[go: up one dir, main page]

JPH0419194B2 - - Google Patents

Info

Publication number
JPH0419194B2
JPH0419194B2 JP2476386A JP2476386A JPH0419194B2 JP H0419194 B2 JPH0419194 B2 JP H0419194B2 JP 2476386 A JP2476386 A JP 2476386A JP 2476386 A JP2476386 A JP 2476386A JP H0419194 B2 JPH0419194 B2 JP H0419194B2
Authority
JP
Japan
Prior art keywords
heating element
melt
crystal
fiber
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2476386A
Other languages
Japanese (ja)
Other versions
JPS62182188A (en
Inventor
Norio Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2476386A priority Critical patent/JPS62182188A/en
Publication of JPS62182188A publication Critical patent/JPS62182188A/en
Publication of JPH0419194B2 publication Critical patent/JPH0419194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融液からフアイバ状の単結晶を育成
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing fiber-like single crystals from a melt.

〔従来の技術〕[Conventional technology]

超低損失な石英ガラスのフアイバ化技術完成に
伴い、オプテイカルフアイバを伝送媒体とした高
密度な光通信が現実のものと成つてきた。このフ
アイバ化技術を非線形光学効果や電気・音響光学
効果の大きな物質の結晶体、例えばニオブ酸リチ
ウムのような酸化物強誘電体結晶などへ発展させ
てその単結晶フアイバが育成できれば、オプテイ
カルフアイバの特徴である高い光電界強度や長い
相互作用長に結晶体特有な物性定数の異方性が加
わつて特異な光学効果が期待でき、新しいデバイ
スの開発も予想される。
With the completion of ultra-low-loss silica glass fiber technology, high-density optical communication using optical fiber as a transmission medium has become a reality. If this fiber-forming technology can be developed into crystals of materials with large nonlinear optical effects and electro/acousto-optic effects, such as oxide ferroelectric crystals such as lithium niobate, and single crystal fibers can be grown, optical fibers can be produced. By combining the high optical field strength and long interaction length that are characteristic of crystals with the anisotropy of physical constants characteristic of crystals, unique optical effects can be expected, and the development of new devices is also expected.

この目的のためには、高融点物質を細径化しな
がら結晶育成する高度な技術が必要で、現在、マ
イクロペデスタル法(例えば、C.A.Burruset
al.,Appl.Phys.Lett.26巻318頁1975年)が唯一公
知である。しかるにこの方法は熱源としてCO2
ーザを用いるため、レーザ出力の安定化対策やレ
ーザ光を均一に微小領域へ集束させるための複雑
な光学系などを必要とし、装置が大規模で高価に
なる。その上、結晶母材料を予め均一な細棒形状
に準備する必要があり、結晶育成に際しては数段
階かけて順次細径化しなければならず、しかも、
途中段階での結晶径の不均一性が最終段階まで持
込まれるなど、技術的に高度で複雑である。
For this purpose, advanced technology is required to grow crystals while reducing the diameter of high-melting materials, and currently the micropedestal method (for example, CABurruset
al., Appl. Phys. Lett. vol. 26, p. 318, 1975) is the only known one. However, since this method uses a CO 2 laser as a heat source, it requires measures to stabilize the laser output and a complicated optical system to uniformly focus the laser light onto a microscopic area, making the equipment large and expensive. Moreover, it is necessary to prepare the crystal base material in advance into a uniform thin rod shape, and when growing the crystal, the diameter must be gradually reduced in several stages.
It is technologically advanced and complex, with non-uniformities in crystal diameters occurring at intermediate stages being carried into the final stage.

融液から結晶を直接引上げる代表的な方法とし
ては引上げ法(チヨクラルスキー法とも呼ばれ
る。)がよく知られている。(例えば、P.
Hartman:Crystal Growth I、212頁、North
−Holl and Pub.Co.,1973)この方法は大型結
晶の育成を目的とし、ルツボ中で結晶母材料を一
旦融解させ、引上げながら結晶化させるものであ
る。この方法では一般に高周波加熱か抵抗加熱が
用いられ、これによつて結晶育成の熱的条件を設
定、制御する。
The pulling method (also called the Czyochralski method) is well known as a typical method for directly pulling crystals from a melt. (For example, P.
Hartman: Crystal Growth I, 212 pages, North
-Holl and Pub.Co., 1973) This method is aimed at growing large crystals, and the crystal base material is once melted in a crucible and then crystallized while being pulled up. This method generally uses high-frequency heating or resistance heating to set and control the thermal conditions for crystal growth.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、この方法では、温度制御にどうして
も時間的遅れが避けられないこと、また、ルツボ
内での融液の熱対流やルツボ周りでの空気対流な
どにより融液の表面温度が場所的・時間的に常に
不規則に変動することなどにより、融液表面の特
定領域を随意、且つ、微妙に温度制御することは
不可能である。従つて、引上げ法をそのまま単結
晶フアイバの育成に適用することはできない。
However, with this method, there is an unavoidable time delay in temperature control, and the surface temperature of the melt changes in place and time due to heat convection of the melt in the crucible and air convection around the crucible. Since the temperature always fluctuates irregularly, it is impossible to arbitrarily and delicately control the temperature of a specific area of the melt surface. Therefore, the pulling method cannot be directly applied to growing single crystal fibers.

融液からの別の結晶育成法に、融液を毛細管現
象によつてダイの上端面へ運び、上端面と同一形
状断面の結晶を引上げようというEFG法(Edge
−defined Film−fed Growth)と呼ばれる工夫
もある。(例えば、H.E.Labelle,Jr.et al.:Mat.
Res.Bull.6巻571頁1971)しかし、この方法を単
結晶フアイバに適用するには、毛細管を持つとい
うダイの構造上の制約のため、細径化に限度があ
る。
Another method for growing crystals from melt is the EFG method (Edge
There is also a technique called -defined film-fed growth). (For example, HE Labelle, Jr. et al.: Mat.
(Res. Bull. Vol. 6, p. 571, 1971) However, when this method is applied to single crystal fibers, there is a limit to the diameter reduction due to the structural restriction of the die having a capillary tube.

本発明は上述の問題点を解決することを目的と
してなされたもので、結晶母材の融液から目的の
単結晶フアイバを直接引上げることを可能とする
技術を提供するものである。
The present invention was made to solve the above-mentioned problems, and provides a technique that makes it possible to directly pull a target single crystal fiber from a melt of a crystal base material.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明では、その表面の一部に微小
な凸状部を形成した発熱体を準備し、この発熱体
に結晶母材料を接触させて融解し、発熱体を濡ら
す融液を凸状部近傍で引上げながら結晶化させる
という手段を講じた。
To this end, in the present invention, a heating element having minute convex portions formed on a part of its surface is prepared, the crystal matrix material is brought into contact with the heating element and melted, and the melt wetting the heating element is transferred to the convex portions. A method was taken to crystallize the material while pulling it up nearby.

〔作用〕[Effect]

上述の手段によつて、融液量が少量に制限さ
れ、しかも融液が発熱体表面を濡らすことから融
液温度が発熱体温度に密接に追従することにな
り、発熱体温度の制御により融液温度を微妙に制
御できるという効果が生じた。さらに、発熱体に
設けた凸状部での電気抵抗の低下や熱発散の増加
などによる局所的な冷却効果、また、表面張力の
影響による融液集中および引上げ点の固定化など
の効果も生じ、これらが総合的に作用することに
より融液からフアイバ状単結晶を直接、比較的容
易に育成することが可能となつた。
By the means described above, the amount of melt is limited to a small amount, and since the melt wets the surface of the heating element, the temperature of the melt closely follows the temperature of the heating element, and by controlling the temperature of the heating element, the melting This has the effect of allowing fine control of the liquid temperature. Furthermore, there is a local cooling effect due to a decrease in electrical resistance and an increase in heat dissipation at the convex portion provided on the heating element, and effects such as concentration of melt and fixation of the pulling point due to the influence of surface tension are also produced. The combined effect of these factors has made it possible to grow fiber-like single crystals directly from the melt with relative ease.

〔実施例〕〔Example〕

第1図a,bは本発明の内容を表わす代表的な
一実施例装置についての主要部分の側断面図およ
び部分拡大図である。移動可能な上下2本の駆動
軸9,10を備えた引上げ装置に、フオアヒータ
12およびアフタヒータ13用の縦型電気炉を設
備し、その中央部に本発明に係る発熱体1を設備
する。発熱体1は直径0.5〜1.0mmφの白金線2を
直径3〜10mmφに5〜10巻コイル状に巻いて形成
し、そのコイル上端の一部に直径0.1〜0.3mmφの
白金細線3を0.2〜0.7mm上方へ突出させて熔接
し、微小凸状部4を形成する。発熱体1を通電加
熱し、これに下方駆動軸10に取付けた結晶母材
料5を下方より接触させて融解し、融液6で発熱
体1を満たして発熱体1および凸状部4を濡ら
す。ついで、引上げ装置の駆動軸9に鎖11を介
してたね結晶7を自在に取付けて降下し、たね結
晶7の先端が凸状部4を濡らす融液または濡れが
不充分な時は凸状部の白金線にじかに接触させて
一部融解(メルトバツク)させ、フアイバ結晶8
育成条件に温度を制御しながら0.5〜2mm/分の
成長速度で引上げる。育成温度は成長状態を観察
しながら発熱体の通電電流で制御し、所望のフア
イバ径のところで熱安定させる。結晶母材料5を
連続的に発熱体1へ供給するために、発熱体コイ
ル1の下方部をより密に巻いて高温化を計る。
FIGS. 1a and 1b are a side sectional view and a partially enlarged view of the main parts of a typical embodiment of an apparatus showing the contents of the present invention. A vertical electric furnace for a fore heater 12 and an after heater 13 is installed in a lifting device equipped with two movable upper and lower drive shafts 9 and 10, and a heating element 1 according to the present invention is installed in the center thereof. The heating element 1 is formed by winding a platinum wire 2 with a diameter of 0.5 to 1.0 mmφ into a coil with 5 to 10 turns to a diameter of 3 to 10 mmφ, and a thin platinum wire 3 with a diameter of 0.1 to 0.3 mmφ is wrapped around a part of the upper end of the coil. It is made to protrude upward by 0.7 mm and welded to form a minute convex portion 4. The heating element 1 is heated by electricity, and the crystal matrix material 5 attached to the lower drive shaft 10 is brought into contact with it from below to melt it, and the heating element 1 is filled with melt 6 to wet the heating element 1 and the convex portion 4. . Next, the seed crystal 7 is freely attached to the drive shaft 9 of the pulling device via the chain 11 and lowered, and the tip of the seed crystal 7 wets the convex part 4 with the melt, or if the wetting is insufficient, the convex part The fiber crystal 8
The growth conditions are controlled at a growth rate of 0.5 to 2 mm/min while controlling the temperature. The growth temperature is controlled by the current applied to the heating element while observing the growth state, and the fiber is thermally stabilized at the desired fiber diameter. In order to continuously supply the crystal matrix material 5 to the heating element 1, the lower part of the heating element coil 1 is wound more closely to increase the temperature.

第2図および第3図に発熱体表面上に形成され
る凸状部構造の別の実施例を示す。上述の刺状突
起のほか、発熱体の白金線2に直径0.3〜0.6mmφ
程度の白金細線3を1〜2巻して凸状部を形成す
る構造(第2図示)、および第3図に示す如く複
数本の白金細線3にて刺状突起を形成する構造も
同様に有効である。
FIGS. 2 and 3 show another embodiment of the convex structure formed on the surface of the heating element. In addition to the above-mentioned thorn-like protrusions, the platinum wire 2 of the heating element has a diameter of 0.3 to 0.6 mmφ.
Similarly, a structure in which a convex portion is formed by winding one or two thin platinum wires 3 of about 100 mL (as shown in the second figure), and a structure in which a plurality of thin platinum wires 3 form a barb as shown in FIG. It is valid.

第4図は発熱構造の別の実施例を示す。育成さ
れる結晶フアイバの寸法が300μmφ×100mm程度
以内の場合には原料融液の連続的な供給を必要と
しない。この時には、第4図に示す如き直径0.3
〜0.6mmφの白金線複数本の撚線15で形成した
コニカルバスケツト状の発熱体が特に効果的で、
これに結晶母材を充填、加熱して融解させ、バス
ケツト上端部に設けた凸状部に於て引上げを行
う。なお、発熱体を形成する白金線の撚線化は全
べての場合に有効に適用される。
FIG. 4 shows another embodiment of the heat generating structure. If the size of the crystal fiber to be grown is within about 300 μmφ×100 mm, continuous supply of raw material melt is not required. At this time, the diameter is 0.3 as shown in Figure 4.
A conical basket-shaped heating element made of multiple stranded platinum wires 15 with a diameter of ~0.6 mm is particularly effective.
A crystal base material is filled into the basket, heated and melted, and then pulled up at a convex portion provided at the upper end of the basket. Note that twisting the platinum wires forming the heating element can be effectively applied in all cases.

加熱方式としては、上述の通電加熱の他、高周
波加熱、赤外線加熱も適用でき、これらに依る特
記すべき制約はない。
As a heating method, in addition to the above-mentioned electrical heating, high frequency heating and infrared heating can also be applied, and there are no particular restrictions depending on these.

〔発明の効果〕〔Effect of the invention〕

上述の方法によつて、LiNbO3の場合、直径
100μmφ程度までの単結晶フアイバが比較的容
易に融液から直接育成でき、それ以上の細径化に
も原理的に何らの制限も見当らない。その上、本
発明の主要部である発熱体の材質には白金以外の
金属も使用可能で、育成される結晶フアイバの材
料も発熱体と化学反応せずその融液が発熱体を濡
らすものならば制限されない。引上げ装置および
フオアヒータ、アフタヒータ用の縦型電気炉には
市販のものが利用できる。
By the method described above, for LiNbO 3 the diameter
Single-crystal fibers up to about 100 μm in diameter can be grown directly from the melt relatively easily, and there are no restrictions in principle on further reductions in diameter. Furthermore, metals other than platinum can be used for the material of the heating element, which is the main part of the present invention, and if the material of the crystal fiber to be grown does not chemically react with the heating element and its melt wets the heating element. There are no restrictions. Commercially available vertical electric furnaces can be used for the pulling device, fore heater, and after heater.

以上により、融液からフアイバ状単結晶を直
接、比較的容易に育成することが可能となつた。
As a result of the above, it has become possible to grow a fiber-like single crystal directly from the melt with relative ease.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明の方法を説明するための
代表的な一実施例の装置主要部分の側断面図およ
び部分拡大図、第2図a,bは白金発熱体の一部
に形成した微小凸状部の他の実施例の断面図およ
び側面図、第3図a,bは白金発熱体の一部に形
成した微小凸状部のさらに他の実施例の断面図お
よび側面図、第4図a,bは複数線で形成したコ
ニカルバスケツト型の発熱体の側断面図および部
分拡大図である。 図中、1は発熱体、2は発熱体1を形成する白
金線、3は凸状部を形成する白金細線、4は白金
細線3にて形成した微小凸状部、5は結晶母材
料、6は融液、7はたね結晶、8は育成された単
結晶フアイバ、9は引上げ用駆動軸、10は結晶
母材料供給用の駆動軸、11は鎖、12はフオア
ヒータ、13はアフタヒータ、14はヒータの発
熱線、15は白金撚線である。
Figures 1a and b are side sectional views and partially enlarged views of the main parts of a typical embodiment of the apparatus for explaining the method of the present invention, and Figures 2a and b are formed on a part of the platinum heating element. FIGS. 3a and 3b are cross-sectional views and side views of still another example of minute convex portions formed on a part of a platinum heating element, FIGS. 4a and 4b are a side sectional view and a partially enlarged view of a conical basket type heating element formed of multiple lines. In the figure, 1 is a heating element, 2 is a platinum wire forming the heating element 1, 3 is a thin platinum wire forming a convex portion, 4 is a minute convex portion formed by the thin platinum wire 3, 5 is a crystal matrix material, 6 is a melt, 7 is a seed crystal, 8 is a grown single crystal fiber, 9 is a pulling drive shaft, 10 is a drive shaft for supplying crystal base material, 11 is a chain, 12 is a fore heater, 13 is an after heater, 14 1 is a heating wire of the heater, and 15 is a platinum twisted wire.

Claims (1)

【特許請求の範囲】[Claims] 1 発熱体の一部に微小な凸状部を形成し、この
発熱体で結晶母材料を加熱融解させ、その融液で
前記発熱体表面を濡らしながら、融液を引き上
げ、発熱体の前記凸状部近傍で融液を結晶化させ
るようにしたことを特徴とする単結晶フアイバの
育成方法。
1 Form a minute convex part on a part of the heating element, heat and melt the crystal matrix material with this heating element, and pull up the melt while wetting the surface of the heating element with the melt, and remove the convex part of the heating element. 1. A method for growing a single-crystal fiber, characterized by crystallizing a melt in the vicinity of a shaped part.
JP2476386A 1986-02-06 1986-02-06 Process for growing single crystal fiber Granted JPS62182188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2476386A JPS62182188A (en) 1986-02-06 1986-02-06 Process for growing single crystal fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2476386A JPS62182188A (en) 1986-02-06 1986-02-06 Process for growing single crystal fiber

Publications (2)

Publication Number Publication Date
JPS62182188A JPS62182188A (en) 1987-08-10
JPH0419194B2 true JPH0419194B2 (en) 1992-03-30

Family

ID=12147188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2476386A Granted JPS62182188A (en) 1986-02-06 1986-02-06 Process for growing single crystal fiber

Country Status (1)

Country Link
JP (1) JPS62182188A (en)

Also Published As

Publication number Publication date
JPS62182188A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
KR20020006710A (en) Method for producing silicon single crystal
JP3759807B2 (en) Method and apparatus for producing oxide single crystal
JPH0419194B2 (en)
JPH10502046A (en) Crystal growth apparatus and method
JPH04280891A (en) Method for growing single crystal fiber
JP3106182B2 (en) Manufacturing method of bulk single crystal
JP2612306B2 (en) How to grow single crystal fiber
US4367200A (en) Single crystal manufacturing device
CN118497881B (en) A device and method for laser-assisted growth of large-size X-axis lithium niobate crystals
JPH06345588A (en) Crystal growth method
JPS58194798A (en) Apparatus for growth of flat plate silicon crystal
JP3369394B2 (en) Crystal preparation method
JPH08183696A (en) Crucible for manufacturing fine-line silicon and fine-line silicon
JPH10265293A (en) Growing of single crystal and device therefor
JPS61291487A (en) Method for manufacturing single crystal fiber
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
KR0174390B1 (en) Single Crystal Growth Device by EFG Method
JPS6347706A (en) Preparation of single crystal fiber
JPH0648889A (en) Production of single crystal
JPH0753297A (en) Method for growing single crystal
JPH06128075A (en) Growing method for single crystal
JP2002080292A (en) Method and apparatus of manufacturing single crystal plate of oxide
JPH0375514B2 (en)
US20020007780A1 (en) Process and apparatus for producing an oxide single crystal
JPS5997591A (en) Method and apparatus for growing single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term