JPH0419172B2 - - Google Patents
Info
- Publication number
- JPH0419172B2 JPH0419172B2 JP62322837A JP32283787A JPH0419172B2 JP H0419172 B2 JPH0419172 B2 JP H0419172B2 JP 62322837 A JP62322837 A JP 62322837A JP 32283787 A JP32283787 A JP 32283787A JP H0419172 B2 JPH0419172 B2 JP H0419172B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- glass
- guide
- cutting
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005520 cutting process Methods 0.000 claims description 111
- 239000011521 glass Substances 0.000 claims description 97
- 238000000465 moulding Methods 0.000 claims description 71
- 239000012530 fluid Substances 0.000 claims description 51
- 238000003825 pressing Methods 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000009529 body temperature measurement Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 27
- 239000006060 molten glass Substances 0.000 description 16
- 239000011295 pitch Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000005304 optical glass Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 206010049040 Weight fluctuation Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B21/00—Severing glass sheets, tubes or rods while still plastic
- C03B21/02—Severing glass sheets, tubes or rods while still plastic by cutting
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B7/00—Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
- C03B7/10—Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/70—Horizontal or inclined press axis
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/76—Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis
- C03B2215/77—Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis with means to trim off excess material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、プレス成形による光学素子の成形装
置に関し、より詳細には、プレス成形後において
研削及び研摩等の工程を経ることなしに表面精度
及び重量精度の良好な光学素子又はそのリヒート
プレス用として好適するプリフオームの成形装置
に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to an apparatus for molding optical elements by press molding, and more specifically, the present invention relates to an apparatus for molding optical elements by press molding, and more specifically, the present invention relates to a molding device for optical elements by press molding, and more specifically, it is possible to improve surface accuracy without going through processes such as grinding and polishing after press molding. The present invention also relates to an apparatus for molding an optical element with good weight accuracy or a preform suitable for reheat pressing thereof.
(従来の技術)
近年、所定の表面精度を有する成形用型内にガ
ラス素材を収容してプレス成形することにより、
研削及び研摩等の後加工を不要とした高精度の光
学素子を成形する方法が開発されている。(Prior art) In recent years, by press-molding a glass material in a mold with a predetermined surface precision,
Methods have been developed for molding high-precision optical elements that do not require post-processing such as grinding and polishing.
このプレス成形法には、一般にリヒートプレス
法とダイレクトプレス法がある。 This press molding method generally includes a reheat press method and a direct press method.
リヒートプレス法は、予め溶融固化したガラス
材料の必要量を切断し、砂ずり等の方法により重
量調整を施してガラス小塊とし、これを成形用型
内に入れ、該ガラス小塊と成形用型を同時に又は
別々にプレス温度まで加熱した後、プレス成形し
て成形用型に形成した光学機能面を押圧転写して
光学素子を成形する方法である。 In the reheat press method, the necessary amount of glass material that has been melted and solidified in advance is cut, the weight is adjusted using methods such as sanding, and the resulting glass pellets are placed in a mold for molding. This is a method of molding an optical element by heating the molds simultaneously or separately to a pressing temperature, and then pressing and transferring the optical functional surface formed on the mold by press molding.
一方、ダイレクトプレス法は、溶融ガラス流出
オリフイスより流出若しくは押出される溶融ガラ
ス流の必要量を切断刃により切断し、これを成形
用型内に直接落下させるか又はシユートによつて
投入し、しかる後成形用型を押圧して光学素子を
成形する方法である。 On the other hand, in the direct press method, the necessary amount of molten glass flowing out or extruded from a molten glass outflow orifice is cut by a cutting blade, and the cut is directly dropped into a mold or introduced by a chute. This is a method of molding an optical element by pressing a mold for post-molding.
又、上記のリヒートプレス法において、切断及
び砂ずり等のような生産性の低い工程を経ずに上
記のダイレクトプレス法における如く、溶融ガラ
スを成形用型に入れてプレス成形し、最終製品に
近似した形状の予備成形品(プリフオーム)を得
た上で該プリフオームを最終製品の形状及び面精
度と同じか若しくはそれ以上に精度の高い光学機
能面を有する成形用型に入れてプレス成形を行な
う方法がある。 In addition, in the above reheat press method, molten glass is put into a mold and press-formed into a final product, as in the above direct press method, without going through low productivity steps such as cutting and sanding. After obtaining a preform with a similar shape, press molding is performed by placing the preform into a mold having an optical functional surface with the same or higher precision than the shape and surface precision of the final product. There is a way.
(発明が解決しようとする問題点)
これらの成形方法により得られた光学素子は、
良好な像形成品質が得られるよう所定の面精度及
び寸法精度が要求され、又このため上記のいずれ
の方法においても最終製品を得るためのプレス成
形に供給されるガラス材料は十分に重量調整がな
されていなければならない。(Problems to be solved by the invention) Optical elements obtained by these molding methods are
A certain level of surface accuracy and dimensional accuracy are required to obtain good image formation quality, and for this reason, in any of the above methods, the glass material supplied for press forming to obtain the final product must be sufficiently weight-adjusted. must be done.
しかしながら、上記のガラス小塊を用いてプレ
ス成形する方法では、ガラス小塊の重量調整を切
断及び砂ずり等により行なうため、成形品の表面
に砂目が残留したり、プレス成形前にガラス小塊
を加熱する際、ガラスと加熱用受皿との融着を防
止するために塗布した離型済がプレス時に成形品
の表面に食い込んで該成形品の表面精度が著しく
悪化するという問題がある。 However, in the above-mentioned method of press forming using small glass lumps, the weight of the glass lumps is adjusted by cutting, sanding, etc., so grit remains on the surface of the molded product, and the glass small lumps are removed before press forming. When heating the lump, there is a problem in that the mold release agent applied to prevent the glass and the heating tray from fusing together bites into the surface of the molded product during pressing, significantly deteriorating the surface precision of the molded product.
又、直接溶融ガラスを用いてプレス成形する方
法では、切断刃による切断の際、成形品にシヤー
マークと称せられる切断痕が生じ、成形品の面精
度が劣化するという問題がある。又、このプレス
成形法においては、成形品の重量調整を溶融ガラ
ス流の切断によつて行なうため、この溶融ガラス
流の温度変化や切断タイミング或いはガラス流の
脈動等により成形品に重量変動が生じ、所定の寸
法精度が得られないという問題点もある。 Further, in the method of directly press-molding using molten glass, there is a problem that cutting marks called shear marks are generated on the molded product when cutting with a cutting blade, and the surface precision of the molded product is deteriorated. In addition, in this press molding method, the weight of the molded product is adjusted by cutting the molten glass flow, so weight fluctuations may occur in the molded product due to temperature changes in the molten glass flow, cutting timing, pulsation of the glass flow, etc. However, there is also the problem that a predetermined dimensional accuracy cannot be obtained.
なお、特にシヤーマークの発生を防止したプレ
ス成形法としては、特公昭41−9190号公報或いは
特開昭61−132523号公報に記載されたものがあ
る。 In addition, as a press molding method which particularly prevents the occurrence of shear marks, there is a method described in Japanese Patent Publication No. 41-9190 or Japanese Patent Application Laid-open No. 132523/1983.
特公昭41−9190号公報に記載された成形方法で
は、成形用型を溶融ガラスの流下方向に直角の方
向に押圧して型空所内に溶融ガラスを充填させて
プレス成形する方法であるが、成形用型の押圧時
に型空所内の余剰ガラスが成形用型とこれに対向
するアンビルとの間から流出するという現象が生
じる。この余剰ガラスは成形用型の押圧動作が進
行するに伴い、その流出抵抗を増大するとともに
成形用型により冷却されて粘性を増し、これが成
形用型とこれに対向するアンビル間で安全に切取
られないまま冷却されて成形品の外周にはみ出し
部分を形成する。このため、プレス成形後におい
てこのはみ出し部分の破断及び破断面を仕上げる
作業が必要となる。又、溶融ガラス流の大きさが
変動することにより上記した成形品とはみ出し部
分との間のガラス厚さが変動して成形品の厚さに
バラツキが生じてしまい、重量調整が高精度に行
なえないという問題もある。 In the molding method described in Japanese Patent Publication No. 41-9190, press molding is performed by pressing a mold in a direction perpendicular to the direction of flow of molten glass to fill the mold cavity with molten glass. When the mold is pressed, a phenomenon occurs in which excess glass in the mold cavity flows out from between the mold and the anvil facing the mold. As the pressing operation of the mold progresses, this surplus glass increases its outflow resistance and is cooled by the mold, increasing its viscosity, and is safely cut off between the mold and the anvil facing it. The molded product is cooled without being completely wet, and a protruding portion is formed on the outer periphery of the molded product. Therefore, after press forming, it is necessary to break the protruding portion and finish the broken surface. Furthermore, due to variations in the size of the molten glass flow, the glass thickness between the above-mentioned molded product and the protruding portion changes, causing variations in the thickness of the molded product, making it difficult to adjust the weight with high precision. There is also the problem of not having one.
一方、特開昭61−132523号公報に記載された成
形方法では、成形品の精度は流動するガラス体を
打抜く前の該ガラス体の大きさ等に依存しており
高精度の寸法形状を有するロツド又はガラスシー
トが必要となる。 On the other hand, in the molding method described in JP-A No. 61-132523, the precision of the molded product depends on the size of the flowing glass body before punching it, and highly accurate dimensions and shapes can be produced. A rod or glass sheet is required.
本発明者等は、上述のような問題点を解決すべ
く、ガラス流体を狭むように一対の成形用型を対
向配置するとともに該成形用型のキヤビテイを設
定し、前記ガラス流体を前記成形用型で互いに押
圧して被成形部を形成した後、前記成形用型の外
周に設けた切断部材により前記被成形部とその他
の部分とを切断分離することを特徴とする光学素
子の製造方法について既に提案してある。 In order to solve the above-mentioned problems, the present inventors arranged a pair of molds facing each other so as to narrow the glass fluid, and set a cavity of the mold, so that the glass fluid could be poured into the mold. A method for manufacturing an optical element has already been described, which comprises forming a molded part by pressing each other together, and then cutting and separating the molded part and other parts using a cutting member provided on the outer periphery of the mold. I have suggested it.
この方法によるとガラス流体の切断跡を避けた
状態で成形品の機能面を形成するとともに成形用
型の外周に設けた切断部材により成形品の外周側
面を高精度に形成することができ、シヤーマーク
等の表面欠陥がなく、寸法精度及び重量精度がす
こぶる良好な光学素子が得られる。 According to this method, the functional surface of the molded product can be formed while avoiding cut marks of the glass fluid, and the outer peripheral side surface of the molded product can be formed with high precision using the cutting member provided on the outer periphery of the mold, and shear marks can be formed. An optical element with excellent dimensional accuracy and weight accuracy can be obtained without surface defects such as .
上述のような光学素子の製造方法に適用される
装置においては、成形用型と成形用型の移動を案
内するガイド部材との接触状況が成形用型の押圧
動作を円滑に行えるかどうかの重要な要因とな
る。特に、成形用型及びガイド部材の温度変化に
伴う熱膨張により、上記成形用型の摺動性が左右
されるため、これらの部材の熱膨張を制御する手
段を備えることが重要となる。なお、摺動軸と該
摺動軸の摺動動作を案内する摺動軸受けとの熱膨
張を制御する従来例としては、実開昭61−180135
号公報がある。 In the apparatus applied to the above-mentioned optical element manufacturing method, the contact situation between the mold and the guide member that guides the movement of the mold is important for smooth pressing operation of the mold. This is a major factor. In particular, since the slidability of the mold is influenced by thermal expansion of the mold and the guide member due to temperature changes, it is important to provide means for controlling the thermal expansion of these members. In addition, as a conventional example of controlling the thermal expansion of a sliding shaft and a sliding bearing that guides the sliding movement of the sliding shaft, there is
There is a publication.
(発明の目的)
本発明は、上記事情に基いてなされたもので、
ガラス流体の切出し部分が、光学機能面から外れ
るように成形が行なえ、しかも、成形型内におけ
る材料の重量が正確に均一下でき、高精度の光学
素子成形品を製造できる光学素子の成形装置を提
供することを目的とする。(Object of the invention) The present invention was made based on the above circumstances, and
To provide an optical element molding device that can perform molding so that the cut-out portion of the glass fluid is removed from the optically functional surface, and that can accurately and uniformly lower the weight of the material in the mold, and that can manufacture high-precision optical element molded products. The purpose is to provide.
(問題を解決するための手段)
この目的を達成するために、本発明では、下降
するガラス流体を挟むように水平対向で配置され
該ガラス流体に対しほぼ直角方向に押圧移動する
一対の成形用型と、前記各成形用型を加熱するヒ
ーターと、一方に複数のガイドピンを、他方に前
記ガイドピンに嵌合する複数の嵌合部を有し前記
成形用型の押圧動作を案内する一対のガイド部材
と、少なくとも一方の成形用型の外周に設けられ
前記成形用型で成形される光学素子の空間を前記
成形用型と共に遮断形成する切断部材と、前記切
断部材と前記ガイドピンおよび嵌合部との間に配
置された、前記ガイド部材を加熱する加熱手段お
よびその温度を測る測定手段とを具備し、前記測
定手段の温度測定に基いて前記加熱手段により前
記ガイド部材を成形時における前記成形用型の温
度にほぼ等しく、前記ガイドピンおよび嵌合部を
有する前記ガイド部材が前記加熱手段と測定手段
とによつて加熱されて前記成形用型の軸線と前記
ガイド部材上の各ガイドピンおよび嵌合部との距
離を一定に保つようにして、前記ガイドピンと嵌
合部とによつて前記一対の成形用型の軸線ずれを
矯正するようにしたことを特徴とする。(Means for Solving the Problem) In order to achieve this object, the present invention provides a pair of molding tools that are arranged horizontally opposite each other so as to sandwich the descending glass fluid and move in a direction substantially perpendicular to the glass fluid. a pair of molds, a heater for heating each of the molding molds, a plurality of guide pins on one side, and a plurality of fitting parts that fit on the guide pins on the other hand to guide the pressing operation of the molding molds; a cutting member that is provided on the outer periphery of at least one of the molding molds and forms a space for the optical element to be molded with the molding mold, and a cutting member that is fitted between the cutting member and the guide pin; A heating means for heating the guide member and a measuring means for measuring the temperature are arranged between the guide member and the joint part, and the guide member is heated by the heating means at the time of molding based on the temperature measurement by the measuring means. The guide member having the guide pin and the fitting portion is heated by the heating means and the measuring means at a temperature substantially equal to the temperature of the mold, and the axis of the mold and each guide on the guide member are heated. The present invention is characterized in that the distance between the pin and the fitting part is kept constant, and the misalignment of the axes of the pair of molds is corrected by the guide pin and the fitting part.
(作用)
このように構成された光学素子の成形装置にお
いて、使用される1対の成形用型を構成する各々
の型部材を第1の型部材及び第2の型部材とする
と、これら型部材の各成形面はガラス流体を介し
て互いに対向する如く配置される。このような成
形用型の配置状況としては、ガラス流体が例えば
溶融炉からノズルを介して流出する溶融ガラスで
ある場合、該溶融ガラスの流下方向に対して略直
角方向に第1の型部材と第2の型部材の各成形面
が対向するように配置することができる。又、ガ
ラス流体が既に成形加工されたものを再加熱する
ことにより流動性を有するロツド或いはシート状
の場合、上記のような配置状況のほか、第1の型
部材と第2の型部材が各々上下方向に対向するよ
うに配置することも可能である。(Function) In the optical element molding apparatus configured as described above, if each mold member constituting a pair of molds used is a first mold member and a second mold member, these mold members The respective molding surfaces are arranged to face each other with the glass fluid interposed therebetween. When the glass fluid is, for example, molten glass flowing out from a melting furnace through a nozzle, the arrangement of such molding molds is such that the first mold member and The molding surfaces of the second mold member can be arranged to face each other. In addition, if the glass fluid is in the form of a rod or sheet that has fluidity by reheating an already molded glass fluid, in addition to the above-mentioned arrangement, the first mold member and the second mold member may each be It is also possible to arrange them so as to face each other in the vertical direction.
そこで、例えば流下する溶融ガラス流体に対し
て、本発明における成形用型を構成すると、この
ガラス流体の流れの方向に対して略直角方向から
各々の型部材が互いに押圧される構成となり、流
下するガラス流体に対して各々の型部材の押圧の
タイミングを調整することにより、ガラス流体の
先端部即ち切断跡を避けて被成形部を形成するこ
とができる。 Therefore, for example, when a mold according to the present invention is constructed for a flowing molten glass fluid, each mold member is pressed against each other from a direction substantially perpendicular to the direction of flow of the glass fluid, and the mold members are pressed against each other from a direction substantially perpendicular to the direction of flow of the glass fluid. By adjusting the timing of pressing each mold member against the glass fluid, it is possible to form a molded part while avoiding the tip of the glass fluid, that is, cutting marks.
被成形部の肉厚は予め設定された成形用型のキ
ヤビテイにより決まる。このキヤビテイは、対向
する各々の型部材が最も接近したときに有する
夫々の成形面間隔により設定することができる。 The wall thickness of the part to be molded is determined by the preset cavity of the mold. This cavity can be set by the distance between the molding surfaces of the opposing mold members when they are closest to each other.
各々の型部材の押圧時に生じる余剰ガラスは成
形面の外方に自由に流出し、成形品の肉厚はガラ
ス流の大きさ等に影響されることなく上記成形用
型のキヤビテイにより決まる。 Excess glass generated when pressing each mold member freely flows out of the molding surface, and the thickness of the molded product is determined by the cavity of the mold without being affected by the size of the glass flow.
さらに、本発明においては、複数のガイド部材
が設けられている。このガイド部材は成形用型の
押圧動作に伴ない互いに嵌合して摺動することに
より、成形用型の軸ずれを防止して該成形用型の
押圧動作を円滑に行なえるよう案内する。このガ
イド部材としては、例えば孔及びこれに嵌合摺動
するピンにより構成することができる。 Furthermore, in the present invention, a plurality of guide members are provided. The guide members fit together and slide with each other as the mold is pressed, thereby preventing axis deviation of the mold and guiding the mold so that the pressing action of the mold can be performed smoothly. This guide member can be constituted by, for example, a hole and a pin that fits and slides into the hole.
ところで、成形用型により押圧されるガラス流
体は高温度に加熱されているため、この熱が成形
用型或は切断部材を伝わつて上記ガイド部材に伝
導される際、かならずしも均一に伝導するとは限
らず熱膨張にバラツキが生じるおそれがある。
又、成形品のわれ防止や表面精度の向上のため、
各型部材の温度を上げる必要が生じる。この時、
第1の型部材より第2の型部材の方がガラスに長
く接触しているため、第2の型部材の外周に位置
しているガイドブロツクの方が加熱されやすく、
第1の型部材の外周に設けられたガイド部材(例
えば、ピン)と第2の型部材の外周に設けられた
ガイド部材(例えば、孔)とのピツチにズレが生
じてしまう。このような場合、複数のガイド部材
相互のピツチに変動が生じ、プレス成形時に該ガ
イド部材が嵌合する際互いに食付きが生じてプレ
ス成形の際の押圧動作が滑らかに行なえないばか
りか、このガイド部材のピツチ変動により切断部
材にも食付きが生じたり、成形用型に軸ずれが生
じたりする。 By the way, since the glass fluid pressed by the mold is heated to a high temperature, when this heat is transmitted through the mold or the cutting member to the guide member, it is not necessarily conducted uniformly. However, there is a risk that variations in thermal expansion may occur.
In addition, to prevent molded products from warping and improve surface precision,
It becomes necessary to raise the temperature of each mold member. At this time,
Since the second mold member is in contact with the glass longer than the first mold member, the guide block located on the outer periphery of the second mold member is more easily heated.
A deviation occurs in the pitch between the guide member (for example, a pin) provided on the outer periphery of the first mold member and the guide member (for example, a hole) provided on the outer periphery of the second mold member. In such a case, the pitch between the plurality of guide members varies, and when the guide members fit together during press molding, they bite into each other, which not only makes it difficult to press smoothly during press molding, but also Due to pitch fluctuations in the guide member, chamfering may occur in the cutting member, and axis deviation may occur in the mold.
本発明においては、このような不都合を解消す
るために成形用型及び切断部材の近傍に加熱装置
を設け上記成形用型及び切断部材を加熱してガイ
ド部材のピツチ変動を防止している。 In the present invention, in order to eliminate such inconveniences, a heating device is provided near the mold and the cutting member to heat the mold and the cutting member to prevent pitch fluctuations of the guide member.
なお、本発明におけるガラス流体の粘度は、10
〜107ポアズが好適する。このガラス粘度が10ポ
アズより低くなるとガラス流は糸状になつて成形
用型のキヤビテイ内で必要とされるガラス容量が
不足してしまう。一方、ガラス粘度が107ポアズ
よりも高くなると、プレス成形後のガラスの切断
が困難となる。なお、これらのガラス流体の粘度
は103〜105ポアズが最適する。 Note that the viscosity of the glass fluid in the present invention is 10
~ 107 poise is preferred. When the glass viscosity is lower than 10 poise, the glass flow becomes filamentous and the required glass volume within the mold cavity becomes insufficient. On the other hand, when the glass viscosity is higher than 10 7 poise, it becomes difficult to cut the glass after press molding. The optimum viscosity of these glass fluids is 10 3 to 10 5 poise.
又、本発明における軟化ガラス流体としては、
上述のように、溶融ガラスのほか、予め成形加工
されたガラスロツド或いはシート状のものを再加
熱することにより得たものでもよい。なお、これ
らのガラス流体の粘度は103〜105ポアズが最適す
る。 In addition, the softened glass fluid in the present invention includes:
As mentioned above, in addition to molten glass, glass obtained by reheating a previously formed glass rod or sheet may also be used. The optimum viscosity of these glass fluids is 10 3 to 10 5 poise.
又、成形用型の温度は、ガラス粘度で108ポア
ズに相当する温度からガラス転移点(以下、Tg
と称する。ガラス粘度で約1013に相当する。)よ
りも100℃低い温度(Tg−100℃)の範囲内に設
定するのが好ましい。該型温が108ポアズに相当
する温度を超えるとプレス成形後から切断までの
間に成形された被成形部におけるガラス表面の硬
度変化が遅く、被成形部の外周を切断して形成す
る際、所定の形状精度及び表面精度が得られなく
なる。又、ガラスと型の成形面が融着を生じ易く
なり、好ましくない。一方、型温がTg−100℃よ
り低いと被成形部の外周を切断する際、切断が困
難になるばかりか切断部分からヒビ割れを生じる
おそれがある。 In addition, the temperature of the molding die ranges from the temperature equivalent to 10 8 poise in terms of glass viscosity to the glass transition point (hereinafter referred to as Tg).
It is called. Equivalent to glass viscosity of approximately 10 13 . ) is preferably set within the range of 100°C lower than Tg (Tg - 100°C). If the mold temperature exceeds a temperature equivalent to 10 8 poise, the hardness of the glass surface in the molded part after press forming until cutting is slow, and when the outer periphery of the molded part is cut and formed. , predetermined shape accuracy and surface accuracy cannot be obtained. Moreover, the glass and the molding surface of the mold tend to be fused together, which is undesirable. On the other hand, if the mold temperature is lower than Tg - 100°C, cutting the outer periphery of the part to be molded will not only be difficult, but may also cause cracks at the cut part.
切断部材の温度は、ガラスの温度変化の影響を
成形用型におけると同様にするため、成形用型の
型温と同等にするのが好ましい。 The temperature of the cutting member is preferably equal to the mold temperature of the mold, so that the influence of temperature changes on the glass is similar to that of the mold.
さらに成形品の取出しの際の粘度は、この成形
品をリヒートプレス用のプリフオームとして用い
る場合、108ポアズ以上の粘度になるまで冷却す
れば十分使用てきるが、そのまま光学レンズ等に
用いる場合、成形用型内で圧力を加えたまま冷却
し、1014.5ポアズ程度の粘度になつたところで取
出すようにすれば形状精度及び表面精度の良好な
光学素子として使用することができる。 Furthermore, the viscosity of the molded product when taken out is such that when the molded product is used as a preform for reheat press, it can be used if it is cooled to a viscosity of 10 8 poise or higher, but when used as is for optical lenses etc. If it is cooled in a mold while applying pressure and taken out when it reaches a viscosity of about 10 to 14.5 poise, it can be used as an optical element with good shape accuracy and surface accuracy.
なお、本発明におけるプレス成形及びその後の
切断処理等は、成形用型や切断部材の寿命を保持
するため、非酸化雰囲気中で行なうことが望まし
い。 Note that the press molding and subsequent cutting treatment in the present invention are preferably performed in a non-oxidizing atmosphere in order to maintain the life of the mold and cutting member.
(実施例)
以下、本発明の実施例について図面を参照しな
がら説明する。(Example) Examples of the present invention will be described below with reference to the drawings.
第1図は本発明の実施例に用いられるプレス成
形装置の概略斜視図である。第2〜7図は第1図
のA−A線に沿う要部断面図であり、本装置の各
工程順における作動状態が示してある。 FIG. 1 is a schematic perspective view of a press molding apparatus used in an embodiment of the present invention. 2 to 7 are sectional views of main parts taken along the line A--A in FIG. 1, showing the operating state of the apparatus in each process order.
これらの図において、1は不図示の溶融炉から
溶融ガラスを流出するノズルであり、このノズル
からガラス流体2が流出している(第1図では不
図示)。4はノズル1の下方に設けられ、不図示
の駆動装置により開閉動作を行なうことによりガ
ラス流体2を切断する切断刃である。この切断刃
4が作動してガラス流体2が途中で切断されるこ
とにより切断跡3が発生する。 In these figures, 1 is a nozzle through which molten glass flows out from a melting furnace (not shown), and a glass fluid 2 flows out from this nozzle (not shown in FIG. 1). Reference numeral 4 denotes a cutting blade that is provided below the nozzle 1 and cuts the glass fluid 2 by opening and closing operations by a drive device (not shown). When the cutting blade 4 operates and cuts the glass fluid 2 midway, a cutting mark 3 is generated.
本実施例に示すプレス成形装置は、ガラス流体
2がノズル1から流下する形式のものに対して構
成してあり、1対の成形用型を構成する第1の型
部材5と第2の型部材6とがガラス流体2を略直
角方向から狭むように互いに対向した状態で配置
してある。 The press molding apparatus shown in this embodiment is configured for a type in which glass fluid 2 flows down from a nozzle 1, and includes a first mold member 5 and a second mold member constituting a pair of molds. The members 6 are arranged to face each other so as to narrow the glass fluid 2 from a substantially right angle direction.
各型部材5,6は、対向する夫々の面に鏡面加
工が施された成形面5a,6aを有している。そ
して、第1の型部材5及び第2の型部材6は例え
ばシリンダー等(不図示)の駆動源により上方か
ら流下するガラス流体2の流出方向に対して互い
に略直角方向に移動して押圧動作が行なわれる。
ただし、これら第1及び第2の型部材5,6は
別々に設けられた駆動源により独立した開閉作動
を行なうことができる。 Each mold member 5, 6 has a molding surface 5a, 6a which is mirror-finished on each opposing surface. The first mold member 5 and the second mold member 6 are moved substantially perpendicularly to each other with respect to the outflow direction of the glass fluid 2 flowing down from above by a driving source such as a cylinder (not shown), and perform a pressing operation. will be carried out.
However, these first and second mold members 5 and 6 can be opened and closed independently by separately provided drive sources.
これら型部材5,6の作動ストロークを調整し
て加圧成形時における両者の間隔を設定すること
により、製造すべき成形品の肉厚調整することが
できる。 By adjusting the operating strokes of these mold members 5 and 6 and setting the distance between them during pressure molding, the thickness of the molded product to be manufactured can be adjusted.
又、第2の型部材6の外周には、切断リング7
が設けられている。この切断リング7は第1の型
部材5の方向にエツジ状の切断刃7aを有する構
成とされ、型部材6の外周を摺動しつつ移動し型
部材5の外周に切断リング7の先端が嵌合する構
成とされている。又、型部材5の外周には環状溝
18が設けられるとともにこの要部(本実施例で
は4箇所)には切断リング7先端のエツジ状斜面
に当接する突起状の分断刃17が設けられてい
る。このような構成により、型部材5,6の押圧
動作によりガラス流体2の被成形部23が加圧成
形された後、切断リング7が型部材5の方向に移
動して分断刃17に当接すると被成形部23は型
部材5,6の外周で切断分離されるとともに、被
成形部23の余剰ガラス22は分断刃16により
バラバラに分断される。 Further, a cutting ring 7 is provided on the outer periphery of the second mold member 6.
is provided. This cutting ring 7 is configured to have an edge-shaped cutting blade 7a in the direction of the first mold member 5, and moves while sliding on the outer periphery of the mold member 6, so that the tip of the cutting ring 7 is attached to the outer periphery of the mold member 5. The configuration is such that they fit together. Further, an annular groove 18 is provided on the outer periphery of the mold member 5, and protruding dividing blades 17 are provided at the main parts (four locations in this embodiment) of the mold member 5 to abut on the edge-shaped slope at the tip of the cutting ring 7. There is. With this configuration, after the molded portion 23 of the glass fluid 2 is pressure-molded by the pressing operation of the mold members 5 and 6, the cutting ring 7 moves in the direction of the mold member 5 and comes into contact with the dividing blade 17. Then, the part to be formed 23 is cut and separated at the outer periphery of the mold members 5 and 6, and the excess glass 22 of the part to be formed 23 is divided into pieces by the dividing blade 16.
さらに、型部材6の外周には切断リング7に固
着されて該切断リング7を包囲するガイドブロツ
ク14が設けられ、このガイドブロツク14は支
持部材10に固定されている。又、型部材5の外
周にもガイドブロツク13が設けられていて該型
部材5を包囲し、このガイドブロツク13は支持
部材11に支持されている。支持部材10,11
は夫々シリンダー等の駆動源(不図示)に接続さ
れ、該駆動源の駆動により各々独立した動作で支
持部材10,11を作動する。支持部材10の作
動によりガイドブロツク14に固着された切断リ
ング7が第2の型部材6の外周を第1の型部材5
の方向に摺動しつつ往復移動する。又、支持部材
11の作動により第1の型部材5が第2の型部材
6の方向に往復移動する。 Further, a guide block 14 is provided on the outer periphery of the mold member 6 and is fixed to the cutting ring 7 to surround the cutting ring 7, and this guide block 14 is fixed to the support member 10. A guide block 13 is also provided on the outer periphery of the mold member 5 and surrounds the mold member 5, and this guide block 13 is supported by the support member 11. Support members 10, 11
are each connected to a drive source (not shown) such as a cylinder, and the support members 10 and 11 are actuated independently by the drive of the drive source. Due to the operation of the support member 10, the cutting ring 7 fixed to the guide block 14 cuts the outer periphery of the second mold member 6 into the first mold member 5.
It moves back and forth while sliding in the direction of. Moreover, the first mold member 5 reciprocates in the direction of the second mold member 6 by the operation of the support member 11 .
又、ガイドブロツク13にはガイドピン15が
ガイドブロツク14側に突出するように固着さ
れ、ガイドブロツク14には上記ガイドピン15
に嵌合して摺動するガイド孔16が設けられてい
る。又、このガイド孔16の内側にはスリーブ1
6aが設けられている。ガイドブロツク13,1
4が作動し互いに接近するとガイドピン15がガ
イド孔16内でスリーブ16aを介して摺動しつ
つ移動し、型部材5,6の押圧動作が案内され
る。 Further, a guide pin 15 is fixed to the guide block 13 so as to protrude toward the guide block 14, and the guide pin 15 is fixed to the guide block 14.
A guide hole 16 is provided that fits and slides therein. Also, a sleeve 1 is installed inside this guide hole 16.
6a is provided. Guide block 13,1
4 actuate and approach each other, the guide pin 15 slides within the guide hole 16 via the sleeve 16a and guides the pressing operation of the mold members 5 and 6.
型部材5,6の夫々の内部にはヒーター30,
31が設けられていて、このヒーターにより型部
材5,6が所定温度まで加熱される。 A heater 30 is provided inside each of the mold members 5 and 6.
31 is provided, and the mold members 5 and 6 are heated to a predetermined temperature by this heater.
又、ガイドブロツク13,14内には夫々ヒー
ター32,33及び熱電対34,35が設けられ
ている。各ヒーター32,33はガイドブロツク
13,14内で夫々のガイドピン15及びガイド
孔15の相互のピツチが所定間隔を保つよに均等
に加熱し得るような位置に複数設けられており、
熱電対34,35による温度検出により外部に設
けられたコントローラーにより温度制御される。 Further, heaters 32, 33 and thermocouples 34, 35 are provided in the guide blocks 13, 14, respectively. A plurality of heaters 32 and 33 are provided in the guide blocks 13 and 14 at positions where the guide pins 15 and guide holes 15 can be heated evenly so that the mutual pitches of the guide pins 15 and guide holes 15 are maintained at a predetermined distance.
The temperature is controlled by an external controller based on temperature detection by thermocouples 34 and 35.
次に本装置の動作について第2〜7図及び第8
図を用いて説明する。 Next, the operation of this device is shown in Figures 2 to 7 and 8.
This will be explained using figures.
第2〜7図は、本装置の各工程順における作動
状態を示す要部断面図であり、第8図は、本装置
における作動部、即ち第1の型部材5、第2の型
部材6、切断刃4及び切断リング7の各部の作動
タイミングを示すタイミングチヤートであり、横
軸は時間Tを示す。これら作動部の作動タイミン
グは、各作動部を接続した不図示のコントローラ
ーにより制御することができる。 2 to 7 are main part sectional views showing the operating state of this device in each process order, and FIG. , is a timing chart showing the operation timing of each part of the cutting blade 4 and the cutting ring 7, and the horizontal axis shows time T. The operation timing of these actuating parts can be controlled by a controller (not shown) connected to each actuating part.
第2図はプレス成形直前の状態であり、ノズル
1からはガラス流体2が流下している。このガラ
ス流体2の先端、即ち切断跡3が対向する各成形
面5a,6aより下方に流下した時点で、第1の
型部材5及び第2の型部材6の押圧動作を開始す
る。この押圧動作において、ガイドピン15はガ
イド孔16内に嵌合するとともに摺動し、型部材
5,6に多少の軸ずれがあつてもこれら型部材
5,6がガイド部材に案内されて軸ずれが矯正さ
れる。 FIG. 2 shows the state immediately before press molding, with glass fluid 2 flowing down from nozzle 1. When the tip of the glass fluid 2, that is, the cutting mark 3, flows downward from the opposing molding surfaces 5a, 6a, the pressing operation of the first mold member 5 and the second mold member 6 is started. In this pressing operation, the guide pin 15 fits into the guide hole 16 and slides, so that even if the mold members 5, 6 are slightly misaligned, the mold members 5, 6 are guided by the guide member and the shafts of the mold members 5, 6 are guided by the guide member. The deviation is corrected.
第8図においてT=0はこの両型部材5,6の
作動開始時期を示す。これら型部材5,6の作動
開始時期は双方において同時でよいが、型部材
5,6のガラス流体2に対する押圧動作終了時期
T2は双方において同時か多くとも±0.05sの誤差
に収めるのが好ましい。この誤差が大きいと型部
材5,6の片方のみがガラス流体2に衝突して該
ガラス流体2に横ブレが生じ好ましくない。その
後、型部材5,6は、第3図に示すように、ガラ
ス流体2の被成形部21を押圧したままの状態を
所定時間保ち、この間被成形部21の両表面に対
して夫々の成形面5a,6aによる押圧転写が行
なわれる。 In FIG. 8, T=0 indicates the timing at which both mold members 5 and 6 start operating. The operation start timings of these mold members 5 and 6 may be the same on both sides, but the timing of the end of the pressing operation of the mold members 5 and 6 against the glass fluid 2
It is preferable that T 2 be at the same time or within an error of ±0.05 s on both sides. If this error is large, only one of the mold members 5 and 6 collides with the glass fluid 2, causing lateral wobbling of the glass fluid 2, which is undesirable. Thereafter, as shown in FIG. 3, the mold members 5 and 6 keep pressing the molded part 21 of the glass fluid 2 for a predetermined period of time, and during this time, the mold members 5 and 6 press the molded part 21 on both surfaces of the molded part 21. Pressure transfer is performed using surfaces 5a and 6a.
切断刃4の作動開始時期及び切断開始時期は、
夫々型部材5,6の作動開始時期T=0と同時で
あつてよいが、この切断刃4によるガラス流体2
の切断終了時期T4は型部材5,6がガラス流体
2を保持すると同時か少なくとも保持した後でな
ければならない。 The operation start time and cutting start time of the cutting blade 4 are as follows.
The glass fluid 2 by the cutting blade 4 may be at the same time as the operation start time T=0 of the mold members 5 and 6, respectively.
The cutting end timing T4 must be at the same time as the mold members 5 and 6 hold the glass fluid 2, or at least after the mold members 5 and 6 hold the glass fluid 2.
その後、切断刃4は元の状態に復帰せしめられ
る。第8図には、この切断刃4の復帰開始時期を
T4とし、復帰終了時期をT5として示してある。
好ましくは、切断刃4の作動開始時期T=0から
切断終了時期T2までに要する時間を0.3〜0.4sと
する。 Thereafter, the cutting blade 4 is returned to its original state. Figure 8 shows the timing at which the cutting blade 4 starts returning.
T 4 is indicated, and the return end time is indicated as T 5 .
Preferably, the time required from the operation start time T=0 of the cutting blade 4 to the cutting end time T2 is set to 0.3 to 0.4 seconds.
切断リング7の作動開始時期T1は、第5図に
示すように、少なくとも切断リング7による被成
形部21の外周切断終了(T3)前に切断刃4に
よるガラス流体2の切断が終了(T2)した状態
となるようにするのが好ましい。こうすることに
より、切断リング7の切断動作が終了した時点に
おいてガラス流体2は切断刃4により既に切り離
された状態にあり、切断リング7で切取られた切
断片22は容易に第1の型部材5の外部即ち環状
溝16内に移動することができる。この際、切断
片22は切断刃7のエツジ状傾斜部分が分断刃1
7に当接することによりに分断され、切断リング
7の復帰時には自然に落下する。 As shown in FIG. 5, the operation start timing T 1 of the cutting ring 7 is determined at least when the cutting blade 4 finishes cutting the glass fluid 2 (T 3 ) before the cutting ring 7 finishes cutting the outer periphery of the part to be formed 21 (T 3 ). T 2 ). By doing this, the glass fluid 2 is already cut off by the cutting blade 4 when the cutting operation of the cutting ring 7 is finished, and the cut piece 22 cut by the cutting ring 7 is easily attached to the first mold member. 5 or into the annular groove 16. At this time, the cutting piece 22 has an edge-shaped inclined portion of the cutting blade 7
When the cutting ring 7 comes into contact with the cutting ring 7, it is separated, and when the cutting ring 7 returns, it falls naturally.
かくして、切断リング7は第2の型部材6の外
周に沿つて摺動しつつ被成形部21の外周を切断
し、該被成形部21の外周形状を形成する。 In this way, the cutting ring 7 cuts the outer periphery of the molded part 21 while sliding along the outer periphery of the second mold member 6, thereby forming the outer peripheral shape of the molded part 21.
その後、切断リング7は切断終了時(T3)の
状態を維持し、被成形部21の外周を保持したま
まその温度差により被成形部21を外周から冷却
し、該被成形部21の外周付近は粘度を増してそ
の形状が定着する。一方、型部材5,6による押
圧後、該型部材と被成形部21の温度差により該
被成形部21は両表面から冷却されて粘度を増
し、表面形状が安定化する。 Thereafter, the cutting ring 7 maintains the state at the end of cutting (T 3 ), cools the molded part 21 from the outer periphery due to the temperature difference while holding the outer periphery of the molded part 21, and cools the molded part 21 from the outer periphery. The viscosity increases in the vicinity and the shape becomes fixed. On the other hand, after being pressed by the mold members 5 and 6, the molded part 21 is cooled from both surfaces due to the temperature difference between the mold members and the molded part 21, increasing its viscosity and stabilizing its surface shape.
次いで、第6図に示すように、ガイドブロツク
13を作動させて第1の型部材5を元の状態に復
帰する。この作動開始時期をT6とし、作動終了
時期をT7とし、切断リング7を元の状態に作動
する開始時期を第1の型部材5の復帰終了時期
T7と同時かその終了後とすると、切断リング7
の作動開始前において被成形部21は該切断リン
グ7により保持された状態にあり、自然に落下す
ることがない。又、分断刃17でバラバラに分断
され切断片22は切断リング7の復帰時には自然
に落下する。 Next, as shown in FIG. 6, the guide block 13 is operated to return the first mold member 5 to its original state. This operation start time is T6 , the operation end time is T7 , and the start time for returning the cutting ring 7 to its original state is the return end time of the first mold member 5.
At the same time as T 7 or after its completion, cutting ring 7
Before the start of the operation, the part to be formed 21 is held by the cutting ring 7 and does not fall off naturally. Further, the cut pieces 22 separated by the cutting blade 17 fall naturally when the cutting ring 7 returns.
被成形部即ち成形部23の取り出しは、切断リ
ング7の復帰終了(T8)と同時に行なう。これ
は、周知の吸着ハンド等を用いて行なうことがで
きる。この取出し作業の終了後、第2の型部材6
を元の状態に復帰せしめる。第8図には、この第
2の型部材6の復帰開始時期をT9とし、復帰終
了時期をT10としてある。 The part to be molded, that is, the molded part 23 is taken out at the same time as the cutting ring 7 completes its return (T 8 ). This can be done using a known suction hand or the like. After this removal work is completed, the second mold member 6
to return to its original state. In FIG. 8, the return start time of the second mold member 6 is indicated as T9 , and the return end time is indicated as T10 .
なお、第7図に示すように、成形部23の取出
し時において、型部材6を型部材5の方向に押出
すことにより成形品23を切断リング7の保持状
態から解除して、成形品23の取り出しを容易に
するようにしてもよい。 As shown in FIG. 7, when taking out the molded part 23, the molded product 23 is released from the state held by the cutting ring 7 by pushing out the mold member 6 in the direction of the molded member 5, and the molded product 23 It may be arranged to make it easier to take out.
以上のような動作において、用型様部5,6に
よるプレス成形は、ガラス流体2の先端即ち切断
跡3を除いた部分に対して行なわれるため、得ら
れた成形品23にシヤーマーク等の表面欠陥が生
じない。 In the above-described operation, press molding by the mold-like parts 5 and 6 is performed on the tip of the glass fluid 2, that is, the part excluding the cut marks 3, so that the resulting molded product 23 has surface marks such as shear marks. No defects occur.
型部材5,6により形成されるキヤビテイ容量
は、夫々の型部材に押圧動作を行なわしめる不図
示のシリンダーのストロークにより設定すること
ができる。即ち、設定されたシリンダーのストロ
ークによつて、押圧時における各型部材5,6間
の最短接近幅が決まり、これが型部材5,6の成
形面間隔を規制する。 The cavity capacity formed by the mold members 5 and 6 can be set by the stroke of a cylinder (not shown) that presses each mold member. That is, the set stroke of the cylinder determines the shortest approach width between the mold members 5 and 6 during pressing, and this regulates the distance between the molding surfaces of the mold members 5 and 6.
又、本実施例においては、ガイドピン15とガ
イド孔16から構成されたガイド部材により型部
材5,6の押圧動作が案内され、これら型部材
5,6の軸ずれが矯正されるため、製造される成
形品23は高精度の光軸を有する光学素子として
使用することができる。 In addition, in this embodiment, the pressing operation of the mold members 5 and 6 is guided by the guide member composed of the guide pin 15 and the guide hole 16, and the axis misalignment of these mold members 5 and 6 is corrected, so that the manufacturing process is improved. The molded product 23 can be used as an optical element having a highly accurate optical axis.
又、上記ヒーター32,33の加熱手段、これ
に温度制御を行なうための熱電対34,35及び
不図示のコントローラーにより、熱膨張のバラツ
キによるガイド部材相互間のピツチ変動がなくな
り、これらガイド部材の嵌合及び摺動動作は円滑
に行なわれる。 Furthermore, the heating means of the heaters 32 and 33, the thermocouples 34 and 35 for temperature control, and a controller (not shown) eliminate pitch fluctuations between the guide members due to variations in thermal expansion, and the guide members Fitting and sliding operations occur smoothly.
さらに、成形品23の表面形状及び性状は各型
部材5,6の夫々の成形面5a,6aにより決ま
る。成形品23の外周形状は切断リング7の内周
形状により決まり、該切断リング7の切断動作と
同時に成形品21の外周が形成される。 Further, the surface shape and properties of the molded product 23 are determined by the molding surfaces 5a, 6a of the mold members 5, 6, respectively. The outer peripheral shape of the molded product 23 is determined by the inner peripheral shape of the cutting ring 7, and the outer periphery of the molded product 21 is formed simultaneously with the cutting operation of the cutting ring 7.
なお、以上説明したプレス成形装置は、成形用
素材たるガラス流体が下方に流下するノズルに対
応して左右横方向から押圧動作を行なう成形用型
が用いてあるが、本発明はこのような流下形式及
び成形用型に限定されるものではなく、例えば横
方向或いは傾斜方向に供給されるガラス流体に対
して構成される成形用型を用いることもできる。 Note that the press molding apparatus described above uses a mold that performs pressing operations from the left and right directions in response to the nozzle through which the glass fluid, which is the molding material, flows downward. The type and mold are not limited; for example, molds configured for transversely or obliquely supplied glass fluid may also be used.
次に、上述のようなプレス成形法を用いた具体
的実施例について第1図〜第8図を参照しながら
説明する。 Next, a specific example using the press molding method as described above will be described with reference to FIGS. 1 to 8.
実施例 1
通常カメラレンズ等に使用される光学ガラス
SF8(Tg=443℃、比重4.22)を用いて、外径20
mm、中心肉厚2.7mm、コバ厚1.29mm、曲率R1=20
mm、R2=40mm、ガラス容量0.636c.c.、重量2.68g
の凸メニスカス形状のリヒートプレス用プリフオ
ームの成形を行なつた。Example 1 Optical glass normally used for camera lenses, etc.
Using SF8 (Tg=443℃, specific gravity 4.22), outer diameter 20
mm, center thickness 2.7mm, edge thickness 1.29mm, curvature R 1 = 20
mm, R 2 = 40mm, glass capacity 0.636cc, weight 2.68g
A reheat press preform with a convex meniscus shape was molded.
型部材5,6はSUS420Jから形成し、夫々の
成形面5a,6aは光学鏡面に研磨してある。こ
の型部材5,6の型温が400℃(SF8のTg=443
℃より43℃低い温度)となるようヒーター30,
31で加熱する。又、各々の型部材5,6の押圧
動作時における最大接近幅を2.7mmとなるように
調整し、所望の肉厚が得られるようにしてある。 The mold members 5 and 6 are made of SUS420J, and their respective molding surfaces 5a and 6a are polished to optical mirror surfaces. The mold temperature of these mold members 5 and 6 is 400℃ (Tg of SF8 = 443
Heater 30 so that the temperature is 43℃ lower than
Heat at 31. Further, the maximum approach width of each of the mold members 5 and 6 during the pressing operation is adjusted to 2.7 mm, so that the desired wall thickness can be obtained.
切断リング7、ガイドブロツク13,14は
SK3から形成し、ガイド孔16の内周に嵌合さ
れたスリーブ16aはFC25より形成されてい
る。又、各々のピン、ガイド孔間のピツチが温度
差によりずれるのを防ぐため、ヒーター32,3
3により切断リング7、ガイドブロツク13,1
4が400℃となるように加熱する。この時、ガイ
ドブロツク13,14の温度差(ガイドピン15
とのピツチは30〜50mm)は各々の大きさによる
が、±5℃以内に収めると良好な結果が得られた。
通常、ガイドピン175とガイド孔16の隙間の
冷間において径で5〜10μm程度となるよう加熱
するのが好ましい。そのために高温になる成形中
においてもピツチずれを防ぐため熱膨張によるピ
ツチずれが5μm以下になるようにガイドブロツ
ク13,14を温調するのが好ましい。 The cutting ring 7 and guide blocks 13 and 14 are
The sleeve 16a, which is made of SK3 and fitted into the inner periphery of the guide hole 16, is made of FC25. In addition, in order to prevent the pitch between each pin and guide hole from shifting due to temperature differences, heaters 32, 3 are installed.
3, the cutting ring 7, guide block 13,1
4. Heat to 400℃. At this time, the temperature difference between guide blocks 13 and 14 (guide pin 15
The pitch (30 to 50 mm) depends on each size, but good results were obtained when the pitch was within ±5°C.
Normally, it is preferable to heat the gap between the guide pin 175 and the guide hole 16 in a cold state so that the diameter thereof is about 5 to 10 μm. Therefore, in order to prevent pitch deviation even during high-temperature molding, it is preferable to control the temperature of the guide blocks 13 and 14 so that the pitch deviation due to thermal expansion is 5 μm or less.
まず、不図示の溶融炉で溶融したガラスをガラ
ス流体2の粘度が約104.6ポアズ(815°±5℃)と
なるように調整し、ノズル1より流出させた。次
に、第2図及び第3図に示すように、ガラス流体
2の先端の切断跡3が型部材5,6の各成形面5
a,6aより下方に流下した時点で該型部材5,
6を作動させ、これと同時に切断刃4も作動させ
た。型部材5,6を作動する不図示のシリンダー
の作動圧力は夫々120Kg、300Kgであり、作動速度
は双方とも200mm/sとしてある。 First, glass was melted in a melting furnace (not shown) and the viscosity of the glass fluid 2 was adjusted to about 10 4.6 poise (815°±5°C), and the glass fluid 2 was flowed out from the nozzle 1. Next, as shown in FIG. 2 and FIG.
When the mold member 5 flows downward from a, 6a,
6 was activated, and at the same time, the cutting blade 4 was also activated. The operating pressures of the cylinders (not shown) that operate the mold members 5 and 6 are 120 kg and 300 kg, respectively, and the operating speeds of both cylinders are 200 mm/s.
そして、第3図に示すように、型部材5,6の
ガラス流体2に対する押圧動作が開始された後、
切断リング7を作動させる。なお、この切断リン
グ7はSK3より形成され、予め型部材5,6の
押圧動作が完了した時点から切断リング7による
切断が完了するまでの時点を0.2sとなるよう不図
示のコントローラーで各シリンダーの作動タイミ
ングを調整しておく。この切断リング7を駆動す
る不図示のシリンダーの作動圧力は100Kgであり、
作動速度は200mm/sとしてある。 Then, as shown in FIG. 3, after the pressing operation of the mold members 5 and 6 against the glass fluid 2 is started,
Activate the cutting ring 7. The cutting ring 7 is made of SK3, and a controller (not shown) is used to control each cylinder so that the time from the time when the pressing operation of the mold members 5 and 6 is completed to the time when the cutting by the cutting ring 7 is completed is 0.2 seconds. Adjust the activation timing. The operating pressure of the cylinder (not shown) that drives this cutting ring 7 is 100 kg,
The operating speed is 200 mm/s.
又、第5図に示すように、切断リング7による
切断動作が完了した時点では、切断刃4によるガ
ラス流2の切断も完了する。さらに同図に示すよ
うに、切断リング7の切断動作により、被成形部
21の外周形状が形成されると同時にこの被成形
部21と切断片22とが分離され。 Further, as shown in FIG. 5, when the cutting operation by the cutting ring 7 is completed, the cutting of the glass flow 2 by the cutting blade 4 is also completed. Further, as shown in the figure, the cutting operation of the cutting ring 7 forms the outer peripheral shape of the part to be formed 21 and at the same time separates the part to be formed 21 and the cut piece 22.
なお、第5図においては、第1の型部材5と切
断リング7はかみ合つた状態になつているが、双
方が接触するだけの状態でも切断状況は良好であ
つた。 In FIG. 5, the first mold member 5 and the cutting ring 7 are in an engaged state, but the cutting condition was good even when the two were only in contact with each other.
次に、型部材5,6の押圧状態を維持したま
ま、成形品23の温度が型部材5,6の温度
(400℃)と略等しくなるまで約10秒間第5図の状
態を保持し、しかる後、第6図に示すように、型
部材5のみを作動させて該型部材5を成形品23
から引き離した。この時、成形品23は切断リン
グ7に保持された状態を保ち勝手に落下しない。
次いで、切断リング7を引き戻すと同時に、不図
示のハンドリング装置により成形品23を取り出
し、型部材6を作動させて該型部材6を元の位置
に戻す。この時、成形品外周の切断片22は分断
刃17によりバラバラに分離され、型部材から除
去される。 Next, while maintaining the pressed state of the mold members 5 and 6, the state shown in FIG. Thereafter, as shown in FIG. 6, only the mold member 5 is operated to form the molded product 23.
I pulled it away. At this time, the molded product 23 remains held by the cutting ring 7 and does not fall off by itself.
Then, at the same time as the cutting ring 7 is pulled back, the molded product 23 is taken out by a handling device (not shown), and the mold member 6 is operated to return the mold member 6 to its original position. At this time, the cut pieces 22 on the outer periphery of the molded product are separated into pieces by the dividing blade 17 and removed from the mold member.
かくして、この実施例により得られた成形品2
3は、所望の成形品に対して外径精度で±0.005
mm、中心肉厚で±0.01mm、重量で0.02g(±0.7
%)以内のバラツキに収まり、シヤーマークはも
とより有害な表面欠陥は生じておらず、又ヒケも
各型部材5,6の形状に対して最大で10μm以内
に収るものであり、リヒートプレス用プリフオー
ムとしてだけではなく、あまり精度を要求されな
い光学レンズとして十分使用できるものであつ
た。 Thus, molded article 2 obtained in this example
3 is the outer diameter accuracy of ±0.005 for the desired molded product.
mm, center wall thickness ±0.01mm, weight 0.02g (±0.7
%), there are no harmful surface defects such as shear marks, and sink marks are within a maximum of 10 μm for the shape of each mold member 5, 6, making it suitable for reheat press preforms. It could be used not only as an optical lens, but also as an optical lens that does not require much precision.
第9図は、本実施例における第1の型部材5、
第2の型部材6及び被成形材料であるガラスの温
度の時間的変化を示すグラフである。なお、この
説明にあたり、第8図の時間Tが用いてある。 FIG. 9 shows the first mold member 5 in this embodiment,
It is a graph showing temporal changes in the temperature of the second mold member 6 and the glass that is the material to be molded. Incidentally, in this explanation, the time T shown in FIG. 8 is used.
当初(第8図においてT=0)、第1及び第2
の型部材5,6は、ガラス材料のガラス転移点
Tg(SF8のTg=443℃)より43℃低い400℃に調
整された。又、第2図に示すノズル1から流化す
るガラス流体2の粘度は約104.6ポアズ(815°±5
℃)となるように調整された。 Initially (T=0 in Figure 8), first and second
The mold members 5 and 6 are formed at the glass transition point of the glass material.
The temperature was adjusted to 400°C, which is 43°C lower than the Tg (Tg of SF8 = 443°C). The viscosity of the glass fluid 2 flowing from the nozzle 1 shown in Fig. 2 is approximately 10 4.6 poise (815°±5
°C).
上記型部材5,6の押圧開始時期T2から押圧
終了時期T6までの成形期間(約10秒間)におい
て、被成形部21のガラスは、型部材5,6の温
度差により急激に冷却され、粘度は104.6ポアズか
ら1014.5ポアズ以上となる。本実施例においては、
型部材5,6は押圧終了時まで400℃に保持され
るよう夫々ヒーター30,31により加熱され、
この時成形品23のガラス温度はこの型部材5,
6と略同温となる。 During the molding period (approximately 10 seconds) from the pressing start time T2 of the mold members 5 and 6 to the pressing end time T6, the glass in the molded part 21 is rapidly cooled due to the temperature difference between the mold members 5 and 6. The viscosity ranges from 10 4.6 poise to 10 14.5 poise or higher. In this example,
The mold members 5 and 6 are heated by heaters 30 and 31, respectively, so as to be maintained at 400°C until the end of pressing.
At this time, the glass temperature of the molded product 23 is this mold member 5,
It has approximately the same temperature as 6.
実施例 2
この実施例においては、光学ガラスF8(Tg
=445℃、比重3.36)の溶融ガラスを用い、実施
例1と同様の方法で外径6mm、中心肉厚4mmコバ
厚3.08mm、曲率がR1=R2=10mm、ガラス容量
0.100c.c.、重量337mgの両凸形状のリヒートプレス
用プリフオームの成形を行なつた。Example 2 In this example, optical glass F8 (Tg
= 445°C, specific gravity 3.36) using the same method as in Example 1 to obtain an outer diameter of 6 mm, a center wall thickness of 4 mm, an edge thickness of 3.08 mm, a curvature of R 1 = R 2 = 10 mm, and a glass capacity.
A biconvex preform for reheat press with a size of 0.100 cc and a weight of 337 mg was molded.
この実施例では、型部材5,6として実施例1
と同様のものを使用し、型温が375℃(F8の
g445℃より70℃低い温度)、ガイド部材15,1
6及び切断リング7は共に350℃となるようヒー
ター30,31の調整を行なつた。 In this example, as the mold members 5 and 6, Example 1 is used.
Use the same mold temperature as 375℃ (F8).
g445℃ (70℃ lower temperature), guide member 15,1
The heaters 30 and 31 were adjusted so that the temperature of both the cutting ring 6 and the cutting ring 7 was 350°C.
又、不図示の溶融炉にて溶融されたガラスをガ
ラス流体2の粘度が102.95〜103.1ポアズ(1080℃
〜1050℃)となるように調整した。 Further, the glass fluid 2 melted in a melting furnace (not shown) has a viscosity of 10 2.95 to 10 3.1 poise (1080°C).
~1050℃).
そして、型部材5,6及び切断リング7の各シ
リンダーの作動圧力を夫々50Kg、200Kg、50Kgに
設定し、実施例1と同様の方法でプレス成形及び
切断処理を行ない、成形品23の内部粘度が109
ポアズ(約540℃)になつたところで第2の型部
材6から取り出したところ、得られた成形品23
は、所望の成形品に対して外径精度で±0.01mm、
中心肉厚で±0.02、重量で±3mg(±0.9%)の
バラツキ内に収り、表面中心部のヒケも平均40μ
m程度のものであり、表面状態も良好なリヒート
プレス用プリフオームとして十分使用できる精度
のものであつた。 Then, the working pressures of the cylinders of the mold members 5, 6 and the cutting ring 7 were set to 50 kg, 200 kg, and 50 kg, respectively, and press molding and cutting were performed in the same manner as in Example 1, so that the internal viscosity of the molded product 23 is 10 9
When the temperature reached 540°C, the second mold member 6 was taken out, and the molded product 23 obtained was
The outer diameter accuracy is ±0.01mm for the desired molded product.
The center wall thickness is within ±0.02, the weight is within ±3 mg (±0.9%), and the average sink mark at the center of the surface is 40μ.
It was of the order of m, and had a good surface condition and had sufficient precision to be used as a reheat press preform.
実施例 3
この実施例においては、実施例1と同様の光学
ガラスSF8の丸棒を用い、外径20mm、中心肉厚
3mm、コバ厚1.6mm、曲率がR1=32mm、ガラス容
量0.693c.c.、重量2.92gの手凸形状のレンズ成形
を非酸化雰囲気中で行なつた。Example 3 In this example, a round bar of optical glass SF8 similar to Example 1 was used, with an outer diameter of 20 mm, a center wall thickness of 3 mm, an edge thickness of 1.6 mm, a curvature of R 1 = 32 mm, and a glass capacity of 0.693 cc. A hand-shaped lens weighing 2.92 g was molded in a non-oxidizing atmosphere.
SF8から成る丸棒は直径10mm±1mmのもので、
表面のキズやゴミを除去した上で、不図示の加熱
炉で105ポアズ(約775℃)の程度の粘度となるよ
うに加熱した。 The round bar made of SF8 has a diameter of 10mm±1mm.
After removing scratches and dust from the surface, it was heated in a heating furnace (not shown) to a viscosity of about 10 5 poise (approximately 775°C).
又、型部材5,6は炭化タングステンから成る
ものを用い、成形面5a,6aを光学鏡面とし、
型温が510℃(ガラス粘度で約109ポアズに相当す
る)となるようヒーター30,31により加熱し
た。又、切断リングも型部材5,6と同様炭化タ
ングステンから成るものを用い、この切断リング
7を不図示の外部ヒータで400℃となるように加
熱した。 The mold members 5 and 6 are made of tungsten carbide, and the molding surfaces 5a and 6a are optical mirror surfaces.
Heaters 30 and 31 were used to heat the mold to a temperature of 510° C. (corresponding to about 10 9 poise in terms of glass viscosity). The cutting ring 7 was also made of tungsten carbide like the mold members 5 and 6, and the cutting ring 7 was heated to 400° C. using an external heater (not shown).
又、本実施例においては、成形を非酸化雰囲気
中で行なうため、装置全体をカバーでおおい、ア
ルゴンガスで置換した。 Further, in this example, since the molding was performed in a non-oxidizing atmosphere, the entire apparatus was covered with a cover and the atmosphere was replaced with argon gas.
そして、型部材5,6及び切断リング7の作動
圧力を夫々170Kg、350Kg、150Kgに設定し、実施
例1と同様の方法でプレス成形及び切断処理を行
つた。ただし、本実施例においては、溶融ガラス
流の代わりに先端付近を上記した粘度にまで軟化
したガラス棒を使用した。 Then, the operating pressures of the mold members 5, 6 and the cutting ring 7 were set to 170 kg, 350 kg, and 150 kg, respectively, and press molding and cutting were performed in the same manner as in Example 1. However, in this example, instead of the molten glass flow, a glass rod whose tip portion had been softened to the above-mentioned viscosity was used.
プレス成形及び切断完了後、型部材5,6及び
切断リング7の加圧状態を維持したままの状態
で、ヒーター30,31及び切断リング加熱用の
外部ヒーターの出力を徐々に弱め、型部材5,6
と成形品22の温度が400℃(ガラス粘度で約
1014.5ポアズ以上)になるまで冷却した後、成形
品23を実施例1と同様の方法で第2の型部材6
から取り出した。得られた成形品は、所望の成形
品に対して外径精度で±0.005mm、中心肉厚で±
0.01mm重量で±0.025g(±0.85%)以内のバラツ
キに収まり、表面状態も良好で、ヒケによる面変
形もほとんど見られず、特に高精度を要求されな
いレンズとしてこのままで十分使用できる状態で
あつた。 After press forming and cutting are completed, while maintaining the pressurized state of the mold members 5 and 6 and the cutting ring 7, the output of the heaters 30 and 31 and the external heater for heating the cutting ring is gradually weakened. ,6
and the temperature of the molded product 22 is 400℃ (about 400℃ in terms of glass viscosity)
After cooling the molded product 23 to a temperature of 14.5 poise or higher), the molded product 23 is molded into the second mold member 6 in the same manner as in Example 1.
I took it out. The obtained molded product has an outer diameter accuracy of ±0.005 mm and a center wall thickness of ±0.005 mm relative to the desired molded product.
The variation at 0.01mm weight is within ±0.025g (±0.85%), the surface condition is good, and there is almost no surface deformation due to sink marks, so it can be used as is as a lens that does not require particularly high precision. Ta.
(発明の効果)
以上説明したように、本発明によれば、次のよ
うな効果が生じる。(Effects of the Invention) As explained above, according to the present invention, the following effects occur.
(1) 成形品表面にシヤーマーク等の表面欠陥がな
く、寸法精度及び重量精度の高い光学レンズ或
いはリヒートプレス用プリフオーム等の光学素
子をプレス成形後の研削、研摩等の後加工を一
切必要とせずに製造することができる。(1) There are no surface defects such as shear marks on the surface of the molded product, and optical lenses with high dimensional and weight accuracy or optical elements such as reheat press preforms do not require any post-processing such as grinding or polishing after press molding. can be manufactured.
(2) 成形に用いるガラス流体の切出し精度があま
り要求されないため、溶融ガラス等の流出装置
が安価なものでよく、高い技術を必要としな
い。又、溶融炉のガラス液面変動による流出ガ
ラスの流量、温度変化に対して柔軟性があるた
め、溶融炉も安価なものでよい。(2) Since high precision in cutting out the glass fluid used for molding is not required, a device for discharging molten glass etc. may be inexpensive and does not require high technology. Furthermore, since the melting furnace is flexible in response to changes in the flow rate and temperature of the outflowing glass due to fluctuations in the glass liquid level in the melting furnace, the melting furnace may also be inexpensive.
(3) 成形に用いるガラス材料は、溶融ガラスのほ
かガラス棒或いはシート状のものでも差し支え
なく、又これらの精度もさほど要求されない。(3) In addition to molten glass, the glass material used for molding may be a glass rod or sheet, and the precision of these materials is not particularly required.
(4) ガラス流体に対して直接プレス成形及び切断
処理をするため、従来プレス成形が困難であつ
た小型で薄い成形品も高精度かつ容易に製造で
きる。(4) Since the glass fluid is directly press-molded and cut, small and thin molded products, which were previously difficult to press-form, can be easily produced with high precision.
特に、本発明によれば、ガイド部材相互間のピ
ツチ変動がないように成形用型及び切断部材の近
傍に加熱装置を設け上記成形用型及び切断部材を
均等に加熱してガイド部材のピツチ変動を防止
し、該ガイド部材の円滑な嵌合摺動動作及び成形
用型の押圧動作を保障することにより成形用型の
軸ずれを防止することができる。 In particular, according to the present invention, a heating device is provided near the mold and the cutting member so that the pitch of the guide members does not vary by evenly heating the mold and the cutting member. By preventing this and ensuring smooth fitting and sliding movement of the guide member and smooth pressing movement of the mold, it is possible to prevent axis deviation of the mold.
第1図は本発明の実施例を示すプレス成形装置
の概略的斜視図である。第2図〜第7図は第1図
に示す装置のA−A線に沿う要部断面図であり、
同装置の工程順の作動状態が示してある。第8図
は第1図に示すプレス成形装置の各作動部のタイ
ミングチヤートを示す図である。第9図は第1実
施例におけるプレス成形時の型部材及びガラスの
温度の時間的変化を示すグラフである。
1……ノズル、2……ガラス流体、3……切断
跡、4……切断刃、5……第1の型部材、6……
第2の型部材、7……切断リング、15……ガイ
ドピン、16……ガイド孔、21……被成形部、
22……切断片、23……成形品、32,33…
…ガイドブロツク内のヒーター。
FIG. 1 is a schematic perspective view of a press molding apparatus showing an embodiment of the present invention. 2 to 7 are sectional views of main parts of the device shown in FIG. 1 along line A-A,
The operating state of the device in the order of steps is shown. FIG. 8 is a diagram showing a timing chart of each operating section of the press molding apparatus shown in FIG. 1. FIG. 9 is a graph showing temporal changes in temperature of the mold member and glass during press molding in the first example. DESCRIPTION OF SYMBOLS 1... Nozzle, 2... Glass fluid, 3... Cutting trace, 4... Cutting blade, 5... First mold member, 6...
Second mold member, 7... Cutting ring, 15... Guide pin, 16... Guide hole, 21... Molded part,
22... Cut piece, 23... Molded product, 32, 33...
...Heater inside the guide block.
Claims (1)
配置され該ガラス流体に対しほぼ直角方向に押圧
移動する一対の成形用型と、前記各成形用型を加
熱するヒーターと、一方に複数のガイドピンを、
他方に前記ガイドピンに嵌合する複数の嵌合部を
有し前記成形用型の押圧動作を案内する一対のガ
イド部材と、少なくとも一方の成形用型の外周に
設けられ前記成形用型で成形される光学素子の空
間を前記成形用型と共に遮断形成する切断部材
と、前記切断部材と前記ガイドピンおよび嵌合部
との間に配置された、前記ガイド部材を加熱する
加熱手段およびその温度を測る測定手段とを具備
し、前記測定手段の温度測定に基いて前記加熱手
段により前記ガイド部材を成形時における前記成
形用型の温度にほぼ等しく、前記ガイドピンおよ
び嵌合部を有する前記ガイド部材が前記加熱手段
と測定手段とによつて加熱されて前記成形用型の
軸線と前記ガイド部材上の各ガイドピンおよび嵌
合部との距離を一定に保つようにして、前記ガイ
ドピンと嵌合部とによつて前記一対の成形用型の
軸線ずれを矯正するようにしたことを特徴とする
光学素子の成形装置。1. A pair of molds that are arranged horizontally to sandwich the descending glass fluid and move in a direction substantially perpendicular to the glass fluid, a heater that heats each of the molds, and a plurality of guide pins on one side. of,
a pair of guide members having a plurality of fitting parts that fit into the guide pins on the other hand and guiding the pressing operation of the mold, and a pair of guide members provided on the outer periphery of at least one of the molds and molded by the mold. a cutting member that blocks and forms a space for the optical element to be formed together with the mold; a heating means that heats the guide member and is arranged between the cutting member and the guide pin and the fitting portion; and a heating means that heats the guide member; and a measuring means for measuring the temperature of the guide member by the heating means based on the temperature measurement of the measuring means, the guide member having the guide pin and the fitting portion at a temperature approximately equal to the temperature of the molding die during molding. is heated by the heating means and the measuring means to maintain a constant distance between the axis of the mold and each guide pin and the fitting part on the guide member, and An apparatus for molding an optical element, characterized in that misalignment of the axes of the pair of molds is corrected by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32283787A JPH01164738A (en) | 1987-12-22 | 1987-12-22 | Device for forming optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32283787A JPH01164738A (en) | 1987-12-22 | 1987-12-22 | Device for forming optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01164738A JPH01164738A (en) | 1989-06-28 |
JPH0419172B2 true JPH0419172B2 (en) | 1992-03-30 |
Family
ID=18148158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32283787A Granted JPH01164738A (en) | 1987-12-22 | 1987-12-22 | Device for forming optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01164738A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03228836A (en) * | 1990-01-31 | 1991-10-09 | Canon Inc | Production of optical glass parts |
US5322541A (en) * | 1991-03-28 | 1994-06-21 | Matsushita Electric Industrial Co., Ltd. | Method of producing glass blank |
WO2011080912A1 (en) * | 2009-12-29 | 2011-07-07 | Hoya株式会社 | Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate |
CN102656632B (en) * | 2009-12-29 | 2016-08-31 | Hoya株式会社 | The manufacture method of glass substrate for disc and glass substrate for disc |
MY163806A (en) | 2010-03-31 | 2017-10-31 | Hoya Corp | Manufacturing method of glass substrate for magnetic disk, manufacturing method of glass blank, glass substrate for magnetic disk, and glass blank |
JP2012160252A (en) | 2011-01-31 | 2012-08-23 | Hoya Corp | Method for manufacturing glass substrate for magnetic disk |
JP5739552B2 (en) * | 2011-12-29 | 2015-06-24 | Hoya株式会社 | Method for manufacturing glass blank for magnetic disk and method for manufacturing glass substrate for magnetic disk |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61180135U (en) * | 1985-04-29 | 1986-11-10 |
-
1987
- 1987-12-22 JP JP32283787A patent/JPH01164738A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01164738A (en) | 1989-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0471853B2 (en) | ||
JPH0419172B2 (en) | ||
JP6739131B2 (en) | Mold for molding optical component made of glass and method for manufacturing optical component made of glass using the mold | |
JPH0513096B2 (en) | ||
JP4289716B2 (en) | Glass element molding method | |
JPH0445454B2 (en) | ||
JPH0472777B2 (en) | ||
JPS63248727A (en) | Production of glass molded article | |
JPH0723227B2 (en) | Optical element molding equipment | |
JPH0791076B2 (en) | Mold for optical element | |
JPH0445459B2 (en) | ||
JP2501585B2 (en) | Optical element molding method | |
JP2662300B2 (en) | Manufacturing method and apparatus for glass molded product | |
JPH0729778B2 (en) | Optical element manufacturing method | |
JPH0445460B2 (en) | ||
JPH0729781B2 (en) | Optical element manufacturing method | |
JP2808560B2 (en) | Method and apparatus for outflow of molten glass | |
JPH10203832A (en) | Forming of molten glass | |
JP2504802B2 (en) | Method and apparatus for press-molding optical molded body | |
JPH0629147B2 (en) | Optical element molding method | |
JPH01153538A (en) | Production of optical element | |
JPH01203234A (en) | Device for forming optical element | |
JPH07165431A (en) | Forming of gob and forming apparatus therefor | |
JPH0769650A (en) | Production of optical element | |
JPH01212241A (en) | Method for molding optical element |