[go: up one dir, main page]

JPH041867A - Picture quality evaluating method - Google Patents

Picture quality evaluating method

Info

Publication number
JPH041867A
JPH041867A JP2103759A JP10375990A JPH041867A JP H041867 A JPH041867 A JP H041867A JP 2103759 A JP2103759 A JP 2103759A JP 10375990 A JP10375990 A JP 10375990A JP H041867 A JPH041867 A JP H041867A
Authority
JP
Japan
Prior art keywords
image
input
area
value
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2103759A
Other languages
Japanese (ja)
Inventor
Yuji Ueno
裕司 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2103759A priority Critical patent/JPH041867A/en
Publication of JPH041867A publication Critical patent/JPH041867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

PURPOSE:To evaluate blur itself regardless of the level of a picture signal by extracting an edge part of an input image, obtaining the average picture element value of the edge part, and using the average picture element value as an index for the picture quality of input picture elements. CONSTITUTION:An image D of a peripheral part (edge part) obtained when an image B is magnified into an image C is taken out by an exclusive OR of the images B and C or by subtracting the image B from the image C. Then a sum IB of the picture element values of an input image A included in the area of the binarized image B is obtained. The value of IB is divided by an area SB of the image B (pattern part) to obtain the average density MB (average picture element value) of the pattern part. Then a sum ID of the picture element values of the image A included in the area of the image D of an edge part is obtained, and the value ID is divided by an area SD of the image D to obtain the average density MD of a peripheral part. Then an average density ratio R is obtained between a pattern part B and an edge part D. The picture quality is decided by the value of the ratio R. Thus the picture quality is quantitatively evaluated regardless of the level variance of an input picture signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は画像の周辺部のぼけに着目した画質の評価方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image quality evaluation method that focuses on blurring in the peripheral area of an image.

〔従来の技術〕[Conventional technology]

画質の検査方法の1つとして、入力画像のぼけ具合を判
定する方法がある。このようなぼけ具合の判定は、定量
化が困難である故、一般には、目視による判定が行われ
ている。自動的に判定を行うものとしては、画像信号の
最大値、最小値を検出し、予め設定しである基準レベル
との比較により良否の判定を行うものが知られている。
One method for inspecting image quality is to determine the degree of blur in an input image. Since it is difficult to quantify the degree of blur, it is generally determined visually. As a device that automatically performs the determination, one is known that detects the maximum value and minimum value of the image signal and compares it with a preset reference level to determine the quality.

〔発明が解決しようとする課題] 画像信号の最大値、最小値で画質の良否を判定しようと
すると、撮像対象に対する照明の強度で画像信号レベル
が変動するために、正確な判断ができない。
[Problems to be Solved by the Invention] If it is attempted to judge the quality of the image based on the maximum and minimum values of the image signal, accurate judgment cannot be made because the image signal level varies depending on the intensity of the illumination to the imaged object.

本発明はこの問題にかんがみ、画像信号レベルに影響さ
れずにぼけそのものを評価できるような画質の評価方法
を提供することを目的とする。
In view of this problem, it is an object of the present invention to provide an image quality evaluation method that can evaluate blur itself without being influenced by the image signal level.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の画質の評価方法は、入力画像のエツジ部分を抽
出し、そのエツジ部分の平均の画素値を求めて、この平
均画素値を入力画素の画質の指標としたことを特徴とす
る。
The image quality evaluation method of the present invention is characterized in that an edge portion of an input image is extracted, an average pixel value of the edge portion is determined, and this average pixel value is used as an index of the image quality of the input pixel.

〔作用〕[Effect]

エツジ部分の平均画素値が画像周辺部のぼけを示してい
るので、これを画質評価の指標とする。
Since the average pixel value of the edge portion indicates the blurring of the peripheral portion of the image, this is used as an index for image quality evaluation.

〔実施例〕〔Example〕

第1図に本発明による画質の検査方法の処理手順をフロ
ーチャートで示し、第2図に処理手順に沿った画像の画
素値方向の断面を示す。
FIG. 1 shows a flowchart of the processing procedure of the image quality inspection method according to the present invention, and FIG. 2 shows a cross section of an image in the pixel value direction along the processing procedure.

まずステップS1にて入力画像Aを取込む(第2図A)
。入力画像はテレビカメラなどの画像入力装置の出力で
ある。なお第2図Aは、平面図で示す画像入力対象21
を横切るライン22上の画素値(画像濃度)を示す。
First, in step S1, input image A is captured (Fig. 2A)
. The input image is the output of an image input device such as a television camera. Note that FIG. 2A shows an image input object 21 shown in a plan view.
The pixel value (image density) on the line 22 that crosses the is shown.

次に、入力画像AをステップS2において適当なしきい
値で2値化して画像Bを得る(第2図B)。この画像B
は2値化により入力画像Aの周辺部を除いて縮小した縮
小画像である。
Next, in step S2, input image A is binarized using an appropriate threshold value to obtain image B (FIG. 2B). This image B
is a reduced image obtained by reducing the peripheral part of the input image A by binarization.

次にステップS3で2値化画像Bに対して拡大処理(膨
張処理)を施し拡大画像C(第2図C)を得る。
Next, in step S3, an enlargement process (expansion process) is performed on the binarized image B to obtain an enlarged image C (FIG. 2C).

次にステップS4にて画像BからCへ拡大した周辺部(
エツジ部)の画像りを、画像BとCの排他的論理和又は
画像CからBの減算により取出す。
Next, in step S4, the peripheral area (
The image of the edge portion) is extracted by exclusive OR of images B and C or by subtracting B from image C.

次にステップS5に進み、2値化画像B(階調のないパ
ターン画像)の領域内に属する入力画像Aの画素値(信
号強度)の和IBを求め、IBの値を2値化画像B(パ
ターン部)の面積SBで割って、パターン部の平均濃度
MB (平均画素値)を求める。
Next, the process proceeds to step S5, where the sum IB of the pixel values (signal intensities) of the input image A belonging to the area of the binarized image B (pattern image with no gradation) is calculated, and the value of IB is converted to The average density MB (average pixel value) of the pattern portion is determined by dividing by the area SB of the pattern portion.

MB=IB/SB なお面積SBは、画像Bの画素数でよい。パターン部の
画素値の和IBは、第2図IBに示すように、ライン2
2上の斜線部23の面積についての画像Bの領域全体の
和である。
MB=IB/SB Note that the area SB may be the number of pixels of the image B. The sum IB of the pixel values of the pattern part is on line 2, as shown in FIG.
This is the sum of the area of the entire area of image B for the area of the shaded portion 23 on 2.

続いてステップS6において、周辺部(エツジ部)の画
像りの領域内に属する入力画像Aの画素値の和IDを求
め、値IDを画像りの面積SDで割って、周辺部の平均
濃度MD(平均画素値)を求める。
Next, in step S6, the sum ID of the pixel values of the input image A belonging to the area of the image in the peripheral part (edge part) is calculated, and the value ID is divided by the area SD of the image to calculate the average density MD of the peripheral part. (average pixel value).

MD=ID/SD なお周辺部の和10は、第2図IDに示すように、ライ
ン22上の斜線部24の面積についての画像りの領域全
体の和である。
MD=ID/SD Note that the sum 10 of the peripheral area is the sum of the entire area of the image with respect to the area of the hatched area 24 on the line 22, as shown in FIG. 2 ID.

次にステップS7で、パターン部(B)と周辺部(D)
との平均濃度の比Rを求める。
Next, in step S7, the pattern part (B) and the peripheral part (D)
Find the ratio R of the average concentration.

R=MD/MB この比Rは、画質を定量化した数値であり、理想的なボ
ケのない画像では、R=0になるはずであり、Rが大き
い程ぼけた画質の悪い画像である。
R=MD/MB This ratio R is a numerical value that quantifies image quality, and in an ideal image without blur, R should be 0, and the larger R is, the more blurry the image is.

従ってRの値により画質を判定することができる。Therefore, the image quality can be determined based on the R value.

上述の実施例における第1図のステップS3の拡大処理
については、例えば第3図のような演算処理により行う
ことができる。即ち、元の画像Bから3X3のマトリッ
クス画素配列a −iを取出し、その画素値の最大値を
新らしいマトリックスa′〜i′の中央e′の画素値に
置き換える。
The enlarging process in step S3 in FIG. 1 in the above-described embodiment can be performed, for example, by arithmetic processing as shown in FIG. 3. That is, a 3×3 matrix pixel array a-i is extracted from the original image B, and its maximum pixel value is replaced with the pixel value at the center e' of the new matrix a'-i'.

e ’ =m a x (a 、 bSc−−−−i 
)この処理を画像Bを含む2次元平面の全体についてマ
トリックスの位置を1画素ずつずらしながら行い、更に
これを2〜3回繰り返すことにより、拡大画像が得られ
る。
e' = m a x (a, bSc---i
) This process is performed on the entire two-dimensional plane including image B while shifting the position of the matrix pixel by pixel, and by repeating this process two to three times, an enlarged image is obtained.

上述の例では、パターン部CB)の平均濃度を求めたが
、2値化画像Bを2値化するときのしきいレベルをもっ
てパターン部の平均濃度としてもよい。
In the above example, the average density of the pattern portion CB) was determined, but the threshold level when binarizing the binarized image B may be used as the average density of the pattern portion.

また入力画像Aが背景を有している場合には、それを取
除いた後の画像を第1図の入力画像Aとみなして各ステ
ップ81〜S7の処理を行ってもよい。
Further, if the input image A has a background, the image after removing the background may be regarded as the input image A in FIG. 1 and the processes of steps 81 to S7 may be performed.

また上述の実施例では、パターン部(B)と周辺部(D
)との濃度の比Rをとって画質評価の指標としているが
、これは照明等によって入力画像Aのレベルが影響を受
けている場合に、その変動要因を除去する効果がある。
Further, in the above embodiment, the pattern part (B) and the peripheral part (D
) is used as an index for image quality evaluation, but this has the effect of removing the fluctuation factor when the level of the input image A is affected by illumination or the like.

従って照明等による影響が少ない場合には、周辺部(エ
ツジ部)の平均濃度MD−自体を画質評価の指標とする
ことが可能である。
Therefore, when the influence of illumination and the like is small, it is possible to use the average density MD- itself of the peripheral area (edge area) as an index for image quality evaluation.

第4図は本発明の画質検査方法の利用分野の一例を示す
。第4図は、板ガラスにサンドブラスト法で形成する刻
印のテンプレートである。この刻印は文字及び記号を形
成したテンプレートを板ガラス上に密着させ、砂を吹き
付けて形成する。従来ではこの刻印がかすれたり、欠け
たりしないで正しく形成されているか否かを目視判断し
ていたが、本発明の画質評価方法を利用すれば、刻印の
画像を第1図のステップに従って処理することにより、
自動的判定することが可能となる。
FIG. 4 shows an example of the field of application of the image quality inspection method of the present invention. FIG. 4 is a template for markings formed on plate glass by sandblasting. This stamp is made by placing a template with letters and symbols on the plate glass and then blowing sand onto it. Conventionally, it was visually judged whether the stamp was formed correctly without blurring or chipping, but by using the image quality evaluation method of the present invention, the image of the stamp can be processed according to the steps shown in Figure 1. By this,
Automatic determination becomes possible.

〔発明の効果〕〔Effect of the invention〕

請求項1の発明は上述のように、入力画像のエツジ部分
の平均画素値でもって画質の評価を行うものであり、平
均画素値がエツジ部分のぼけ具合を示すので、従来のよ
うに入力画像信号のレベル変動による影響を軽減した定
量的な画質評価を行うことができる。
As described above, the invention of claim 1 evaluates the image quality using the average pixel value of the edge portion of the input image, and since the average pixel value indicates the degree of blur of the edge portion, the input image Quantitative image quality evaluation can be performed while reducing the influence of signal level fluctuations.

請求項2の発明は、入力画像の2値化処理によって縮小
画像を得てエツジ部分を抽出するので、処理手順が簡単
で高速処理ができる。
According to the second aspect of the invention, a reduced image is obtained by binarizing the input image and edge portions are extracted, so that the processing procedure is simple and high-speed processing is possible.

請求項3の発明は、縮小画像部分に対応する入力画像の
平均画素値とエツジ部分の平均画素値との比でもって画
質の評価を行うので、入力画像のレベル変動要因を完全
に取り除くことができ、撮像時の照明などに影響されず
に対象像の画質を評価することができる。
According to the third aspect of the invention, since the image quality is evaluated based on the ratio of the average pixel value of the input image corresponding to the reduced image portion to the average pixel value of the edge portion, it is possible to completely remove the level fluctuation factors of the input image. The image quality of the target image can be evaluated without being affected by the illumination during image capture.

請求項4の発明では、2値化による縮小画像を拡大して
、拡大画像と縮小画像との差により入力画像のエツジ部
分を抽出するようにしたので、ディジタル画像に適した
処理であり、処理手順が簡単である。
In the invention of claim 4, the reduced image by binarization is enlarged, and the edge portion of the input image is extracted based on the difference between the enlarged image and the reduced image, so the processing is suitable for digital images, and the processing The procedure is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の画質評価方法の一実施例を示す画像処
理手順のフローチャート、第2図は入力画像の2次元の
形及び画素値方向の断面を夫々示す図、第3図は画像の
拡大処理を示す図、第4図は本発明によって評価される
画像の例を示す図である。 なお、図面に用いた符号において、 A    −−−一−・・・・−−−一−−−−・入力
画像B−・−・・・・−・・・・・・・・・・・・・−
2値化画像C−・−・・・−・・・・・・・−・−・・
−・・拡大画像D−・−・−・−・・・−・・−・−−
一一一・−・−周辺部(エツジ部)である。
FIG. 1 is a flowchart of an image processing procedure showing an embodiment of the image quality evaluation method of the present invention, FIG. 2 is a diagram showing the two-dimensional shape of the input image and a cross section in the pixel value direction, and FIG. FIG. 4, which is a diagram showing enlargement processing, is a diagram showing an example of an image evaluated by the present invention. In addition, in the symbols used in the drawings, A --- 1 --- 1 --- Input image B --- .・・−
Binarized image C-・-・・−・・・・・−・−・・
−・・Enlarged image D−・−・−・−・−・・−・−−
111 --- This is the peripheral part (edge part).

Claims (1)

【特許請求の範囲】 1、入力画像のエッジ部分を抽出し、そのエッジ部分の
平均の画素値を求めて、この平均画素値を入力画像の画
質の指標としたことを特徴とする画質の評価方法。 2、入力画像を2値化することにより画像の2次元面上
で縮小した縮小画像を得て、入力画像と縮小画像との差
部分を上記エッジ部分として抽出し、このエッジ部分に
対応する入力画素値の総和をエッジ部分の面積で割って
上記平均画素値を求めることを特徴とする請求項1の画
質の評価方法。 3、上記縮小画像部分に対応する上記入力画像の平均画
素値と、上記エッジ部分の平均画素値との比を上記画質
評価の指標とすることを特徴とする請求項2の画質の評
価方法。 4、上記2値化による縮小画像に対して画像の2次元画
上で拡大処理した拡大画像を形成し、この拡大画像と縮
小画像との差部分を上記エッジ部分とすることを特徴と
する請求項3の画質の評価方法。
[Claims] 1. An image quality evaluation characterized in that an edge portion of an input image is extracted, an average pixel value of the edge portion is determined, and this average pixel value is used as an index of the image quality of the input image. Method. 2. Binarize the input image to obtain a reduced image on the two-dimensional surface of the image, extract the difference between the input image and the reduced image as the edge portion, and extract the input corresponding to this edge portion. 2. The image quality evaluation method according to claim 1, wherein the average pixel value is obtained by dividing the sum of pixel values by the area of an edge portion. 3. The image quality evaluation method according to claim 2, wherein a ratio between an average pixel value of the input image corresponding to the reduced image portion and an average pixel value of the edge portion is used as an index for the image quality evaluation. 4. A claim characterized in that an enlarged image is formed by enlarging the reduced image obtained by the binarization on a two-dimensional image, and a difference between the enlarged image and the reduced image is used as the edge portion. Item 3: Image quality evaluation method.
JP2103759A 1990-04-19 1990-04-19 Picture quality evaluating method Pending JPH041867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2103759A JPH041867A (en) 1990-04-19 1990-04-19 Picture quality evaluating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2103759A JPH041867A (en) 1990-04-19 1990-04-19 Picture quality evaluating method

Publications (1)

Publication Number Publication Date
JPH041867A true JPH041867A (en) 1992-01-07

Family

ID=14362452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103759A Pending JPH041867A (en) 1990-04-19 1990-04-19 Picture quality evaluating method

Country Status (1)

Country Link
JP (1) JPH041867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046650A (en) * 1998-07-23 2000-02-18 Matsushita Electric Ind Co Ltd Image quality inspection device
JPWO2010021039A1 (en) * 2008-08-21 2012-01-26 パイオニア株式会社 Image processing apparatus, image processing method, and image processing program
JP2015156189A (en) * 2014-02-21 2015-08-27 株式会社ニコン image evaluation device, and image evaluation program
JP2019096364A (en) * 2019-03-18 2019-06-20 株式会社ニコン Image evaluation device
JP2020170555A (en) * 2020-07-13 2020-10-15 株式会社ニコン Image evaluation device, camera, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046650A (en) * 1998-07-23 2000-02-18 Matsushita Electric Ind Co Ltd Image quality inspection device
JPWO2010021039A1 (en) * 2008-08-21 2012-01-26 パイオニア株式会社 Image processing apparatus, image processing method, and image processing program
JP2015156189A (en) * 2014-02-21 2015-08-27 株式会社ニコン image evaluation device, and image evaluation program
JP2019096364A (en) * 2019-03-18 2019-06-20 株式会社ニコン Image evaluation device
JP2020170555A (en) * 2020-07-13 2020-10-15 株式会社ニコン Image evaluation device, camera, and program

Similar Documents

Publication Publication Date Title
CN108460757B (en) Mobile phone TFT-LCD screen Mura defect online automatic detection method
KR20090066212A (en) Fault detection method and fault detection device
CN101599175A (en) Determine the detection method and the image processing equipment of alteration of shooting background
TWI512284B (en) Bubble inspection system for glass
JP2005121546A (en) Defect inspection method
JP2007078540A (en) Visual inspection method and visual inspection device
JPH0961138A (en) Crack extraction apparatus
JPH041867A (en) Picture quality evaluating method
JP2002310937A (en) Method and apparatus for inspection of defect
KR101675532B1 (en) Apparatus and Method for detecting defect of thick steel plate
CN112767414B (en) Image segmentation method and automatic detection method for micro-nano optical element
TWI510776B (en) Bubble inspection processing method for glass
JP3635762B2 (en) Inspection method of semiconductor substrate surface defects
JP2001028059A (en) Method and device for color unevenness inspection
JP4978215B2 (en) Machining surface defect judgment method
JP2711649B2 (en) Surface scratch detection method for inspection object
JP4491922B2 (en) Surface defect inspection method
JP2011209113A (en) Inspection system
JPH0735699A (en) Method and apparatus for detecting surface defect
JP3433333B2 (en) Defect inspection method
JP4238074B2 (en) Surface wrinkle inspection method
JPH0624014B2 (en) Gray image processing method
JP3753234B2 (en) Defect detection method
JP3581040B2 (en) Wiring pattern inspection method
JP2006155579A (en) Image processing method and image processing apparatus