[go: up one dir, main page]

JPH04197702A - Method for embedding reinforcing string - Google Patents

Method for embedding reinforcing string

Info

Publication number
JPH04197702A
JPH04197702A JP33177490A JP33177490A JPH04197702A JP H04197702 A JPH04197702 A JP H04197702A JP 33177490 A JP33177490 A JP 33177490A JP 33177490 A JP33177490 A JP 33177490A JP H04197702 A JPH04197702 A JP H04197702A
Authority
JP
Japan
Prior art keywords
extruder
reinforcing bars
molded product
molded item
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33177490A
Other languages
Japanese (ja)
Inventor
Satoshi Kamiguchi
神口 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP33177490A priority Critical patent/JPH04197702A/en
Publication of JPH04197702A publication Critical patent/JPH04197702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To prevent a molded item made of a cement mortal extruded from an extruder under uncured condition from falling down and to attempt to keep the shape by embedding a long fiber or a fine metal wire in the thickness of the wall of the molded item while it is kept under stretched condition over the inside and outside of the extruder. CONSTITUTION:When a cement mortal 1 is extruded from a nozzle 3 of an extruder 2 to obtain a molded item 4, a string-like or a net-like reinforcing string 5 to be embedded continuously in the thickness of the wall of the molded item 4 is wound on a brake drum 6 on this side of the extruder 2 and it passes through the inside of the extruder 2 and moves at the same speed as extrusion speed (a) (the arrow mark) of the molded item 4 from the nozzle 3 and in the same direction while it is stretched by a remarkable tensile force between a stretcher 7 in front of the extrusion side. At the same time, the molded item 4 moves on a belt conveyer 9 moving synchronously with the extrusion speed (a). In this case, as the reinforcing string 5 embedded in the thickness or the wall of the molded item 4, when it is a metal wire, a steel fine wire usually with a diameter of 1.0mm or smaller, a stainless steel fine wire or a twisted wire of these metal fine wires are used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はセメントモルタルを押出機により押出成形す
るとき、比較的薄内て長尺の成形品の壁厚内に、連続す
る補強筋をより効果的に配置する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides continuous reinforcing bars within the wall thickness of a relatively thin and long molded product when cement mortar is extruded using an extruder. Concerning how to deploy effectively.

〔従来の技術9粒状や粉状の骨材と適宜の水を加えて練
られたセメントモルタルを押出機により吐出させて、板
や円筒その他の中空体となす成形品は既に開発され製品
化されているか、その補強方法については主としてセメ
ントモルタルに有機無機の短繊維を混入するか、又は平
板状や中空体の壁厚内に比較的線径の太い鉄筋や鉄筋網
を配置して補強筋とする方法が従来用いられる通常の補
強方法であった。
[Conventional technology 9 Molded products made into plates, cylinders, and other hollow bodies by extruding cement mortar mixed with granular or powdered aggregate and appropriate water using an extruder have already been developed and commercialized. The main methods of reinforcement include mixing organic and inorganic short fibers into cement mortar, or placing relatively thick reinforcing bars or a reinforcing bar network within the wall thickness of a flat or hollow body. This method was the usual reinforcement method used in the past.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しっ)し、この従来の方法では例えば短繊維混入の場合
には、押出成形品の壁厚はかなり薄肉とすることが出来
る長所があるが、反面繊維とセメントモルタルとの付着
力が小さく繊維の持つ引張り強さを充分発揮させられな
゛いので必要な補強が期待出来ない。従って結果として
成形品えの外荷重に対するひび割れ強さの一補強にはあ
まり有効には作用しないし、同じ理由で成形品の破壊に
至るまでの靭性値も少なく時にはひひ割れ即破壊となる
ことかある。
However, this conventional method has the advantage that the wall thickness of the extruded product can be made quite thin when short fibers are mixed in, but on the other hand, the adhesion force between the fibers and cement mortar is small and the fibers The necessary reinforcement cannot be expected because the tensile strength of the material cannot be fully demonstrated. Therefore, as a result, it does not work very effectively in reinforcing the cracking strength of the molded product against external loads, and for the same reason, the toughness value until fracture of the molded product is low, and sometimes it cracks and breaks immediately. be.

セメントモルタルによる押出成形品で短繊維補強の最も
大きな欠点は成形品か押出機より吐出された時セメント
モルタルは未硬化の状態であり、例えば[」形断面のよ
うな成形品が吐出された場合両側の直立壁は、セメント
モルタルか相当程度以上に高粘度でなければモルタル自
身の重量により倒伏しようとする。しかし通常の押出機
では、いかに加水1を一定に調整しても吐出されたセメ
ントモルタルの粘度を完全に一定に保つことは至難の技
で、7モルタル粘度は硬軟の彼を繰り返すので、柔らか
いモルタルの時には倒伏が生じ不良品の発生率は非常に
高いのが現状である。短繊紺の補強効果は成形品か硬化
して初めて発揮されるので未硬化の時には成形品の形状
保持力は全く無いと言っても過言ではない。  。
The biggest drawback of short fiber reinforcement in extruded products made from cement mortar is that the cement mortar is in an unhardened state when the product is discharged from the extruder. The upright walls on both sides will tend to collapse under the weight of the mortar itself, unless the cement mortar has a considerably high viscosity. However, with a normal extruder, it is extremely difficult to maintain the viscosity of the discharged cement mortar completely constant no matter how much water is adjusted to a constant level. The current situation is that during this period, the product collapses and the incidence of defective products is extremely high. It is no exaggeration to say that the reinforcing effect of short navy blue fibers is exhibited only after the molded product is cured, so it has no ability to retain the shape of the molded product when it is uncured. .

次に鉄筋を押出成形品の補強筋として用いる場合には線
状と網状の場合かあるが、いずれの場合にも使用される
線径は太く、それ自身の剛性も大きく押出機に挿入する
位置を調整すれば成形品内での鉄筋位置の保持は比較的
容易となるうえ、外荷重に対する破壊値を増加しより大
きな靭性も得られるか、ひび割れ強さに対し丁の補強効
果は少なく、ひび割れ発生による鉄筋の腐食か問題とな
りUい。通常セメント二次製品では鉄筋のカブリについ
て規制があり、かなり良好な製法でも片側ニ最小限15
ミリは必要とされ、当然壁厚は30ミリ以上となる。従
ってこの点からも、鉄筋を用いることによる薄肉製品の
製作には大きな制約かあるのである。
Next, when reinforcing bars are used as reinforcing bars for extruded products, they can be either linear or net-shaped, but in either case, the diameter of the wire used is thick and its own rigidity is large, making it easy to insert into the extruder. By adjusting the reinforcing bar position within the molded product, it is relatively easy to maintain the reinforcing bar position within the molded product, and the fracture value against external loads can be increased to obtain greater toughness. This may cause a problem of corrosion of the reinforcing steel. Normally, there are regulations regarding fogging of reinforcing bars in secondary cement products, and even with a fairly good manufacturing method, the minimum amount of fog on one side is 15%.
millimeters, and the wall thickness will naturally be 30 mm or more. Therefore, from this point of view as well, there are major restrictions on the production of thin-walled products using reinforcing bars.

本発明はこのように押出成形品の補強の為に、短繊維や
径の太い鉄筋を用いるのではなく、連続した長繊維や細
い金属線を線状や網状に加工したものを用い、これを押
出機の内外に渡って緊張状態に保持しながら成形品壁厚
内に埋設することによって、柔軟でしなやかな補強材料
にあたかも大きな剛性をもつ材料と等しい作用を動かせ
、未硬化状態にある押出機から吐出されたセメントモル
タルの成形品の倒伏を防ぎ形状保持の効果を得ると共に
、その埋設位置を壁内外において規定位置に保持し、更
に繊維類を使用するときセメントモルタルのマトリック
スに強固に付着ゼしめるために、繊維に硬化性流動体を
含浸させ付着力を増大し、それらの総合的な効果によっ
て補強をより一層有効にし、結果としてより薄肉てあり
ながら長尺高強度の成形品を得る目的の為になされたも
のである。
In order to reinforce extruded products, the present invention does not use short fibers or thick reinforcing bars, but instead uses continuous long fibers or thin metal wires processed into linear or net shapes. By holding the extruder in a tensioned state and embedding it within the wall thickness of the molded product, the soft and pliable reinforcing material can act as if it were a material with great rigidity, allowing the extruder to remain in an uncured state. It prevents the cement mortar molded product discharged from collapsing and retains its shape, and also maintains the buried position at a specified position inside and outside the wall.Furthermore, when using fibers, it firmly adheres to the cement mortar matrix. In order to tighten the fibers, the fibers are impregnated with a curable fluid to increase their adhesion, and their overall effect makes reinforcement even more effective.As a result, the purpose is to obtain long, high-strength molded products with thinner walls. It was done for.

〔問題を解決するための手段〕[Means to solve the problem]

以上のような従来技術による各種の問題を解決するため
になされた、本発明の手段について第1図以下によって
説明する。
The means of the present invention, which was made to solve the various problems of the prior art as described above, will be explained with reference to FIG. 1 and subsequent figures.

第1図は、例として断面か平板状のものを示したか、勿
論他の断面形であってもよいが、まずセメントモルタル
1を押出機2の吐出口3から吐出して成形品4を得る時
の押出機2の本体及び前後の装置の縦断面図である。成
形品4の壁厚内に連続して埋設される線状又は網状の補
強筋5は押出機2の手前のブレーキドラム6に巻き取ら
れており、押出機2の内側を通過して吐出側前方の引張
機7との間で相当の引張力で緊張されながら、成形品4
の吐出口3からの吐出速度a(矢印)に等しく且つ同一
の方向に移動する。図では同時に成形品4は吐出速度a
に同調して勲<ベルトコンベアー9に乗って移動するよ
うになっている。ここで成形品4の壁厚内に埋設される
補強筋5は金属線の場合通常1.OミIJ径かそれ以下
の鋼細線やステンレス細線又はそれら金属細線のより線
が、又ガラスや炭素等の無機繊維やアラミドζカラミロ
ン等の有機繊維の連続した長繊維の状態で使用される。
FIG. 1 shows a cross-section or a flat plate as an example; of course, other cross-sectional shapes are also possible, but first, cement mortar 1 is discharged from the discharge port 3 of the extruder 2 to obtain the molded product 4. FIG. 2 is a longitudinal cross-sectional view of the main body and front and rear devices of the extruder 2 at the time of the present invention. A linear or mesh reinforcing bar 5 that is continuously embedded within the wall thickness of the molded product 4 is wound around a brake drum 6 in front of the extruder 2, and passes through the inside of the extruder 2 to the discharge side. The molded product 4 is stretched with a considerable tensile force between it and the tension machine 7 in front.
The discharge speed a (arrow) from the discharge port 3 is equal to and moves in the same direction. In the figure, the molded product 4 is discharged at a speed a
It is designed to move along conveyor belt 9 in sync with Isao. Here, if the reinforcing bar 5 buried within the wall thickness of the molded product 4 is a metal wire, it is usually 1. Steel wires, stainless steel wires, or strands of these metal wires with diameters of Omi IJ or smaller are used, as well as continuous long fibers of inorganic fibers such as glass and carbon, and organic fibers such as aramid ζ calamilon.

第1図では断面図として表はされているので補強筋5は
単線の状態の如くであるが、上記金属線や繊維類を用い
て網状に加工されていても;、・ 71い。単線状の場合は、単線が押出機2に貫入する貫
入孔8は補強筋5の単線がどうにか貫入し得る細孔を明
けて貫入孔8とするだけで、押出機内のセメントモルタ
ルは補強筋5の移動に連れて押出機内に引き込まれるの
で、貫入孔8かラモルタルか洩出することは無い。・し
かし補強筋5が網状の場合は第1図の貫入孔8に代わっ
て第4図に示すように、用いる網幅よりや\幅の広い弾
性体等で作られた広口の貫入板14を押出機2の貫入孔
側に取り付け、網状体の補強筋5が通過する部分、−に
セメントモルタル1の逆流を防ぐ逆止弁部15)=、 フ大設けておくとよい。又引張機7の補強筋の巻取り速
度は成形品4の吐出速度a(矢印)と等速量方向であり
通常電気的に作動する速度同調機が用いられる。更にブ
レーキドラム6はブレーキトルクを調整可能にしておけ
ば補強筋5の緊張力を加減出来、後に説明する第5図の
如く断面が口型の押出し成形品4の両側の直立壁16の
セメントモルタルの未硬化時に於ける倒伏を防く形状保
持の効果もある。
In FIG. 1, the reinforcing bar 5 is shown as a cross-sectional view, so it appears to be a single wire, but even if it is processed into a net shape using the metal wire or fibers mentioned above; In the case of a single wire, the penetration hole 8 through which the single wire penetrates into the extruder 2 is simply created by opening a small hole through which the single wire of the reinforcing bar 5 can somehow penetrate, and the cement mortar in the extruder passes through the reinforcing bar 5. Since it is drawn into the extruder as it moves, it will not leak from the penetration hole 8 or the la mortar. -However, if the reinforcing bar 5 is in the form of a net, instead of the penetration holes 8 in FIG. 1, as shown in FIG. It is preferable to install a large check valve part 15) attached to the penetration hole side of the extruder 2 and prevent backflow of the cement mortar 1 at the part through which the reinforcing bars 5 of the net-like body pass. The winding speed of the reinforcing bars of the tensile machine 7 is equal to the discharge speed a (arrow) of the molded product 4, and an electrically operated speed synchronizer is usually used. Furthermore, if the braking torque of the brake drum 6 is made adjustable, the tension of the reinforcing bars 5 can be adjusted, and as shown in FIG. It also has the effect of retaining its shape by preventing it from collapsing when it is not yet cured.

第1図では引張機7もブレーキドラム6も共に円筒巻取
り式のものを例として挙げたか、引張機7に油圧式のピ
ストン方式を又ブレーキトラム6のトルク調整に機械式
や電気式となすなと、緊張の保持や吐出速度の同調など
は種々の方法かあるのでその選択は自由である。また成
形品内の補強筋の緊張程度を総て同一とする必要はなく
、強弱のあるのは当然であり時には緊張されないものを
含んでいてもよい。更に補強筋5の存在に加えて短繊維
を混入したものであってもこの発明の効果を減するもの
ではない。
In Fig. 1, both the tensioning machine 7 and the brake drum 6 are cylindrical winding types, or the tensioning machine 7 uses a hydraulic piston type, and the torque adjustment of the brake tram 6 uses a mechanical or electric type. There are various methods for maintaining tension and synchronizing the ejection speed, so the choice is free. Furthermore, it is not necessary that the tension of the reinforcing bars in the molded product is all the same; it is natural that the reinforcing bars in the molded product have different strengths and weaknesses, and some reinforcing bars may not be tensioned at times. Furthermore, even if short fibers are mixed in addition to the presence of reinforcing bars 5, the effects of the present invention will not be diminished.

次に請求項2については、例として第2図に示す押出機
2内の縦断面・図である。第2図の補強筋5は押出機2
内に設けられた位置決め用の治具10を経て吐出口3に
至るようになっていて、治具10は押出機2の貫入孔8
から吐出口3迄の間に1個又は複数個取り付けることが
出来る。そのの形状は第2図の治具10に示す如く台状
にしたものや治具10Aの有孔柱状にしたもの等種々考
えられるが要するに補強筋5が成形品4の壁厚内の規定
の位置に埋設されるようにすれば良い。しかしこれらの
治具10の他に従来の押出機のセメントモルタルの吐出
口3側に近く、モルタルの吐出状態を調整するためにそ
の流れを制御するための調整板を取り付けたり、又吐出
口3に到るに従い1顆次セメントモルタルの通過部分の
断面積を絞り高密度のモルタルを吐出させる等の装置や
方法を314することは本発明においても有益に作用す
るので利用するとよい。
Next, regarding claim 2, it is a vertical cross-sectional view of the interior of the extruder 2 shown in FIG. 2 as an example. The reinforcing bar 5 in Fig. 2 is the extruder 2.
It is designed to reach the discharge port 3 through a positioning jig 10 provided inside the extruder 2, and the jig 10 is connected to the penetration hole 8 of the extruder 2.
One or more can be attached between the discharge port 3 and the discharge port 3. Various shapes can be considered, such as a table-like shape as shown in the jig 10 in FIG. It is sufficient if it is buried in the position. However, in addition to these jigs 10, an adjustment plate is installed near the cement mortar discharge port 3 of the conventional extruder to control the flow of mortar in order to adjust the discharge state of the mortar. It is advantageous to use a device or method for ejecting high-density mortar by narrowing the cross-sectional area of the passage of the first condyle cement mortar as the process progresses to the present invention.

更に第3図は請求項3の説明のための縦断面図である。Further, FIG. 3 is a longitudinal sectional view for explaining claim 3.

この図は補強筋5を巻き取ったブレーキドラム6と押出
機2の貫入孔8との間にあって補強筋5は貫入孔8に入
る手前で、案内ローラー13によって容器11に入れら
れた硬化性流動体12の中をくくらせシの液を繊維に含
浸させた状態て押出機2内に送られるのである。これは
繊維状のものの場合押出機2内にあるセメントモルタル
1は通常高粘度であるので、このモルタルは繊維の表面
には付着するが、含浸する迄には至らないコ、−) 郷か多(、成形品の壁内で繊維が遊離した存在とニー なり補強効果が著しく低下する。しかし硬化性流動体]
2を含浸させておけば、成形品壁内において繊維自身も
硬化し又マトリックスのセメントモルタルとの付着力も
増大しその補強効果は一層増大するのである。別の利用
方法として含浸さゼた硬化性流動体を硬化させて繊維に
大きな剛性を与えてから用いることもめる。この場合は
繊維が既に大きな剛性を持つので先に述へた線径の太い
鉄筋の場合と同様の用い方か出来るが、通常この場合に
おいても繊維を貫入孔3に挿入する前に、その表面に硬
化性流動体12を塗布してから用いるとよい。 この硬
化性流動体12としては、セメントスラリー単味の場合
や液状樹脂としてエポキシ樹脂、ウレタン樹脂、アクリ
ル樹脂、不飽和ボーノエステル樹脂かある。エマルンヨ
ンのばあいとしてエポキシ、アクリルの樹脂エマルンヨ
ンなとが用いられる。又セメントと樹脂の混合モルタル
としても利用される。
In this figure, the reinforcing bar 5 is located between the brake drum 6 on which the reinforcing bar 5 is wound and the penetration hole 8 of the extruder 2, and the reinforcing bar 5 is placed before entering the penetration hole 8, and the hardening fluid is put into the container 11 by the guide roller 13. The fibers are impregnated with the liquid inside the body 12 and sent into the extruder 2. This is because in the case of fibrous materials, the cement mortar 1 in the extruder 2 usually has a high viscosity, so this mortar adheres to the surface of the fibers, but does not impregnate them. (The presence of loose fibers within the wall of the molded product causes a significant decrease in the reinforcing effect. However, the curable fluid]
If impregnated with 2, the fibers themselves will harden within the wall of the molded product, and the adhesion force with the cement mortar of the matrix will increase, further increasing its reinforcing effect. Another use is to cure the impregnated curable fluid to impart greater stiffness to the fibers before use. In this case, since the fibers already have high rigidity, they can be used in the same way as the case of reinforcing bars with large wire diameters mentioned above, but in this case as well, the surface of the fibers is usually It is preferable to use the curable fluid 12 after applying the curable fluid 12 thereon. The curable fluid 12 may be a cement slurry alone or a liquid resin such as an epoxy resin, urethane resin, acrylic resin, or unsaturated bonoester resin. In the case of emulsion, epoxy and acrylic resin emulsion are used. It is also used as a mortar mixture of cement and resin.

〔作用と効果〕[Action and effect]

本発明の効果として、本発明になる押出成形品と従来法
による成形品の強度を比較した。
As an effect of the present invention, the strength of an extrusion molded product according to the present invention and a molded product made by a conventional method were compared.

両者共にセメントモルタルの配合はセメントと粉体骨材
を等量に又同一水比で混練したものを用い、形状は本発
明のものと短繊維混入の従来品は共に幅40ミリ厚さ1
2ミリ長さ160ミリとし、従来品の鉄筋補強のものは
幅厚さ共に40ミリ長さ160ミIJとした。又本発明
の成型品にはテックス2400番の耐アルカリ性ガラス
ロービングを幅40ミリ部ス゛e底面部に5本をほぼ当
間隔に緊張を加えて直線1゛ゝ: ≧状に配置した。又従来法の短繊維混入のものには5ミ
リ長さのアラミド繊維をセメント量に対して1%加えた
。従来法の鉄筋補強のものには長さ155ミリ径2,3
ミリの鉄筋2本を厚さのほぼ中間に埋設した。
The cement mortar in both cases uses cement and powder aggregate mixed in equal amounts and in the same ratio of water, and the shapes of both the inventive one and the conventional one containing short fibers are 40 mm wide and 1 mm thick.
2 mm long and 160 mm long, and the conventional product reinforced with reinforcing steel has a width and thickness of 40 mm and a length of 160 mm IJ. In addition, in the molded product of the present invention, five alkali-resistant glass rovings of Tex No. 2400 were placed on the bottom surface of a 40 mm wide section in a straight line of 1.0 cm by applying tension at approximately equal intervals. Furthermore, in the case of the conventional method in which short fibers were mixed, 5 mm long aramid fibers were added at 1% based on the amount of cement. Conventional reinforcing steel has a length of 155 mm and a diameter of 2.3 mm.
Two mm-thick reinforcing bars were buried approximately in the middle of the thickness.

荷重試験はイン久トロン試験器を用い、間隔X40ミリ
の支点上に長さ方向に試験片を置き、その中央上部から
加圧刃を当てこれに荷重を加え、荷重値と撓みの曲線か
ら最初の線の変位点を試験片のひび割れ発生の荷重値と
し、この値から曲げ強さを算出した。各試験片は3個を
もって1組みと1−その平均値を第1表に示した。
For the load test, use an Inkutron tester, place the test piece in the length direction on fulcrums with an interval of 40 mm, apply a pressure blade from the upper center of the test piece, apply a load to it, and calculate the initial value from the load value and deflection curve. The displacement point of the line was taken as the load value at which cracks occurred in the test piece, and the bending strength was calculated from this value. Table 1 shows a set of three test pieces and their average values.

第1表゛ 注1) ひび割れ荷重  Kg 注2) 曲げ強さ    K g / Crn ′第1
表の結果から見ても従来、の短繊維補強や鉄筋補強の場
合に比較して本発明の長繊維によるひひ割れに対する補
強効果の優秀性が充分理解出来る。
Table 1 Note 1) Crack load Kg Note 2) Bending strength K g / Crn '1st
From the results shown in the table, it can be fully understood that the long fibers of the present invention have a superior reinforcing effect against cracks compared to conventional short fiber reinforcement or reinforcing steel bars.

次に形状か口形・て外側寸法か側面高さ125ミ’J底
面幅150ミリ、又側面の壁厚は上部が7′ミリ下部か
9ミリ底面部9ミリの押出成形品の形状保持能力を、本
発明のものと短繊維を用いる従来法のものとて、前記ひ
び割れ試験のものと同一のセメントモルタル配合のもの
を用いて、その差を判定することにした。本発明の場合
、補強筋5としてのガラスローロービングを片側の直立
壁16の上部から約1センチ間隔に4本を、両側で合計
8本を緊張状態になしたまま吐出し口形に成形した。そ
の状態を第5図に示すか、図では複雑さを避は理解し易
(するために本発明の補強筋5の緊張したガラスロービ
ングが両側の直立壁16の上部の各1木だけを表し、他
の個所の総ての補強筋5と引張機7を省略した吐出側の
見取り図である。又短繊維を用いる従来法の場合は緊張
したガラスロー穎 、゛ピングを除けば第6図と同じ形状寸法で押し出し、
両者共に成形品4は吐出速度aと同じ方向速度で動くベ
ルトコンベアー9によって移動させた。
Next, consider the shape retention capacity of an extruded product with a mouth shape, external dimensions, side height 125 mm, bottom width 150 mm, and side wall thickness of 7 mm at the top and 9 mm at the bottom. We decided to use the same cement mortar composition as in the cracking test to determine the difference between the present invention and the conventional method using short fibers. In the case of the present invention, four glass row rovings serving as reinforcing bars 5 were formed at approximately 1 cm intervals from the upper part of the upright wall 16 on one side, and a total of eight rovings were kept under tension on both sides and formed into a discharge port shape. The situation is shown in FIG. 5, where the taut glass rovings of the reinforcing bars 5 of the invention represent only one tree each on the top of the upright walls 16 on either side. , is a sketch of the discharge side omitting all the reinforcing bars 5 and the tensioning machine 7 in other places.In addition, in the case of the conventional method using short fibers, it is the same as Fig. 6 except for the tensed glass rope and the crimping. Extrude with shape and dimensions,
In both cases, the molded product 4 was moved by a belt conveyor 9 that moved at the same direction speed as the discharge speed a.

押出成形の結果、本発明の場合は第5図に示す補強筋5
の緊張したガラスロービングの引張力によって両側の直
立壁16は何らの変形や異常も発生せず押出し距離1メ
ートルの時点て、押出作業を停止して事後の変化を見た
が、約5分後にも異常の発生は無く単に薄肉高強度製品
の成形たけでなく、押出し方向にかなり長い薄肉長尺製
品の成形か可能であることが判明した。
As a result of extrusion molding, in the case of the present invention, reinforcing bars 5 shown in FIG.
No deformation or abnormality occurred in the upright walls 16 on both sides due to the tensile force of the tense glass roving, and when the extrusion distance was 1 meter, the extrusion operation was stopped and subsequent changes were observed, but after about 5 minutes. However, no abnormalities occurred, and it was found that it was possible not only to mold thin-walled, high-strength products, but also to mold thin-walled long products that were considerably long in the extrusion direction.

次に従来法による短繊維混入による成形品は第6図の見
取り図に示す如く押出機2の吐出口3から成形品4が押
出され20な゛いし50センチ位の距離に達すると、自
身の重さや成形品の移動の僅かな振動によって両側の直
立壁16の中間部か僅かに屈曲し始め、続いてその上端
縁が左右に屈曲すると急速に直立壁16ば倒伏し、屈曲
壁16 Aとなり成形品は瞬時にして口形の形状を崩し
てしまったのである。
Next, as shown in the sketch of Fig. 6, when a molded product made by mixing short fibers according to the conventional method is extruded from the discharge port 3 of the extruder 2 and reaches a distance of about 20 to 50 cm, its own weight increases. Due to the slight vibration caused by the movement of the sheath molded product, the middle portions of the upright walls 16 on both sides begin to bend slightly, and then the upper edges thereof bend left and right, and the upright walls 16 rapidly collapse, forming a bent wall 16A. The item instantly lost its shape.

以上の各種の実験によって本発明によるセメントモルタ
ルの押出成形品に於ける補強筋の種類や壁厚内での埋設
方法や位置決めが製品の強度だけでなく、形状寸法の保
持においても大きな効果のあることが判明しブこ。
The various experiments described above have shown that the type of reinforcing bars, embedding method and positioning within the wall thickness in the cement mortar extrusion molded product according to the present invention has a great effect not only on the strength of the product but also on maintaining the shape and dimensions. It turns out it's crazy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるセメントモルタルの押出機と、そ
の前後の補強筋の緊張装置を示す縦断面図で、第2図、
第3図は本発明の請求項2及び3をそれぞれ説明するた
めの縦断面図である。 第4図は補強筋か網状の場合の貫入板の状態を示す部分
正面図とその断面図を示す。 第5図は本発明の緊張した状態による補強筋が埋設され
て、押出機から吐出された成形品の吐出側の見取り図で
ある。 第6図は従来法による短繊維補強の場合の吐出成形品の
吐出側の状況を示す見取り図である。 1 セメントモルタル  2.押出機 3 吐出口       4 成形品 5 補強筋       6 ブレーキドラム7 引張
機       81貫入孔 9 ヘルドコンベア   10 10A、治具a 吐出
速度(矢印片  11 容器
FIG. 1 is a vertical sectional view showing a cement mortar extruder according to the present invention and a tensioning device for reinforcing bars before and after the extruder, and FIG.
FIG. 3 is a longitudinal sectional view for explaining claims 2 and 3 of the present invention, respectively. FIG. 4 shows a partial front view and a cross-sectional view of the penetrating plate in the case where the reinforcing bar is in the form of a mesh. FIG. 5 is a sketch of the discharge side of a molded product discharged from an extruder in which reinforcing bars in a tensioned state according to the present invention are embedded. FIG. 6 is a sketch showing the state of the discharge side of the discharge molded product in the case of reinforcing short fibers by the conventional method. 1. Cement mortar 2. Extruder 3 Discharge port 4 Molded product 5 Reinforcement bar 6 Brake drum 7 Tension machine 81 Penetration hole 9 Held conveyor 10 10A, jig a Discharge speed (arrow piece 11 Container

Claims (1)

【特許請求の範囲】 1)セメントモルタルを押出機により押出成形するとき
、成形品の壁厚内に連続する線状又は網状の補強筋を配
置するため、該補強筋を押出機内外に渡って押出方向に
緊張状態に保持し、更にセメントモルタルが押出機の吐
出口より吐出される速度に等しく、且つ同一方向に移動
させることを特徴とする押出成形品の補強筋の埋設方法
。 2)特許請求の範囲第1項の記載において、押出機内に
補強筋の位置決め用の治具を1個又は複数個設置し、補
強筋が成形品の壁内で所定の位置に正しく埋設されるが
如くになしたる補強筋の埋設方法。 3)特許請求の範囲第1項の記載において、成形品の壁
厚内に埋設される補強筋が有機又は無機の連続する線状
又は網状の繊維で、あるとき、繊維が押出機内に挿入さ
れる前に予め繊維に硬化性流動体を含浸させてなる補強
筋の埋設方法。
[Claims] 1) When cement mortar is extruded using an extruder, in order to arrange continuous linear or mesh reinforcing bars within the wall thickness of the molded product, the reinforcing bars are placed inside and outside the extruder. 1. A method for embedding reinforcing bars in an extrusion molded product, the method comprising maintaining the reinforcing bars in an extrusion molded product under tension and moving the cement mortar at a speed equal to and in the same direction as the discharge port of an extruder. 2) In the statement of claim 1, one or more jigs for positioning the reinforcing bars are installed in the extruder, so that the reinforcing bars are properly embedded at predetermined positions within the wall of the molded product. This is a method of burying reinforcing bars. 3) In the statement of claim 1, the reinforcing bars embedded within the wall thickness of the molded product are organic or inorganic continuous linear or network fibers, and in some cases, the fibers are inserted into an extruder. A method for embedding reinforcing bars in which the fibers are impregnated with a hardening fluid beforehand.
JP33177490A 1990-11-29 1990-11-29 Method for embedding reinforcing string Pending JPH04197702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33177490A JPH04197702A (en) 1990-11-29 1990-11-29 Method for embedding reinforcing string

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33177490A JPH04197702A (en) 1990-11-29 1990-11-29 Method for embedding reinforcing string

Publications (1)

Publication Number Publication Date
JPH04197702A true JPH04197702A (en) 1992-07-17

Family

ID=18247479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33177490A Pending JPH04197702A (en) 1990-11-29 1990-11-29 Method for embedding reinforcing string

Country Status (1)

Country Link
JP (1) JPH04197702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788422A4 (en) * 1994-10-04 1998-04-01 Khashoggi E Ind Placing filaments within extruded hydraulically settable compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788422A4 (en) * 1994-10-04 1998-04-01 Khashoggi E Ind Placing filaments within extruded hydraulically settable compositions

Similar Documents

Publication Publication Date Title
US11358305B2 (en) Method for producing a textile-reinforced construction material component, and tensioning device for same
EP0131002B1 (en) A building element, and a method and a system for manufacturing said element
DE19841047C1 (en) Method of forming tunnel covering
US3492395A (en) Method for pressure molding hollow cylindrical structures
JPH04197702A (en) Method for embedding reinforcing string
JP2001514101A (en) Building material panel and method and apparatus for forming building material panel
JPH0143704B2 (en)
EP0241491B1 (en) Form tool, in particular for processing plastic and synthetic resin concrete or mortar molding materials
DE2063655A1 (en)
DE19729484C2 (en) Process for casting castings, in particular decorative elements made of plaster or concrete, and device for carrying out the process
DE1659131B2 (en) Tendon anchorage for concrete components and method for their application
RU2704399C2 (en) Method of casting prefabricated concrete articles and corresponding device
DE2819176A1 (en) Reinforcement of glass fibre for concrete castings - is fibre strand embedded in synthetic resin-filled, flexible hose
AT524779B1 (en) Method for forming an end piece on a delivery hose for delivering concrete and device for discharging concrete
JPH0742305A (en) Centrifugally formed steel pipe concrete pillar and manufacture thereof
CZ2008475A3 (en) Non-metallic building reinforcement intended particularly for prestressed building structures and process of treating thereof
CN109476040A (en) Method and apparatus for producing concrete elements
DE2627860A1 (en) Coating curved surfaces partic. of pipes with hardened synthetic resin - as protection against corrosion and aggressive chemicals
CH688033A5 (en) A method for the production of components of building materials faserverstaerkten mineral-bound.
US3055077A (en) Method for the manufacture of concrete structures
DE2939191A1 (en) METHOD FOR PRODUCING MOLDED BODIES FROM PLASTIC
WO1998028116A1 (en) Method and device for the production of a surface product with a fiber reinforced concrete matrix
CN109322680B (en) Supporting lining and preventing and controlling method
DE3707949A1 (en) Fibre-reinforced moulding and process for the production thereof
AT162184B (en) Process for generating stretching and stretching stresses in twisted reinforcements.