JPH04186825A - Vapor phase growth equipment - Google Patents
Vapor phase growth equipmentInfo
- Publication number
- JPH04186825A JPH04186825A JP31642190A JP31642190A JPH04186825A JP H04186825 A JPH04186825 A JP H04186825A JP 31642190 A JP31642190 A JP 31642190A JP 31642190 A JP31642190 A JP 31642190A JP H04186825 A JPH04186825 A JP H04186825A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- gas
- susceptor
- container
- vapor phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、主にGaAsなどの化合物半導体膜を基板
上に成長させる有機金属気相成長(M OCVD)装置
を対象としたものであり、装置の構成と巳で、成膜用基
板が取り付けろれる面が水平になるように段重されるサ
セプタを、箱状または円筒状の反応容器内に入れて反応
ガスを導入し水平方向に流し、サセプタを加熱すること
により前記成膜用基板に薄膜を成長させる気相成長装置
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is mainly directed to a metal organic chemical vapor deposition (MOCVD) apparatus for growing a compound semiconductor film such as GaAs on a substrate. Depending on the configuration of the device, the susceptor, which is stacked in stages so that the surface on which the film-forming substrate is attached is horizontal, is placed in a box-shaped or cylindrical reaction vessel, and a reaction gas is introduced and caused to flow horizontally. , relates to a vapor phase growth apparatus for growing a thin film on the film-forming substrate by heating a susceptor.
;従来の技術〕
第7図にこの種のMOCVD装置の従来の構成例を示す
。基板1が水平に取り付けられた円板状または角型板状
に形成された黒鉛製サセプタ2は、石英ガラスで成形さ
れた円筒状の反応容器3の内部に取り付けられ、この反
応容器の中に反応ガス(M OCV D装置では、水素
ガスのバブリングによりガス化された■族元素のアルキ
ル化物とV族元素の水素化物との混合ガス、以降反応ガ
スと記す)が反応容器3の端部に形成された反応ガス導
入口6から導入される。また高周波誘導加熱用コイル4
が反応容器3の外側に巻かれておりこれに高周波を流を
通電することにより黒鉛製サセプタ2を加熱する。;Prior Art] FIG. 7 shows an example of a conventional configuration of this type of MOCVD apparatus. A graphite susceptor 2 formed in the shape of a disk or a square plate to which a substrate 1 is attached horizontally is attached inside a cylindrical reaction vessel 3 made of quartz glass. A reaction gas (in the MOCVD device, a mixed gas of an alkylated product of a group I element and a hydride of a group V element, which is gasified by bubbling hydrogen gas, hereinafter referred to as the reaction gas) is introduced into the end of the reaction vessel 3. The reaction gas is introduced from the formed reaction gas inlet 6. Also, high frequency induction heating coil 4
is wound around the outside of the reaction vessel 3, and the graphite susceptor 2 is heated by passing a high frequency current through it.
反応容器3の端部の反応ガス導入口6かち導入された反
応ガス:ま、高Jiに加熱じたサセプタ2zこ取り付け
られた基板1の面上で熱分解じ、基板面に分解じたガス
分子が堆積して膜形成が行われる。Reaction gas introduced through the reaction gas inlet 6 at the end of the reaction vessel 3: Gas that is thermally decomposed on the surface of the substrate 1 attached to the susceptor 2, heated to a high Ji, and decomposed on the substrate surface. Molecules are deposited to form a film.
基板面を通過したガスは導入口と反対端に取り付けられ
た排気フランジ5の排気口7カ)ら排出される。The gas that has passed through the substrate surface is exhausted from the exhaust port 7 of the exhaust flange 5 attached to the end opposite to the inlet.
〔発明が解決じようとする課題: 前述の装置には以下のような問題がある。[Problem that the invention seeks to solve: The above-mentioned device has the following problems.
(1)成膜を行う場合、反応ガスが基板面上の上流側へ
の成膜に消費され、下流側では密度の減少を生して基板
上に成長する腹の厚さが反応ガスの上流側と下流側とで
異なり、また、サセプタまわりの流路の断面形状から膜
の厚さが基板の中心部と左右とで異なってしまう欠点が
ある。(1) When forming a film, the reactive gas is consumed to form a film on the upstream side of the substrate surface, and the density decreases on the downstream side, and the thickness of the antinode that grows on the substrate is increased upstream of the reactive gas. Furthermore, due to the cross-sectional shape of the flow path around the susceptor, the thickness of the film differs between the center of the substrate and the left and right sides.
(2)良好な膜質を得る1こめには基板上付近において
反応ガスの流れが層流であることが望ましいが、反応容
器の反応ガス導入口から導入された反応ガスがサセプタ
側面にあたるため、サセプタ付近で反応ガスの流れが乱
れてしまい、基板上付近で層流が得られない。(2) In order to obtain good film quality, it is desirable that the flow of the reaction gas be laminar near the substrate, but since the reaction gas introduced from the reaction gas inlet of the reaction vessel hits the side of the susceptor, The flow of the reactant gas is disturbed in the vicinity, making it impossible to obtain a laminar flow near the substrate.
上記[1,1,(2+項の欠点を除去するため、伊1え
シヨ、特開昭57 132543号公報において、誘導
加熱コイルが巻かれた石英ガラス製反応容器内で誘導加
熱されるサセプタを、回転楕円体の回転軸方向適宜の位
置で適宜の厚みに切り出じた形状2こ形成して基板を面
積が小さい方の端面に取り付け、サセプタに当たったガ
スがサセプタの傾斜面に沿って層流状態を維持しつつ上
昇し、基板面を層流状態で通過するようにするとともに
、サセプタを回転楕円体の回転軸を中心として回転させ
ることにより、基板面に良質の、かつ膜厚が均一な薄膜
を形成する1回転駆動機構を備えた反応容器が開示され
ている。しかし、この反応容器は、サセフリを誘導加熱
することを前提としたものであり、反応容器内で誘導加
熱領域内にある回転機構部材はすべて石英ガラスで作ら
れ、該公報では、サセプタの下面側に軸が鉛直方向の石
英ガラス製傘歯車を取り付け、この傘歯車と噛み合う石
英ガラス製傘歯車を、反応容器内を水平に走る石英ガラ
ス製の駆動軸先端に取り付け、この駆動軸を反応容器の
外部かろ回転駆動じてす2ブタを回転させる構成が示さ
れている。′/力)′−1このように、サセプタを反2
容器内に配された歯車を介して回転駆動すると、歯面の
摩耗によって生しる石英粉が基板面に付着してIl!質
を低下させるという問題が生しる。また、誘導加熱を前
提とじた反応容器では、誘導加熱のために誘導加熱コイ
ルに高周波電流を供給する高周波電源として、容積が大
きく、コストの高い高周波電源を必要とし、経済面でも
問題があった。In order to eliminate the drawbacks of the above-mentioned [1, 1, (2+ terms), in Japanese Patent Application Laid-open No. 132543/1983, a susceptor that is induction heated in a quartz glass reaction vessel around which an induction heating coil is wound is proposed. , two shapes are cut out to an appropriate thickness at an appropriate position in the direction of the rotational axis of the spheroid, and a substrate is attached to the end face with a smaller area, so that the gas that hits the susceptor is caused to flow along the inclined surface of the susceptor. The susceptor is rotated around the axis of rotation of the spheroid, so that it rises while maintaining a laminar flow state and passes over the substrate surface in a laminar state, and by rotating the susceptor around the rotation axis of the spheroid, a good quality and thick film is produced on the substrate surface. A reaction vessel equipped with a one-rotation drive mechanism that forms a uniform thin film is disclosed. However, this reaction vessel is based on the premise that the sassefuri is heated by induction, and there is All of the rotating mechanism members in the publication are made of quartz glass, and in this publication, a quartz glass bevel gear with a vertical axis is attached to the bottom side of the susceptor, and the quartz glass bevel gear that meshes with this bevel gear is placed inside the reaction vessel. A configuration is shown in which the drive shaft is attached to the tip of a horizontally running quartz glass drive shaft, and the drive shaft is driven from outside the reaction vessel to rotate the filter.'/force)'-1 In this way. , the susceptor is anti-2
When it is rotated through gears arranged in the container, quartz powder produced by the abrasion of the tooth surfaces adheres to the substrate surface and becomes Il! This results in the problem of degrading quality. In addition, reaction vessels that are designed for induction heating require a large-volume, high-cost high-frequency power source to supply high-frequency current to the induction heating coil for induction heating, which poses economical problems. .
(3)成膜を行った場合、反応容器の内部が、反応生成
物の付着;こより汚れるため、反応容器を取外し洗浄を
行う必要があるが、反応容器は気密を保つ構造となって
いるため取付は取外しが大変な作業となる欠点がある。(3) When film formation is performed, the inside of the reaction container becomes dirty due to the adhesion of reaction products, so it is necessary to remove the reaction container and clean it, but the reaction container is designed to maintain airtightness. The disadvantage of installation is that removal is a difficult task.
(4)反応ガスが熱分解し反応生成物となって容器内部
に付着し、基板面上のより下流側において、成膜に与か
る未分解の反応ガス分子の量が減少するが、この未分解
ガス分子が有効に成膜に利用されていない欠点がある。(4) The reaction gas thermally decomposes and becomes a reaction product that adheres to the inside of the container, and the amount of undecomposed reaction gas molecules that contribute to film formation decreases on the downstream side of the substrate surface. There is a drawback that decomposed gas molecules are not effectively utilized for film formation.
(5)反応容器は、成膜時に膜に不純物が入らないよう
、また高温度に耐えるために高純度の石英ガラスを使用
しているが、石英ガラスは引張強度・衝撃強度が弱いた
め、反応容器の内部と外部との圧力差が大きくなった場
合、または誤って衝撃を与えた場合等に破損する欠点が
ある。(5) High-purity quartz glass is used for the reaction vessel to prevent impurities from entering the film during film formation and to withstand high temperatures. However, quartz glass has low tensile strength and impact strength, so They have the disadvantage that they can be damaged if the pressure difference between the inside and outside of the container becomes large, or if a shock is accidentally applied.
また基板の大型化により反応容器も大きくする必要があ
るが、石英ガラスでは製作に限界が生じる欠点がある。Furthermore, as the size of the substrate increases, the reaction vessel also needs to be made larger, but quartz glass has the disadvantage of having limitations in manufacturing.
この発明の目的は、上述の問題点が解決された気相成長
装置を提供することである。An object of the present invention is to provide a vapor phase growth apparatus in which the above-mentioned problems are solved.
上記課題を解決するために、本発明においては、前記各
項の問題点に対応して次の手段を講するものとする。In order to solve the above problems, the present invention takes the following measures in response to the problems in each of the above sections.
(1)問題点第1項に対応して、本発明が対象とする構
成の気相成長装置、すなわち、成膜用基板が取り付けら
れる面が水平になるように設置されるサセプタを、箱状
または円筒状の反応容器内に入れて反応ガスを導入し水
平方向に流し、サセプタを加熱することにより前記成膜
用基板に1膜を成長させる気相成長装置において、前記
サセプタを加熱する加熱手段を抵抗加部ヒータとし、か
つこのヒータをサセプタとともにサセプタの基板取付は
面と垂直な軸まわりに回転可能な構造とする。(1) Corresponding to problem No. 1, the vapor phase growth apparatus with the configuration targeted by the present invention, that is, the susceptor installed so that the surface to which the film-forming substrate is attached is horizontal, is shaped like a box. Alternatively, a heating means for heating the susceptor in a vapor phase growth apparatus that grows one film on the film-forming substrate by heating the susceptor by introducing a reaction gas into a cylindrical reaction vessel and flowing it in a horizontal direction. is a resistive heater, and the heater and the susceptor are mounted on the substrate of the susceptor so as to be rotatable around an axis perpendicular to the plane.
(2)問題点第2項および第3rJに対応し、前記第1
項の装置において、さらに、反応容器内へ導入された反
応ガスの全量を、少なくともサセプタ近傍の、サセプタ
より上流側からサセプタより下流側にわたる範囲、所望
の流路断面で流すように成形された脱着可能な石英ガラ
ス製内部容器を反応容器内に取付けるとともに、反応容
器と内部容器との間にH2ガス、N2ガスまたは不活性
ガスを流すようにする。(2) Corresponding to problem No. 2 and No. 3 rJ,
In the apparatus of 2. above, the apparatus further includes a desorption device shaped so that the entire amount of the reaction gas introduced into the reaction vessel flows through a desired flow path cross section at least in the vicinity of the susceptor, in an area extending from the upstream side of the susceptor to the downstream side of the susceptor. A possible quartz glass inner vessel is installed within the reaction vessel and H2 gas, N2 gas or inert gas is allowed to flow between the reaction vessel and the inner vessel.
(3)問題点第4項に対応し、前記第2項の装置におい
て、石英ガラス製内部容器を、上面が反応ガスの下流側
ほどサセプタの上面へ近づくように上面に傾きをつけた
形状とする。(3) Corresponding to problem No. 4, in the apparatus of No. 2 above, the quartz glass inner container is shaped so that the upper surface is inclined so that the upper surface approaches the upper surface of the susceptor as the downstream side of the reaction gas approaches. do.
(4)問題点第5項に対応し、前記第1項、第2項また
は第3項の装置において、反応容器を金属容器とする。(4) Corresponding to problem item 5, in the apparatus of item 1, item 2, or item 3 above, the reaction container is a metal container.
(5)さらに、前記第2項または第3項の装置−二おし
1て、反応容器の金属容器化に伴う問題点解決のために
、反応容器の反応ガス導入口と内部容器の反応ガス導入
口とを、ばねを用いて導入口の全周にわたり互いに密に
接触させる構造とする。(5) Furthermore, in order to solve the problems associated with the use of a metal container for the reaction container in the apparatus of item 2 or 3 above, the reaction gas inlet of the reaction container and the reaction gas in the internal container are The structure is such that the inlet and the inlet are brought into close contact with each other over the entire circumference of the inlet using a spring.
本発明が対象とする構成の気相成長装置に対して前述の
手段を講することにより、次のような作用もしくは効果
が生じる。By applying the above-described measures to the vapor phase growth apparatus having the structure targeted by the present invention, the following actions or effects are produced.
(1)手段第1項により、基板面が反応ガスの流れの方
向と同一方向の面内で回転し、基板面に形成された膜の
膜厚分布が、基板面の上流側、下流側の差を生ずること
なく大きく改善され、特に基板面周方向の膜厚分布の不
均一は実賓完全に解消される。(1) By means 1, the substrate surface rotates in the same plane as the flow direction of the reaction gas, and the film thickness distribution of the film formed on the substrate surface changes between the upstream side and the downstream side of the substrate surface. This is greatly improved without causing any difference, and in particular, the non-uniformity of the film thickness distribution in the circumferential direction of the substrate surface is completely eliminated.
また、サセプタの加熱手段として抵抗加熱ヒータを用い
るから、サセプタを誘導加熱する場合のような回転機構
部材の材質上の制約が少なくなり、反応容器内回転機構
の形成が構造的、材質的に容易となる。従って回転機構
に歯車を用いるときのような発塵の恐れをなくすること
が容易に可能になる。In addition, since a resistance heater is used as the heating means for the susceptor, there are fewer restrictions on the material of the rotating mechanism members, such as when heating the susceptor by induction, and it is easier to form the rotating mechanism inside the reaction vessel in terms of structure and material. becomes. Therefore, it is possible to easily eliminate the fear of dust generation when using gears in the rotation mechanism.
さらに、すでブタを取り囲む誘導加熱コ1°ルが存在し
ないから、ヒータの回転軸を、反応容器周壁を垂直に貫
11 Lで導出することができ、回転機構を含む装置構
成が簡易化される。Furthermore, since there is no induction heating coil surrounding the pig, the rotation axis of the heater can be guided out through the peripheral wall of the reaction vessel perpendicularly with a length of 11 L, which simplifies the device configuration including the rotation mechanism. Ru.
(2)手段第2項により、例えば、石英ガラス製内部容
器を、ガス流路の断面が方形となるように形成して、該
方形の底面をサセプタの基板取付は面と同一平面となる
ように反応容器内に取り付けることが可能になり、反応
ガスの流れが反応容器の断面形状とは関係なく、基板面
を完全な層流状態で通過することができ、膜質が大きく
改善される。(2) According to means 2, for example, the internal container made of quartz glass is formed so that the cross section of the gas flow path is rectangular, and the bottom surface of the rectangle is flush with the surface on which the susceptor is attached to the substrate. The reaction gas flow can pass through the substrate surface in a completely laminar flow state regardless of the cross-sectional shape of the reaction container, and the film quality is greatly improved.
また、ガスの流路(流vA)がサセプタ位置で変形する
ことがなく、ガスの流速が流路の垂直全断面−にわたっ
て等しくなり、ガス密度が基板の左右方向に変化しない
。さらに基板上の流路の厚みも基板の左右方向に同しで
あるから、成膜に与かるガス量も左右方向に差を生しな
い。従って基板の左右方向に膜厚の不均一が生じない。Further, the gas flow path (flow vA) is not deformed at the susceptor position, the gas flow velocity is equal across the entire vertical cross section of the flow path, and the gas density does not change in the left-right direction of the substrate. Furthermore, since the thickness of the channel on the substrate is the same in the left and right directions of the substrate, there is no difference in the amount of gas applied to film formation in the left and right directions. Therefore, non-uniformity in film thickness does not occur in the left-right direction of the substrate.
従って、基板をサセプタ1加熱ヒータとともに回転させ
ることにより、膜厚が基板の上流側、下流側、左右方向
の別なく実質完全に均一化された膜を形成することがで
きる。Therefore, by rotating the substrate together with the heater for the susceptor 1, it is possible to form a film whose thickness is substantially completely uniform regardless of whether it is on the upstream side, downstream side, or left/right direction of the substrate.
さらに、反応容器と内部容器との間にH2ガス1N2ガ
スまたは不活性ガスをいわゆるスィーブガスとして流す
ことにより、反応生成物が反応容器に付着せず内部容器
のみに付着することになる。そして、これらスィーブガ
スの圧力を内部容器内とほぼ同じにすると、内部容器が
複数の容器部分から構成される場合の各部分相互間の気
密性や、内部容器と反応容器相互の接合部の気密性は厳
密でなくとも、反応ガスの内部容器外への洩れ量、ある
いはスイープガスの反応ガス内への混入量は極めて少な
くなり、かつスイープガスが反応ガス中に混入した場合
にも、スイープガスとして、反応ガス中のキャリアガス
と同しHtガスまたはN2ガス。Furthermore, by flowing H2 gas 1N2 gas or an inert gas as a so-called sweep gas between the reaction vessel and the internal vessel, the reaction products will not adhere to the reaction vessel but only to the internal vessel. When the pressure of these sweep gases is made almost the same as that inside the inner container, the airtightness between each part when the inner container is composed of multiple container parts, and the airtightness of the joint between the inner container and the reaction container can be improved. Even if it is not strict, the amount of leakage of the reaction gas to the outside of the internal container or the amount of the sweep gas mixed into the reaction gas will be extremely small, and even if the sweep gas is mixed into the reaction gas, it can be used as a sweep gas. , the same Ht gas or N2 gas as the carrier gas in the reaction gas.
不活性ガスを用いることにより、I!!質へのスィーブ
ガスの影響は無視できるから、内部容器を、反応容器へ
の取付け、取外しの容易さに重点を置いて形成すること
が可能二こなり、洗浄作業が著しく容易になる。By using an inert gas, I! ! Since the effect of the sieve gas on the quality is negligible, it is possible to form the inner container with emphasis on ease of attachment to and removal from the reaction vessel, which greatly facilitates cleaning operations.
また、反応ガスは反応容器より天井の低い内部容器内へ
導入され、導入された反応ガスが効率よく熱分解される
から、成膜に使用する反応ガスの量が少なくてすみ、原
料を有効に利用することができる。In addition, the reaction gas is introduced into the inner container with a lower ceiling than the reaction container, and the introduced reaction gas is thermally decomposed efficiently, so the amount of reaction gas used for film formation is small, and the raw materials can be used effectively. can be used.
(3)手段第3項により、石英ガラス製内部容器を、上
面が反応ガスの下流側ほどサセプタの上面へ近づくよう
に正面に傾きをつけた形状とすると、基板面の上流側で
分解せず、未分解状態で下流側へ移動するガス分子が移
動とともに基板面へ近づき、上面が水平な内部容器と比
べてより効果的に加熱。(3) According to means 3, if the quartz glass inner container is tilted in front so that the upper surface approaches the upper surface of the susceptor as the downstream side of the reaction gas flows, it will not disassemble on the upstream side of the substrate surface. , gas molecules moving downstream in an undecomposed state approach the substrate surface as they move, heating the substrate more effectively than in an internal container with a horizontal top surface.
分解されて基板面下流側の成膜に寄与し、反応ガスがよ
り有効に成膜に利用される。The reactant gas is decomposed and contributes to film formation on the downstream side of the substrate surface, and the reactive gas is used more effectively for film formation.
(4)手段第1項により、サセプタを加熱する加熱手段
を抵抗加熱ヒータとしたので、手段第4項に示すように
、反応容器を金属容器とすることが可能になり1反応容
器の内部と外部との圧力差が太きくなったり、多少の機
械的、あるいは熱的衝撃を受けても容器が破壊する恐れ
がなくなる。成膜で−Gに使用される反応ガスは人体に
危険であり、反応容器を金属容器とすることにより、装
置の安全性が著しく向上する。(4) According to means 1, the heating means for heating the susceptor is a resistance heater, so as shown in means 4, it is possible to use a metal container as the reaction vessel, and the inside of the reaction vessel is There is no risk of the container breaking even if there is a large pressure difference with the outside or if it receives some mechanical or thermal shock. The reaction gas used for -G in film formation is dangerous to the human body, and by using a metal container as the reaction container, the safety of the apparatus is significantly improved.
(5)手段第5項により、内部容器と接合され反応容器
内へ導入された反応ガスを内部容器内へ流入させる反応
容器側接合部が簡易化され、金属容器を、耐熱強度保持
に必要とする冷却が全体にわたり一様に行われる容器と
することができる。(5) According to item 5 of the means, the joint on the reaction vessel side that is joined to the inner vessel and allows the reaction gas introduced into the reaction vessel to flow into the inner vessel is simplified, and the metal vessel is not required to maintain heat resistance strength. The container can be uniformly cooled throughout.
第1図は請求項第11JIの一実施例を示すものである
。図において、第7図と同一機能部材には同一符号が付
されている。石英ガラスで成形され軸線方向を水平にし
て置かれた円筒状の反応容器3の内部には、中空鉛直軸
28の先端に、ここではモリブデン製円板の下面にシー
スにより保護、絶縁された抵抗加熱線を円板状に成形し
た加熱体が固定されてなり、あるいは黒鉛を円板状に成
形してなる抵抗加熱ヒータ8が支持され、この抵抗加熱
ヒータ8と一体化されたサセプタ2の水平な上面に基板
1が取り付けられる。FIG. 1 shows an embodiment of claim 11JI. In the figure, the same reference numerals are attached to the same functional members as in FIG. 7. Inside the cylindrical reaction vessel 3 molded from quartz glass and placed with its axis horizontal, there is a resistor protected and insulated by a sheath at the tip of a hollow vertical shaft 28, here on the lower surface of a molybdenum disk. A resistance heater 8 in which a heating body made of a heating wire formed into a disk shape is fixed, or a resistance heater 8 formed by forming graphite into a disk shape is supported, and the horizontal direction of the susceptor 2 integrated with the resistance heater 8 is supported. A substrate 1 is attached to the top surface.
反応容器3の内部は、水冷されるシールケーシング11
内部の軸封し材12により気密に保たれ、また、中空鉛
直軸28は、ベアリングケース9内のベアリング10に
より、その軸線まわり回転自在に支持され、モータ14
により、ギア13を介して回転駆動される。抵抗加勢ヒ
ータ8への加熱電流の供給は、ここには特に図示してい
ないが、中空鉛直軸28の内側を遣る導体を介してjテ
ゎれる。Inside the reaction vessel 3 is a seal casing 11 that is water-cooled.
The hollow vertical shaft 28 is kept airtight by an internal shaft sealing material 12, and is rotatably supported around its axis by a bearing 10 in a bearing case 9.
It is rotationally driven via the gear 13. The heating current is supplied to the resistance-energizing heater 8 via a conductor running inside the hollow vertical shaft 28, although it is not specifically shown here.
有機金属化合物膜の原料ガスとして、水素キャリアガス
のバブリングによりガス化された■族元素のアルキル化
物と■族元素の水素化物との混合ガスを、反応ガス導入
口6がら反応容器3内へ導入すると、混合ガスは反応容
器3内を水平に流れ、サセプタ2および基板1により加
熱されてそれぞれ分解し、分解したガス同志が反応して
基板上に堆積し、あるいは基板上で反応して化合物腰を
形成する。この膜形成を、中空鉛直軸28を回転駆動し
つつ行うことにより、基板面上の上流側と下流側とで膿
の厚さが平均化され、基板面上の上流側と下流側との別
なく、膜厚均一性の良好な膜が形成される。膜形成に与
った後の反応ガス1よ排出ロアから外部へ排出される。As a raw material gas for the organometallic compound film, a mixed gas of an alkylated product of a group (III) element and a hydride of a group (■) gasified by bubbling of a hydrogen carrier gas is introduced into the reaction vessel 3 through the reaction gas inlet 6. Then, the mixed gas flows horizontally in the reaction vessel 3, is heated by the susceptor 2 and the substrate 1, and is decomposed, and the decomposed gases react with each other and deposit on the substrate, or react on the substrate and form a compound. form. By performing this film formation while rotating the hollow vertical shaft 28, the thickness of the pus is averaged on the upstream side and the downstream side on the substrate surface, and the thickness of the pus is differentiated between the upstream side and the downstream side on the substrate surface. Therefore, a film with good film thickness uniformity is formed. The reaction gas 1 after participating in film formation is discharged to the outside from the discharge lower.
第2図は請求項第2項の一実施例を示す。石英ガラス製
反応容器3はかまぼこ型の形状に形成され、その底面は
平面に、また上部は断面が半円形に形成されている。反
応ガス導入口6から内部へ向かつて流路断面が次第に横
方向に広がる扇状のガス導入部3aが形成され、このガ
ス導入部3aが、以下に説明する内部容器と反応容器3
とのガス流路の接合部を形成している。FIG. 2 shows an embodiment of claim 2. The quartz glass reaction vessel 3 is formed into a semicylindrical shape, with a flat bottom and a semicircular cross section at the top. A fan-shaped gas introduction section 3a is formed in which the cross section of the flow path gradually widens in the lateral direction from the reaction gas introduction port 6 toward the inside.
It forms the joint part of the gas flow path with.
内部容器100は、反応容器3の底面上に置かれる9石
英ガラス板からなる内部容器部分15と、上面がサセプ
タ2の上面と同一高さとなるような厚みを有する1石英
ガラス板からなる内部容器部分16と、内部容器部分1
5上に載1され断面方形のガス流路を形成する9石英ガ
ラスで成形されたカバー状内部容器17とからなる。そ
して、内部容器100と反応容器3との間の空間には、
反応容器3の底面に形成されたガス導入口3bから、H
2ガス、 Nzガスあるいは不活性ガスがスイープガス
として導入され、排出ロアから反応ガスとともに外部へ
排出される。内部容器100内の反応ガス圧力および内
部容器100と反応容器3との間の7間のスイープガス
圧力は、ともにTorrf−ダの真空圧であるから、内
部容器部分は反応容器3の底面上に載置するのみで載置
時点の位置を保持し、また、〔作用:の項で述べたよう
コニ、内部容器部分相互間および反応容器のガス導入部
3aと内部容器100との接合部に厳密な気密性を必要
としない。従って、反応容器3内への内部容器の取付け
、取外しは極めて容易に行うことができる。The inner container 100 includes an inner container part 15 made of nine quartz glass plates placed on the bottom surface of the reaction container 3, and an inner container made of one quartz glass plate having a thickness such that the top surface is at the same height as the top surface of the susceptor 2. part 16 and inner container part 1
9 and a cover-shaped inner container 17 formed of quartz glass, which is placed on top of a gas flow path having a rectangular cross section. In the space between the inner container 100 and the reaction container 3,
From the gas inlet 3b formed on the bottom of the reaction vessel 3, H
2 gas, Nz gas, or an inert gas is introduced as a sweep gas and is discharged to the outside together with the reaction gas from the discharge lower. Since the reaction gas pressure in the inner container 100 and the sweep gas pressure between the inner container 100 and the reaction container 3 are both Torrf-der vacuum pressure, the inner container portion is placed on the bottom surface of the reaction container 3. It maintains the position at the time of mounting just by placing it there, and also, as mentioned in the section [Function], the inner container parts are strictly connected to each other and the joint between the gas introduction part 3a of the reaction container and the inner container 100. does not require airtightness. Therefore, attachment and detachment of the inner container into the reaction container 3 can be performed extremely easily.
装置をこのように構成し、反応ガスをガス導入部3aを
通じて内部容器100内へ導入すると、サセプタ2の上
面と内部容器部分16の上面とは同一平面内にあるから
、反応ガスは層流状態を維持して基板面を通過し、基板
面に膜質の良好な膜を形成する。また、ガス流路の垂直
断面は、サセプタ近傍の、サセプタより上流側から下流
側にわたる範囲、同一方形断面となっているため、この
範囲内の流路断面中いずれの部位のガスμ度も等しく、
また、流路の厚みも基板の左右方向に差がないかろ、基
板面に形成される膜の工さは基板の左右方向に差を生じ
ない。従って、膜形成を、中空鉛直軸28を回転駆動し
つつ行うことにより、基板上の膜厚分布が実質完全に均
一化された膜形成が可能になる。When the apparatus is configured in this way and the reaction gas is introduced into the inner container 100 through the gas introduction part 3a, the upper surface of the susceptor 2 and the upper surface of the inner container portion 16 are in the same plane, so that the reaction gas flows in a laminar flow state. It passes through the substrate surface while maintaining the same, and forms a film of good quality on the substrate surface. In addition, the vertical cross section of the gas flow path is the same one-sided cross section in the range from the upstream side to the downstream side of the susceptor near the susceptor, so the gas μ degree of any part of the flow path cross section within this range is equal. ,
Furthermore, since there is no difference in the thickness of the flow path in the left-right direction of the substrate, there is no difference in the thickness of the film formed on the substrate surface in the left-right direction of the substrate. Therefore, by forming a film while rotating the hollow vertical shaft 28, it is possible to form a film with substantially completely uniform film thickness distribution on the substrate.
また、この装置構成では、成膜時の反応生成物が反応容
器に付着しないかみ、内部容器のみを洗浄すればよく、
また、この内部容器は、その構成と取付は方法とから、
極めて容易に反応容器外部へ取り出すことができる。ま
た、洗浄後の再取付けも極めて容易である。In addition, with this equipment configuration, in order to prevent reaction products from adhering to the reaction container during film formation, only the internal container needs to be cleaned.
In addition, this internal container has its structure and installation method.
It can be taken out of the reaction container very easily. It is also extremely easy to reinstall after cleaning.
さらに、図にみられるように、内部容器は天井が低く、
未分解状態のまま外部へ排出される反応ガス量が少なく
なるため、導入された反応ガスが効率よく成膜に利用さ
れ、原料を有効に使用することができる。Furthermore, as seen in the figure, the inner container has a low ceiling;
Since the amount of reaction gas discharged to the outside in an undecomposed state is reduced, the introduced reaction gas can be efficiently used for film formation, and raw materials can be used effectively.
第3図は請求項第3項の一実施例を示す6内部容器は天
井が流れの方向二こ低くなるように上面が2〜5°Il
lいて形成され、サセプタ上面あるいは基板面上の上流
側で分解されて未分解ガスが少なくなったガスも、下流
側へ進むにつれて基板面に近づき、上面が水平な内部容
器と比べてより多くの未分解ガスが分解し、基板面下流
側の成膜に寄与する。FIG. 3 shows an embodiment of claim 3. 6 The inner container has an upper surface with an angle of 2 to 5°Il so that the ceiling is two degrees lower in the direction of flow.
The gas that is formed on the upper surface of the susceptor or on the upstream side of the substrate surface, resulting in less undecomposed gas, also approaches the substrate surface as it moves downstream, and becomes more concentrated than in an inner container with a horizontal top surface. Undecomposed gas is decomposed and contributes to film formation on the downstream side of the substrate surface.
第4図は請求項第5項の一実施例を示す。内部容器10
1は、第2図、第3図における反応容器3のガス導入部
3aをその構成要素として取り込んで形成されている。FIG. 4 shows an embodiment of claim 5. Inner container 10
1 is formed by incorporating the gas introduction part 3a of the reaction vessel 3 in FIGS. 2 and 3 as its component.
この内部容器101の構造を第5図に分解斜視図で示す
。内部容器部分16には下面側に突起16bが形成され
、この突起16bを内部容器部分15の孔15aに挿入
することにより孔16aと15aとの中心が一致する。The structure of this internal container 101 is shown in an exploded perspective view in FIG. A protrusion 16b is formed on the lower surface side of the inner container portion 16, and by inserting this protrusion 16b into the hole 15a of the inner container portion 15, the centers of the holes 16a and 15a are aligned.
また、内部容器部分15の下面側にも孔15a と同心
にリング状の突起15bが形成され、この突起15bを
反応容器3の開口31(第4図)に挿入することにより
孔15a と開口31との中心が一致する。これにより
、抵抗加熱ヒータ8.サセプタ2および基板lは内部容
器101に接触することなく回転することができる。Further, a ring-shaped projection 15b is formed on the lower surface side of the inner container portion 15 concentrically with the hole 15a, and by inserting this projection 15b into the opening 31 (FIG. 4) of the reaction container 3, the hole 15a and the opening 31 The centers of the two coincide with each other. As a result, the resistance heater 8. The susceptor 2 and the substrate l can rotate without contacting the inner container 101.
ところで、第2図、第3図におけるガス導入部3aの役
目を果たす1石英ガラスで成形された内部容器部分18
は、反応容器3の反応ガス導入口6側シこ、第6図に示
すような構造の反応ガス導入口18aを形成され、この
反応ガス導入口18aを、反応容器3の反応ガス導入口
6を形成するガス導入フランジ20のテーパ面とばね2
1により密着させる構造トシて反応容器側の構造簡易化
を図るとともに、反応容器3をM材を用いて断面方形に
形成し、それぞれの壁面に、冷却管19aをジグザグに
沿わせた冷却板19を密着状態に取り付け、反応容器3
を冷却不足部分なく一様に冷却する構造としている。By the way, in FIGS. 2 and 3, the inner container portion 18 formed of 1 quartz glass serves as the gas introduction part 3a.
On the side of the reaction gas introduction port 6 of the reaction vessel 3, a reaction gas introduction port 18a having a structure as shown in FIG. The tapered surface of the gas introduction flange 20 forming the spring 2
In addition to simplifying the structure of the reaction vessel side, the reaction vessel 3 is made of M material and has a rectangular cross section, and cooling plates 19 are provided with cooling pipes 19a along each wall surface in a zigzag pattern. Attach the reaction vessel 3 in close contact with the reaction vessel 3.
It has a structure that cools it uniformly without any parts being undercooled.
反応容器を冷却する理由は、Mの軟化温度が石英ガラス
よりも低(、サセフリを加熱する際の強度低下を防止す
るためである。The reason why the reaction vessel is cooled is that the softening temperature of M is lower than that of quartz glass (to prevent a decrease in strength when heating the sassefuri).
本発明においては、本発明が対象とする気相成長装置を
上述のように構成したので、以下のような効果が奏せら
れる。In the present invention, since the vapor phase growth apparatus to which the present invention is directed is configured as described above, the following effects can be achieved.
(1)請求項1の装置では、基板面が反応ガスの流れの
方向と同一方向の面内で回転し、基板面に形成された膜
の膜厚分布が、基板面の上流側、下流側の差を生ずるこ
となく大きく改善され、特に基板面周方向の膜厚分布の
不均一は実質完全に解消される。(1) In the apparatus of claim 1, the substrate surface rotates within a plane in the same direction as the flow direction of the reaction gas, and the film thickness distribution of the film formed on the substrate surface is different between the upstream side and the downstream side of the substrate surface. In particular, the non-uniformity of the film thickness distribution in the circumferential direction of the substrate surface is substantially completely eliminated.
また、サセプタの加熱手段として抵抗加熱ヒータを用い
るから、サセプタを誘導加熱する場合のような回転機構
部材の材質上の制約が少なくなり、反応容器内回転機構
の形成が構造的、材質的に容易となる。従って回転機構
に歯車を用いるときのような発塵の恐れをなくすること
が容易に可能になる。In addition, since a resistance heater is used as the heating means for the susceptor, there are fewer restrictions on the material of the rotating mechanism members, such as when heating the susceptor by induction, and it is easier to form the rotating mechanism inside the reaction vessel in terms of structure and material. becomes. Therefore, it is possible to easily eliminate the fear of dust generation when using gears in the rotation mechanism.
さらに、サセプタを取り囲む誘導加熱コイルが存在しな
いから、ヒータの回転軸を、反応容器周壁を垂直に貫通
して導出することができ、回転機構を含む装置構成が簡
易化される。Furthermore, since there is no induction heating coil surrounding the susceptor, the rotating shaft of the heater can be guided out by vertically penetrating the peripheral wall of the reaction vessel, and the device configuration including the rotating mechanism is simplified.
(2)請求項2の装置では、例えば、石英ガラス製内部
容器を、ガス流路の断面が方形となるように形成して、
該方形の底面をサセプタの基板取付は面と同一平面とな
るように反応容器内に取り付けることが可能になり、反
応ガスの流れが反応容器の断面形状とは関係なく、基板
面を完全な層流状態で通過することができ、膜質が大き
く改善される。(2) In the device according to claim 2, for example, the internal container made of quartz glass is formed so that the gas flow path has a rectangular cross section,
The rectangular bottom surface can be installed in the reaction vessel so that it is flush with the surface of the susceptor substrate, and the flow of reaction gas can completely cover the substrate surface, regardless of the cross-sectional shape of the reaction vessel. It can pass through in a flowing state, and the film quality is greatly improved.
また、基板の左右方向にガス密度1ガス流量の差を生し
ないから、基板をサセプタ、加熱ヒータとともに回転さ
せることにより、膜厚が基板の上流側、下流側、左右方
向の別なく実質完全に均一化された膜を形成することが
できる、等、膜質、膜厚の制御が容易になる。In addition, since there is no difference in gas density per gas flow rate in the left and right directions of the substrate, by rotating the substrate together with the susceptor and heater, the film thickness can be virtually completely adjusted regardless of whether it is on the upstream side, downstream side, or left and right direction of the substrate. The film quality and thickness can be easily controlled, such as being able to form a uniform film.
また、反応容器と内部容器との間にH2ガス、 NZガ
スまたは不活性ガスをいわゆるスイープガスとして流す
ことにより、反応生成物が反応容器に付着せず内部容器
のみに付着し、かつ、スイープガスの圧力を内部容器内
の反応ガス圧力とほぼ等しくすることにより、内部容器
が複数の容器部分から構成される場合の各部分相互間の
気密性や、内部容器と反応容器相互の接合部の気密性は
厳密でなくとも、反応ガスの内部容器外への洩れ量、あ
るいはスィーブガスの反応ガス内への混入量は掻めて少
なくなり、かつスィーブガスが反応ガス中に混入した場
合にも、スィーブガスとして、反応ガス中のキャリアガ
スと同uHzガスまたは〜2ガス。Furthermore, by flowing H2 gas, NZ gas, or an inert gas as a so-called sweep gas between the reaction container and the internal container, the reaction products do not adhere to the reaction container but only to the internal container, and the sweep gas By making the pressure approximately equal to the reaction gas pressure in the inner vessel, it is possible to improve the airtightness between each part when the inner vessel is composed of multiple vessel parts, and the airtightness of the joint between the inner vessel and the reaction vessel. Even if the properties are not strict, the amount of reaction gas leaking out of the inner container or the amount of sweep gas mixed into the reaction gas will be significantly reduced, and even if the sweep gas is mixed into the reaction gas, it will be treated as a sweep gas. , the same uHz gas or ~2 gases as the carrier gas in the reaction gas.
不活性ガスを用いることにより、#質へのスィーブガス
の影響は無視できるかろ、内部容器を、反応容器への取
付け、取外しの容易さに重点を置いて形成することが可
能になり、洗浄作業が著しく容易になる。また、これに
より、装置の運転効率が向上する。By using an inert gas, the influence of the sweep gas on # quality can be ignored, but the inner container can be formed with emphasis on ease of installation and removal from the reaction container, making cleaning work easier. becomes significantly easier. This also improves the operating efficiency of the device.
さらに、反応ガスは反応容器より天井の低い内部容器内
へ導入され、導入された反応ガスが効率よく熱分解され
るから、成膜に使用する反応ガスの量が少なくてすみ、
原料を有効に利用することができる。Furthermore, the reaction gas is introduced into the inner container with a lower ceiling than the reaction container, and the introduced reaction gas is efficiently thermally decomposed, so the amount of reaction gas used for film formation can be reduced.
Raw materials can be used effectively.
(3)請求項3の装置では、基板面の上流側で分解せず
、未分解状態で下流側へ移動するガス分子が移動ととも
に基板面へ近づき、上面が水平な内部容器と比べてより
効果的に加熱1分解されて基板面下流側の成膜に寄与し
、反応ガスがより有効に成膜に利用される。(3) In the apparatus of claim 3, the gas molecules that do not decompose on the upstream side of the substrate surface and move downstream in an undecomposed state approach the substrate surface as they move, making it more effective than an internal container with a horizontal top surface. The reaction gas is decomposed by heating and contributes to film formation on the downstream side of the substrate surface, and the reaction gas is used more effectively for film formation.
(4)請求項4の装置では、反応容器を金属容器とする
ことが可能になり2反応容器の内部と外部との圧力差が
大きくなったり、多少の機械的、あるいは熱的衝撃を受
けても容器が破壊する恐れがなくなる。成膜で一般に使
用される反応ガスは人体に危険なため、反応容器を金属
容器とすることにより、装置の安全性が著しく向上する
。また、基板の大型化に対応した大型反応容器の製作が
容易となる。(4) In the apparatus of claim 4, it is possible to use a metal container as the reaction container, and the pressure difference between the inside and outside of the reaction container becomes large or the reaction container is subjected to some mechanical or thermal shock. There is also no risk of the container being destroyed. Since the reaction gas commonly used in film formation is dangerous to humans, the safety of the apparatus is significantly improved by using a metal container as the reaction container. In addition, it becomes easy to manufacture a large-sized reaction vessel corresponding to an increase in the size of the substrate.
(5)請求項5の装置では、内部容器と接合され反応容
器内へ導入された反応ガスを内部容器内へ流入させる反
応容器側接合部が簡易化され、金属容器を、耐熱強度保
持に必要とする冷却が全体にわたり一様に行われる容器
とすることができる。(5) In the apparatus of claim 5, the reaction vessel side joint part that is joined to the inner vessel and allows the reaction gas introduced into the reaction vessel to flow into the inner vessel is simplified, and the metal vessel is connected to the metal vessel, which is necessary for maintaining heat-resistant strength. The container can be uniformly cooled throughout.
第1図は請求項第1項の一実施例を示す装置の縦断面図
、第2図は請求項第2項の一実施例を示す装置の断面図
であって、同図(′b)は縦断面図1同図(a)は同図
中)のA−A線に沿う断面図、第3図は請求項第3項の
一実施例を示す装置要部の縦断面図、第4図は請求項第
5項の一実施例を示す装置の断面図であって、同図中)
は縦断面図、同図+a+は同図中)のB−B線に沿う断
面図、第5図:よ第4図に示す装置に用いられた内部容
器の構造を示す分解斜視図、第6図は第4図に示す装置
における反応容器、内部容器それぞれの反応ガス導入口
同志の結合構造を示す装置要部の縦断面図、第7図は本
発明が対象とする気相成長装置の従来の構成例を示す縦
断面図である。
に基板 (成膜用基板)、2;サセプタ、3:反応容器
、6.18a:反応ガス導入口、8.抵抗加熱ヒータ、
20:ガス導入7−77ジ、LOo、101 :内部容
器。
代st人う計理士 山 口 厳
第1図
成刑部視
第21!]
辰旅力゛ス
第5図FIG. 1 is a longitudinal cross-sectional view of an apparatus showing an embodiment of claim 1, and FIG. 2 is a cross-sectional view of the apparatus showing an embodiment of claim 2. FIG. 3 is a longitudinal sectional view of the main part of the device showing an embodiment of claim 3, and FIG. The figure is a cross-sectional view of a device showing an embodiment of claim 5, and is shown in the figure).
Figure 5 is a vertical sectional view, +a+ is a sectional view taken along the line B-B in the same figure, and Figure 5 is an exploded perspective view showing the structure of the internal container used in the device shown in Figure 4. The figure is a vertical sectional view of the main part of the apparatus showing the coupling structure of the reaction gas inlets of the reaction vessel and inner vessel in the apparatus shown in Fig. 4, and Fig. 7 is a conventional vapor phase growth apparatus to which the present invention is directed FIG. 2 is a vertical cross-sectional view showing a configuration example. Substrate (substrate for film formation), 2; Susceptor, 3: Reaction vessel, 6.18a: Reaction gas inlet, 8. resistance heating heater,
20: Gas introduction 7-77, LOo, 101: Internal container. Acting accountant Yamaguchi Gen 1st figure 21st sentence review! ] Dragon Travel Power Figure 5
Claims (1)
設置されるサセプタを、箱状または円筒状の反応容器内
に入れて反応ガスを導入し水平方向に流し、サセプタを
加熱することにより前記成膜用基板に薄膜を成長させる
気相成長装置において、前記サセプタを加熱する加熱手
段を抵抗加熱ヒータとし、かつこのヒータをサセプタと
ともにサセプタの基板取付け面と垂直な軸まわりに回転
可能な構造としたことを特徴とする気相成長装置。 2)請求項第1項に記載の気相成長装置において、反応
容器内へ導入された反応ガスの全量を、少なくともサセ
プタ近傍の、サセプタより上流側からサセプタより下流
側にわたる範囲、所望の流路断面で流すように成形され
た脱着可能な石英ガラス製内部容器を反応容器内に取付
けるとともに、反応容器と内部容器との間にH_2ガス
、N_2ガスまたは不活性ガスを流すようにしたことを
特徴とする気相成長装置。 3)請求項第2項に記載の気相成長装置において、石英
ガラス製内部容器を、上面が反応ガスの下流側ほどサセ
プタの上面へ近づくように上面に傾きをつけた形状とし
たことを特徴とする気相成長装置。 4)請求項第1項、第2項または第3項に記載の気相成
長装置において、反応容器を金属容器としたことを特徴
とする気相成長装置。 5)請求項第2項または第3項に記載の気相成長装置に
おいて、反応容器を金属容器とするとともに、反応容器
の反応ガス導入口と内部容器の反応ガス導入口とを、ば
ねを用いて導入口の全周にわたり互いに密に接触させる
ようにしたことを特徴とする気相成長装置。[Claims] 1) A susceptor installed so that the surface on which the film-forming substrate is attached is horizontal is placed in a box-shaped or cylindrical reaction container, and a reaction gas is introduced and caused to flow horizontally; In a vapor phase growth apparatus that grows a thin film on the film-forming substrate by heating a susceptor, the heating means for heating the susceptor is a resistance heater, and the heater is connected along with the susceptor to an axis perpendicular to the substrate mounting surface of the susceptor. A vapor phase growth apparatus characterized by having a structure that can rotate around the circumference. 2) In the vapor phase growth apparatus according to claim 1, the entire amount of the reaction gas introduced into the reaction vessel is transferred to a desired flow path, at least in the vicinity of the susceptor, in an area extending from the upstream side of the susceptor to the downstream side of the susceptor. A removable quartz glass inner container shaped to flow in cross section is attached to the reaction container, and H_2 gas, N_2 gas, or inert gas is allowed to flow between the reaction container and the inner container. Vapor phase growth equipment. 3) The vapor phase growth apparatus according to claim 2, characterized in that the quartz glass inner container has an upper surface inclined such that the upper surface approaches the upper surface of the susceptor as the downstream side of the reaction gas approaches. Vapor phase growth equipment. 4) A vapor phase growth apparatus according to claim 1, 2 or 3, characterized in that the reaction vessel is a metal vessel. 5) In the vapor phase growth apparatus according to claim 2 or 3, the reaction container is a metal container, and the reaction gas inlet of the reaction container and the reaction gas inlet of the inner container are connected using springs. A vapor phase growth apparatus characterized in that the two ports are brought into close contact with each other over the entire circumference of the inlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2316421A JP2734197B2 (en) | 1990-11-21 | 1990-11-21 | Vapor phase growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2316421A JP2734197B2 (en) | 1990-11-21 | 1990-11-21 | Vapor phase growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04186825A true JPH04186825A (en) | 1992-07-03 |
JP2734197B2 JP2734197B2 (en) | 1998-03-30 |
Family
ID=18076893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2316421A Expired - Lifetime JP2734197B2 (en) | 1990-11-21 | 1990-11-21 | Vapor phase growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2734197B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07273036A (en) * | 1994-03-30 | 1995-10-20 | Uchu Kankyo Riyou Kenkyusho:Kk | Formation of compound semiconductor crystal |
EP0792954A2 (en) * | 1996-02-29 | 1997-09-03 | Shin-Etsu Handotai Company Limited | Method for growing single-crystalline semiconductor film and apparatus used therefor |
US5993557A (en) * | 1997-02-25 | 1999-11-30 | Shin-Etsu Handotai Co., Ltd. | Apparatus for growing single-crystalline semiconductor film |
WO2002015243A1 (en) * | 2000-08-11 | 2002-02-21 | Tokyo Electron Limited | Device and method for processing substrate |
JP2002261021A (en) * | 2001-02-28 | 2002-09-13 | Japan Pionics Co Ltd | Apparatus and method for vapor-phase growth |
JP2008166668A (en) * | 2006-12-04 | 2008-07-17 | Sumitomo Electric Ind Ltd | Vapor growth apparatus and vapor growth method |
US7501352B2 (en) | 2005-03-30 | 2009-03-10 | Tokyo Electron, Ltd. | Method and system for forming an oxynitride layer |
US7517814B2 (en) | 2005-03-30 | 2009-04-14 | Tokyo Electron, Ltd. | Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently |
JP2012036013A (en) * | 2010-08-03 | 2012-02-23 | Tokyo Univ Of Agriculture & Technology | Crystal growth apparatus |
JP2012167865A (en) * | 2011-02-14 | 2012-09-06 | Ulvac-Riko Inc | Heat treatment device |
JP2012524013A (en) * | 2009-04-17 | 2012-10-11 | エルピーイー ソシエタ ペル アチオニ | Reaction chamber of epitaxial reactor and reactor using said reaction chamber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53130976A (en) * | 1977-04-20 | 1978-11-15 | Hitachi Ltd | Epitaxial growing device |
JPH0268924A (en) * | 1988-09-05 | 1990-03-08 | Fuji Electric Co Ltd | Wafer rotation type vapor phase growth equipment |
-
1990
- 1990-11-21 JP JP2316421A patent/JP2734197B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53130976A (en) * | 1977-04-20 | 1978-11-15 | Hitachi Ltd | Epitaxial growing device |
JPH0268924A (en) * | 1988-09-05 | 1990-03-08 | Fuji Electric Co Ltd | Wafer rotation type vapor phase growth equipment |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07273036A (en) * | 1994-03-30 | 1995-10-20 | Uchu Kankyo Riyou Kenkyusho:Kk | Formation of compound semiconductor crystal |
EP0792954A2 (en) * | 1996-02-29 | 1997-09-03 | Shin-Etsu Handotai Company Limited | Method for growing single-crystalline semiconductor film and apparatus used therefor |
EP0792954A3 (en) * | 1996-02-29 | 1998-05-20 | Shin-Etsu Handotai Company Limited | Method for growing single-crystalline semiconductor film and apparatus used therefor |
US5993557A (en) * | 1997-02-25 | 1999-11-30 | Shin-Etsu Handotai Co., Ltd. | Apparatus for growing single-crystalline semiconductor film |
US6806211B2 (en) | 2000-08-11 | 2004-10-19 | Tokyo Electron Limited | Device and method for processing substrate |
WO2002015243A1 (en) * | 2000-08-11 | 2002-02-21 | Tokyo Electron Limited | Device and method for processing substrate |
JP2002261021A (en) * | 2001-02-28 | 2002-09-13 | Japan Pionics Co Ltd | Apparatus and method for vapor-phase growth |
US7501352B2 (en) | 2005-03-30 | 2009-03-10 | Tokyo Electron, Ltd. | Method and system for forming an oxynitride layer |
US7517814B2 (en) | 2005-03-30 | 2009-04-14 | Tokyo Electron, Ltd. | Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently |
JP2008166668A (en) * | 2006-12-04 | 2008-07-17 | Sumitomo Electric Ind Ltd | Vapor growth apparatus and vapor growth method |
JP2012524013A (en) * | 2009-04-17 | 2012-10-11 | エルピーイー ソシエタ ペル アチオニ | Reaction chamber of epitaxial reactor and reactor using said reaction chamber |
US9382642B2 (en) | 2009-04-17 | 2016-07-05 | Lpe S.P.A. | Reaction chamber of an epitaxial reactor and reactor that uses said chamber |
JP2012036013A (en) * | 2010-08-03 | 2012-02-23 | Tokyo Univ Of Agriculture & Technology | Crystal growth apparatus |
JP2012167865A (en) * | 2011-02-14 | 2012-09-06 | Ulvac-Riko Inc | Heat treatment device |
Also Published As
Publication number | Publication date |
---|---|
JP2734197B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04186825A (en) | Vapor phase growth equipment | |
EP1072693A1 (en) | Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus | |
KR100345079B1 (en) | Apparatus of chemical vapor deposition system and synthesizing method of carbon nanotubes using the same | |
CN105002475A (en) | Base for producing oriented carbon nanotube aggregate, and method for producing oriented carbon nanotube aggregate | |
JP2013149844A (en) | Particle reduction method | |
JP4731076B2 (en) | Deposition method and deposition apparatus for depositing semiconductor film by CVD method | |
JP3640478B2 (en) | Plasma processing equipment | |
JP5622101B2 (en) | Method for producing aligned carbon nanotube assembly | |
JP2013173639A (en) | Manufacturing method for carbon nanotube oriented aggregate | |
JP3179864B2 (en) | Thin film forming equipment | |
JP3273247B2 (en) | Epitaxial growth furnace | |
JPS62235729A (en) | Vapor phase epitaxial growth device | |
JP2007335800A (en) | Method and apparatus for manufacturing semiconductor thin film | |
JP2012126598A (en) | Ejection device, apparatus for producing oriented carbon nanotube aggregate, and production method | |
JPH10177961A (en) | Vapor growth device and method | |
WO2006016626A1 (en) | Silicon manufacturing apparatus | |
JPH10167883A (en) | Chemical vapor deposition device | |
JPS62158867A (en) | Cvd thin film forming device | |
JPH0778771A (en) | Semiconductor thin film vapor growth method and device | |
JP4804354B2 (en) | Chlorosilane reactor | |
JPH09310179A (en) | Pressure reducing type vertical chemical vapor deposition device and chemical vapor deposition method | |
JPS6057507B2 (en) | Manufacturing equipment and method for manufacturing ultra-hard high-purity silicon nitride | |
JP4135543B2 (en) | Method for growing silicon carbide crystal | |
JPH01168022A (en) | Vapor phase growth equipment | |
JPH02224222A (en) | Vapor phase growth equipment |