitivity and The present invention relates to a stress relaxation measuring device that can quickly follow minute changes in the internal state of a material and accurately grasp the state of stress relaxation.

〔従来の技術] 高分子フィルム又は高分子繊維等の高分子材料は、製造
されたままの状態では分子が無配向であるか、あるいは
ほとんど等方的であり、高分子材料としての本来の長所
、すなわち■分子鎖方向の伸張抵抗が大きい、■曲がり
やすいが切断しにくい等の特性を持っていない。従って
、これらの特性を材料に付与するには、製品の製造過程
で材料を延伸させて分子配向を形成する必要がある。
[Prior Art] In the as-manufactured state of polymer materials such as polymer films and polymer fibers, the molecules are unoriented or almost isotropic, and their inherent advantages as polymer materials are That is, it does not have the following characteristics: 1) high resistance to stretching in the direction of the molecular chain, and 2 easy bending but difficulty in cutting. Therefore, in order to impart these properties to a material, it is necessary to stretch the material to form molecular orientation during the manufacturing process of the product.

しかし、延伸によって分子配向を生じさせるには、材料
の性質に適合した延伸量、雰囲気温度等を設定する必要
があるため(例えば雰囲気温度が、その材料のガラス転
移点Tg以下のとき分子配向を形成できない)、材料の
成形条件及び物性情報を得るためのテストが行われてい
る。以下、従来の代表的な試験機である延伸機について
説明する。
However, in order to cause molecular orientation by stretching, it is necessary to set the amount of stretching, ambient temperature, etc. that matches the properties of the material (for example, when the ambient temperature is below the glass transition point Tg of the material, molecular orientation is tests are being conducted to obtain information on the molding conditions and physical properties of the material. A stretching machine, which is a typical conventional testing machine, will be described below.

この延伸機は第3図に示すように、リボン状をした試験
片aの両端部を把持する上下のグリップb、cと、この
グリップb、cを上下方向に引張って試験片aに塑性変
形を起させ変形状態をそのまま保持する延伸部dと、延
伸後、前記試験片aに作用する引張荷重を検出し電気量
として出力するロードセルeと、このロードセルeから
経時的に送られてきた電気信号にもとづいて試験片内部
の引張応力を求める演算装置g等からなり、この延伸機
によると延伸直後、試験片aの内部に発生した応力緩和
現象を測定することができる。
As shown in Figure 3, this stretching machine has upper and lower grips b and c that grip both ends of a ribbon-shaped test piece a, and the grips b and c are pulled in the vertical direction to cause plastic deformation of the test piece a. a stretching section d that causes the test piece to maintain its deformed state; a load cell e that detects the tensile load acting on the specimen a after stretching and outputs it as an electric quantity; and an electric current sent from the load cell e over time. This stretching machine includes a calculation device g that calculates the tensile stress inside the test piece based on signals, and can measure the stress relaxation phenomenon that occurs inside the test piece a immediately after stretching.

〔発明が解決しようとする課題] しかし、前記の延伸機には次に述べるような問題点があ
った。
[Problems to be Solved by the Invention] However, the above-mentioned stretching machine had the following problems.

(i)ロードセルeの感度が鈍いため、検出のための時
間間隔を長く設定する必要がある(情報の取込みは早く
て数秒、通常は数拾秒ないし数分間隔となる)。
(i) Since the sensitivity of the load cell e is low, it is necessary to set the time interval for detection to be long (information is taken in at most several seconds, and usually at intervals of tens of seconds to several minutes).

(iill前項の結果、高速延伸した際の高分子フィル
ムの物性、すなわち応力緩和現象が分子レベルでどのよ
うになっているか、高速延伸と同等以上の速度で測定す
ることが困難であった。
(iii) As a result of the previous section, it was difficult to measure the physical properties of a polymer film during high-speed stretching, that is, how the stress relaxation phenomenon occurs at the molecular level, at a speed equivalent to or higher than high-speed stretching.

本発明は前述の問題点に鑑み、測定の感度が良く、また
材料を高速度で変形させたときの内部状態の微細な変化
に迅速に追従して正確に且つ精細に応力緩和現象を把握
できる応力緩和測定装置を提供することを課題とする。
In view of the above-mentioned problems, the present invention has good measurement sensitivity, and can quickly follow minute changes in the internal state when a material is deformed at high speed to accurately and precisely grasp stress relaxation phenomena. An object of the present invention is to provide a stress relaxation measuring device.

〔課題を解決するための手段] 前記の課題を解決する本発明の手段は、試験片の両端部
を引張って急速に塑性変形させ変形状態をそのまま保持
する延伸機と、位相を変調させた測定用の偏光を前記試
験片の中心部に照射し前記試験片を透過した光の偏向状
態を検出して前記試験片の内部に発生した複屈折の値を
経時的に測定し、更に測定した複屈折の各便から試験片
内部の引張応力緩和の値を求める高速複屈折測定装置と
を備えた応力緩和測定装置である。
[Means for Solving the Problems] The means of the present invention for solving the above problems include a stretching machine that pulls both ends of a test piece to rapidly deform it plastically and maintain the deformed state, and a measurement method that modulates the phase. The value of birefringence generated inside the test piece is measured over time by irradiating polarized light onto the center of the test piece and detecting the polarization state of the light that has passed through the test piece. This is a stress relaxation measuring device equipped with a high-speed birefringence measuring device that determines the value of tensile stress relaxation inside a test piece from each refraction.

〔作用〕[Effect]

(il試験片の中心部における内部応力の変化を複屈折
の変化に置き換えて検出するので、正確なデータを測定
することができる。
(Since changes in internal stress at the center of the il test piece are detected by replacing them with changes in birefringence, accurate data can be measured.

(ii)複屈折の測定には位相変調した測定光を使用す
るので、試験片による複屈折の変化を、測定光の楕円率
の変化としてとらえることが可能になり、測定の感度を
向上させることができる(複屈折値Δnの感度は10−
’であり、従来のロードセルによる感度の103〜10
’倍に相当する)。
(ii) Since phase-modulated measurement light is used to measure birefringence, changes in birefringence caused by the test piece can be interpreted as changes in the ellipticity of the measurement light, improving measurement sensitivity. (The sensitivity of the birefringence value Δn is 10-
', which is 103 to 10 the sensitivity of conventional load cells.
).

〔iii]位相変調した際の変調信号等を利用して測定
値を検出することにより、試験片の内部状態の変化に迅
速に追従して測定を行うことが可能になり、lOマイク
ロセコンドのオーダーの時間間隔でデータを取り込むこ
とができる。
[iii] By detecting the measured value using the modulation signal etc. when phase modulated, it is possible to quickly follow changes in the internal state of the test piece and perform measurements, making it possible to perform measurements on the order of lO microseconds. Data can be captured at time intervals of

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。第1
図及び第2図は本発明の一実施例を示すもので、この実
施例の装置の主要部は試験片1の両端を引張って所定量
だけ急速に塑性変形させ且つ変形状態をそのまま保持す
る延伸機2と、位相を変調させた測定用の光を前記試験
片1の中心部に照射し前記試験片1を透過した光の偏向
状態を検出して前記試験片1の内部で発生した複屈折の
値を経時的に測定し、更に測定した複屈折の僅から引張
応力緩和の一値を求める高速複屈折測定装置3等によっ
て構成されている。
Embodiments of the present invention will be described below with reference to the drawings. 1st
Figures 1 and 2 show an embodiment of the present invention, and the main part of the apparatus of this embodiment is a stretching method that pulls both ends of a test specimen 1 to rapidly deform it plastically by a predetermined amount and maintain the deformed state as it is. A device 2 is used to detect birefringence generated inside the test piece 1 by irradiating phase-modulated measurement light onto the center of the test piece 1 and detecting the polarization state of the light transmitted through the test piece 1. The device is comprised of a high-speed birefringence measurement device 3, etc., which measures the value of the birefringence over time, and further obtains a value of tensile stress relaxation from the measured birefringence.

延伸機2は第1図に示すように、リボン状のプラスチッ
クフィルム(幅10鵬以下、長さ約7011II11)
を試験片とし、この試験片1の中心部分30■を残して
その両端部を把持する上下のグリップ5.6と、このグ
リシジ5,6を同時に離間する方向に同じストローク量
だけ高速度〔最大ストローク量3011II11(上下
合計)のとき、約0.1秒]で引っ張る延伸部7と、試
験片1の材料の種類に応じて試験片1に負荷される引張
荷重及び引張変位を小刻みに調節する延伸部制御器8と
、前記試験片1、グリップ5,6及び延伸部7等を包囲
する恒温槽9(温度調整範囲約25〜360’C)等が
らなり、前記延伸部制御器8は、試験片1に負荷される
引張荷重を0.02kgfから5kgfまで5段階に、
また引張変位を0.01mmから30mmまテ0.01
mm単位で設定できるようになっている。
As shown in FIG.
is the test piece, and the upper and lower grips 5.6 grip both ends of the test piece 1, leaving the central part 30■, and the grips 5 and 6 are simultaneously separated by the same stroke amount at high speed [maximum When the stroke amount is 3011II11 (up and down total), the stretching part 7 is stretched for about 0.1 seconds], and the tensile load and tensile displacement applied to the test piece 1 are adjusted in small increments according to the type of material of the test piece 1. It consists of a stretching section controller 8, a constant temperature bath 9 (temperature adjustment range of about 25 to 360'C) surrounding the test piece 1, grips 5, 6, stretching section 7, etc., and the stretching section controller 8 includes: The tensile load applied to test piece 1 was divided into five stages from 0.02 kgf to 5 kgf.
In addition, the tensile displacement was increased from 0.01mm to 30mm by 0.01mm.
It can be set in mm units.

尚、図中の10は恒温槽9内の雰囲気温度を上昇させる
ヒーター、12は温度制御器、13は恒湯槽9内の雰囲
気温度を検出する熱電対、14は温度計、15は延伸部
7に組み込んであって試験片1に負荷された引張荷重を
検出して電気信号を発生するロードセル(又はストレイ
ンゲージ)、16はロードセルアンプであり、前記ロー
ドセル15は試験片1に負荷された実際の引張荷重が延
伸部制御器8によって設定された引張荷重と一致してい
るかどうかをチエツクする役割りを果たす。
In the figure, 10 is a heater that raises the atmospheric temperature in the constant temperature bath 9, 12 is a temperature controller, 13 is a thermocouple that detects the atmospheric temperature in the constant temperature bath 9, 14 is a thermometer, and 15 is the extension part 7. A load cell (or strain gauge) 16 is a load cell amplifier that is incorporated in the test piece 1 and generates an electric signal by detecting the tensile load applied to the test piece 1. It serves to check whether the tensile load matches the tensile load set by the extension section controller 8.

高速複屈折測定装置3は、レーザー用の電源17と、H
e−Ne(ヘリウム−ネオン)レーザー光を発生するレ
ーザ18と、前記レーザ18から送られたレーザー光を
直線偏光にする偏光子(グラントムソンプリズム)19
と、結晶軸を有する水晶に変調信号として例えば50K
Hzの交流電場を印加し、前記水晶の内部を光が透過す
る際の複屈折位相差をゼロから1/4波長まで連続的に
且つ周期的に変化させることによって、前記偏光子19
から送られた直線偏光を円偏光に、更に円偏光を直線偏
光へと連続的に変化させて位相変調した測定用の光jを
つくり、この測定用の光jを試験片1の中心部に入射さ
せる光位相変調器(例えば光弾性変調器等)20と、前
記試験片1を透過し且つ試験片1の内部で複屈折した光
を受光して直線偏光に変える検光子(グラントムソンプ
リズム)22と、この検光子22から入射した光を光電
変換する光検知器(ホトダイオード)23と、この光検
知器23から送られた電気信号を交流成分(変調された
測定光の位相差変化分及び試験片内部で発生した位相差
変化分を含む)と直流成分(前記位相差変化分以外の暗
電流等の成分)に分離し、前記交流成分から位相差変化
分を増幅して経時的に取り出す電気回路と、この電気回
路から出力された交流信号I。と直流信号111Cを用
いて複屈折位相差Andを演算によって求め、更に複屈
折の値から引張応力の値を求めるコンピュータ4等から
なり、前記光位相変調器20は光位相変調器駆動回路2
4によって駆動されるようになっている。
The high-speed birefringence measuring device 3 includes a laser power source 17 and an H
A laser 18 that generates an e-Ne (helium-neon) laser beam, and a polarizer (Glan-Thompson prism) 19 that converts the laser beam sent from the laser 18 into linearly polarized light.
For example, 50K is applied as a modulation signal to a crystal having a crystal axis.
By applying an alternating current electric field of Hz and continuously and periodically changing the birefringence phase difference when light passes through the inside of the crystal from zero to 1/4 wavelength, the polarizer 19
A phase-modulated measurement light j is created by continuously changing the linearly polarized light sent from the An optical phase modulator (for example, a photoelastic modulator) 20 to be made incident, and an analyzer (Glan-Thompson prism) that receives the light that has passed through the test piece 1 and is birefringent inside the test piece 1 and converts it into linearly polarized light. 22, a photodetector (photodiode) 23 that photoelectrically converts the light incident from the analyzer 22, and converts the electric signal sent from the photodetector 23 into AC components (phase difference changes of the modulated measurement light and (including the phase difference change generated inside the test piece) and a DC component (components such as dark current other than the phase difference change), and amplify the phase difference change from the AC component and extract it over time. An electric circuit and an AC signal I output from this electric circuit. The optical phase modulator 20 includes a computer 4, etc., which calculates the birefringence phase difference And using the DC signal 111C and the birefringence value, and further calculates the tensile stress value from the birefringence value.
4.

前記電気回路は光検知器23から送られた電気信号を増
幅するプリアンプ25と、このプリアンプ25から送ら
れた信号中の前記交流成分を取り出して増幅するACア
ンプ26と、このACアンプ26から送られた信号につ
いて前記光位相変調器用変調信号りをリファレンス信号
として同期検波(位相検波)を行うロックインアンプ2
7等からなる。
The electric circuit includes a preamplifier 25 that amplifies the electrical signal sent from the photodetector 23, an AC amplifier 26 that extracts and amplifies the AC component in the signal sent from the preamplifier 25, and a signal sent from the AC amplifier 26. A lock-in amplifier 2 performs synchronous detection (phase detection) on the received signal using the modulation signal for the optical phase modulator as a reference signal.
Consists of 7th magnitude.

尚、前記高速複屈折測定装置3は本願と同一の発明者に
よって提案された特開昭63−82345号(特願昭6
1−228814号)とほぼ同じ構成であるが、本願で
は延伸機と併用されるので、試験片1を回転及び傾動さ
せる構成を省略してもよい(試験片の引張方向が分子鎖
の方向と一致するので、試験片1の光学的な主軸、又は
進相軸等は自ら定まっており、これ等を検出する必要性
がすくない)。
The high-speed birefringence measurement device 3 is disclosed in Japanese Patent Application Laid-Open No. 63-82345 (Patent Application No. 63-82345), which was proposed by the same inventor as the present application.
1-228814), but in this application, since it is used in combination with a stretching machine, the structure of rotating and tilting the test piece 1 may be omitted (if the tensile direction of the test piece is the direction of the molecular chain). Since they match, the optical principal axis, fast axis, etc. of the test piece 1 are determined by themselves, and there is little need to detect them).

次に、本実施例の装置の取扱要領及び作動について説明
する。先ず、試験片1をグリップ5,6に取り付け、温
度制御器12を操作して恒温槽9内の雰囲気温度を所望
の温度に保持したのち、延、件部制御器8を操作して試
験片1に対する引張荷重及び引張変位を設定し、更にレ
ーザー18を起動して測定用の光jを試験片1に入射さ
せるとテストの準備が完了する。
Next, the handling procedure and operation of the device of this embodiment will be explained. First, the test piece 1 is attached to the grips 5 and 6, and the temperature controller 12 is operated to maintain the atmospheric temperature in the thermostatic chamber 9 at a desired temperature. The preparation for the test is completed by setting the tensile load and tensile displacement for test piece 1, and activating the laser 18 to make the measurement light j enter the test piece 1.

ここで延伸部7を作動させると、グリップ5゜6が瞬時
に試験片1を延伸し引張変位をそのままの状態で保持す
る。一方、試験片1は延伸完了後、各部分における引張
応力が均一になるように塑性変形を起し、試験片1の中
心部分(測定部分)における引張応力が経時的に緩和さ
れると共に、試験片1を透過した光の複屈折も引張応力
にほぼ比例した状態で遂次減小する(塑性変形時も弾性
変形時と同時に応力と複屈折は比例関係にある)。
When the stretching section 7 is activated, the grips 5.6 instantaneously stretch the test piece 1 and maintain the tensile displacement as it is. On the other hand, after completion of stretching, the test piece 1 undergoes plastic deformation so that the tensile stress in each part becomes uniform, and the tensile stress in the central part (measurement part) of the test piece 1 is relaxed over time, and The birefringence of the light transmitted through the piece 1 also gradually decreases in approximately proportion to the tensile stress (stress and birefringence are in a proportional relationship during plastic deformation and at the same time as during elastic deformation).

そして、この複屈折の変化状態は、例えば50KHzの
リファレンス信号りがロックインアンプ27に入力する
度ごとにロックインアンプ27から出力される交流成分
I8の変化と前記ACアンプ26を通過しなかった直流
成分IDCの変化としてコンピュータ4に入力され、コ
ンピュータ4はこれ等の信号を解析して第2図に示すよ
うに複屈折位相差の値Δndを一定時間間隔Δt(10
マイクロセカンド)ごとに反覆して求め、更に複屈折位
相差の多値Δndに対応する応力の値を算出する。
The state of change in birefringence is caused by, for example, a change in the AC component I8 output from the lock-in amplifier 27 each time a 50 KHz reference signal is input to the lock-in amplifier 27, and a change in the AC component I8 that does not pass through the AC amplifier 26. These signals are input to the computer 4 as changes in the DC component IDC, and the computer 4 analyzes these signals and calculates the birefringence phase difference value Δnd at a fixed time interval Δt(10
The stress value corresponding to the multi-value Δnd of the birefringence phase difference is further calculated.

尚、前記!w及びIncを解析して複屈折を求める手段
は公知であるので説明を省略する。
Furthermore, as mentioned above! Since the means for determining birefringence by analyzing w and Inc is well known, the explanation thereof will be omitted.

試験片中心部の応力緩和状態を複屈折の変化に置き換え
て測定するので、延伸直後の引張応力の変化を正確に把
握することができる。
Since the stress relaxation state at the center of the test piece is measured by replacing it with the change in birefringence, it is possible to accurately grasp the change in tensile stress immediately after stretching.

また、変調信号等を利用して測定データを取り込むので
、材料の内部状態の変化に迅速に追従して測定を行うこ
とができる。
Furthermore, since the measurement data is captured using a modulated signal or the like, it is possible to perform measurements while quickly following changes in the internal state of the material.

更に、複屈折の測定には位相変調した測定光を用い、測
定結果を光電変換して電気的に処理するので、S/N比
を高めることが可能になり、測定の感度を向上させるこ
とができる。
Furthermore, birefringence measurement uses phase-modulated measurement light, and the measurement results are photoelectrically converted and processed electrically, making it possible to increase the S/N ratio and improve measurement sensitivity. can.

尚、本発明は前述の実施例にのみ限定されるものではな
く、例えばロックインアンプに入力するリファレンス信
号は、変調信号を利用する代り乙こ独立に発生させた別
の信号を利用してもよいこと等、その他本発明の要旨を
逸脱しない範囲内で種々の変更を加え得ることは勿論で
ある。
Note that the present invention is not limited to the above-described embodiments; for example, instead of using a modulation signal, the reference signal input to the lock-in amplifier may be generated using another signal generated independently. It goes without saying that various other modifications may be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上に述べたごとく本発明は次の優れた効果を発揮する
As described above, the present invention exhibits the following excellent effects.

[1]試験片の中心部における内部応力の変化を光の複
屈折の変化に置き換えて検出するので、試験片内部の微
小変化を正確なデータとして測定することができる。
[1] Since changes in internal stress at the center of the test piece are detected by replacing them with changes in birefringence of light, minute changes inside the test piece can be measured as accurate data.

〔11〕複屈折の測定には位相変調した測定光を使用す
るので、試験片による複屈折の変化を、測定光の楕円率
の変化としてとらえることが可能になり、測定の感度を
向上させることができる(複屈折値Δnの感度は10−
8であり、従来のロードセルによる感度の103〜10
4倍に相当する)。
[11] Since phase-modulated measurement light is used to measure birefringence, it is possible to interpret changes in birefringence due to the test piece as changes in the ellipticity of the measurement light, improving measurement sensitivity. (The sensitivity of the birefringence value Δn is 10-
8, and the sensitivity of conventional load cells is 103 to 10.
(equivalent to 4 times).

〔山〕位相変調した際の変調信号等を利用して測定値を
検出するので、試験片の内部状態の変化に迅速に追従し
て測定を行うことが可能になり、10マイクロセコンド
のオーダーの時間間隔でデータの取込みを行うことがで
きる。
[Mountain] Since the measured value is detected using the modulation signal obtained when phase modulation is performed, it is possible to quickly follow changes in the internal state of the test piece and perform measurements, and it is possible to perform measurements on the order of 10 microseconds. Data can be captured at time intervals.

C1v)前記[i)〜〔i11]項の結果、高分子材料
等を延伸した際の応力緩和現象を正確に且つ精細に把握
することが可能になり、高分子フィルム及び高分子繊維
等の材料品質の向上を図ることができる。
C1v) As a result of the above items [i) to [i11], it becomes possible to accurately and precisely grasp the stress relaxation phenomenon when stretching polymeric materials, etc. Quality can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である装置のプロ。 り図、第2図は測定結果の説明図、第3図は従来の装置
のブロック図である。 1・・・試験片     2・・・延伸機3・・・高速
複屈折測定装置 4・・・コンピュータ  18・・・レーザー19・・
・偏光子    20・・・光位相変調器22・・・検
光子    23・・・光検知器24・・・光位相変調
器駆動回路 27・・・ロックインアップ
FIG. 1 is a diagram of a device that is an embodiment of the present invention. 2 is an explanatory diagram of measurement results, and FIG. 3 is a block diagram of a conventional device. 1... Test piece 2... Stretching machine 3... High speed birefringence measuring device 4... Computer 18... Laser 19...
- Polarizer 20... Optical phase modulator 22... Analyzer 23... Photodetector 24... Optical phase modulator drive circuit 27... Lock-in up

Claims (1)

【特許請求の範囲】[Claims] 試験片の両端部を引張って急速に塑性変形させ変形状態
をそのまま保持する延伸機と、位相を変調させた測定用
の偏光を前記試験片の中心部に照射し前記試験片を透過
した光の偏向状態を検出して前記試験片の内部に発生し
た複屈折の値を経時的に測定し、更に測定した複屈折の
各値から試験片内部の引張応力緩和の値を求める高速複
屈折測定装置とを備えたことを特徴とする応力緩和測定
装置。
A stretching machine that pulls both ends of a test piece to rapidly deform it plastically and maintain the deformed state, and a stretching machine that irradiates the center of the test piece with phase-modulated polarized light for measurement and the light that passes through the test piece. A high-speed birefringence measuring device that detects the deflection state, measures the value of birefringence generated inside the test piece over time, and further calculates the value of tensile stress relaxation inside the test piece from each measured birefringence value. A stress relaxation measuring device characterized by comprising:
JP33234590A 1990-11-29 1990-11-29 Stress relaxation measuring apparatus Pending JPH04198842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33234590A JPH04198842A (en) 1990-11-29 1990-11-29 Stress relaxation measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33234590A JPH04198842A (en) 1990-11-29 1990-11-29 Stress relaxation measuring apparatus

Publications (1)

Publication Number Publication Date
JPH04198842A true JPH04198842A (en) 1992-07-20

Family

ID=18253925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33234590A Pending JPH04198842A (en) 1990-11-29 1990-11-29 Stress relaxation measuring apparatus

Country Status (1)

Country Link
JP (1) JPH04198842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095252A (en) * 2009-09-29 2011-05-12 Sumitomo Bakelite Co Ltd Apparatus for evaluating property of resin film
CN104833786A (en) * 2015-04-17 2015-08-12 江苏大学 Detection method of hot shear cutter material laser shock residual stress thermal relaxation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382345A (en) * 1986-09-26 1988-04-13 Orc Mfg Co Ltd Double refraction measurement and display
JPS6325356B2 (en) * 1979-03-08 1988-05-25 Citizen Watch Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325356B2 (en) * 1979-03-08 1988-05-25 Citizen Watch Co Ltd
JPS6382345A (en) * 1986-09-26 1988-04-13 Orc Mfg Co Ltd Double refraction measurement and display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095252A (en) * 2009-09-29 2011-05-12 Sumitomo Bakelite Co Ltd Apparatus for evaluating property of resin film
CN104833786A (en) * 2015-04-17 2015-08-12 江苏大学 Detection method of hot shear cutter material laser shock residual stress thermal relaxation

Similar Documents

Publication Publication Date Title
Beiermann et al. The effect of polymer chain alignment and relaxation on force‐induced chemical reactions in an elastomer
EP3502662B1 (en) Dual-wavelength laser flash raman spectroscopy method and system for thermophysical characterization of 2d nanomaterial
Stein et al. Dynamic birefringence of high polymers II
CN102435421B (en) Test method and test system for polarization of semiconductor laser
US20040129867A1 (en) Force measurement system using polarization-state modulated optical polarimetry
Leal-Junior et al. Dynamic compensation technique for POF curvature sensors
US5168325A (en) Interferometric measurement of glucose by refractive index determination
Stein et al. The dynamic birefringence of high polymers
CN115060187B (en) Distributed optical fiber strain sensing performance detection system and method
WO2016117796A2 (en) Optical frequency and intensity modulation laser absorption spectroscopy apparatus, and optical frequency and intensity modulation laser absorption spectroscopy method
JPH04198842A (en) Stress relaxation measuring apparatus
CN108387333A (en) A kind of silicon thin film material stress detecting system
EP0616694B1 (en) Fiber optic polarization maintaining fused coupler fabricating apparatus
JP3308173B2 (en) Urine test method and urine test apparatus used therefor
CN117553927A (en) Wide-spectrum and wide-range high-precision birefringence phase difference measuring device
US5929993A (en) Total film retardance monitoring system, and method of use
JP3442179B2 (en) Phase difference measurement device
US7145646B2 (en) On-line tension measurement in an optical fiber
CN105841825B (en) A kind of wavelength resolution monitoring method based on liquid crystal on silicon
KR102596779B1 (en) Method and Apparatus for measuring optical property characterization of 3D printing structures with micro-optic Mach-Zehnder interferometer
CN118129955A (en) Stress detection system and stress detection method based on modulatable weak value amplification technology
SU1663410A1 (en) Method and apparatus for measuring deformations
Yu et al. Novel Polariscope to Extract Multiple-Parameter from Twisted Nematic Liquid Crystal
JPS62182627A (en) Photoelastic constant measurement method
EP0668613A1 (en) Method of determining the concentration of oxygen in silicon crystals