JPH04185308A - Manufacturing device of stamper - Google Patents
Manufacturing device of stamperInfo
- Publication number
- JPH04185308A JPH04185308A JP31174990A JP31174990A JPH04185308A JP H04185308 A JPH04185308 A JP H04185308A JP 31174990 A JP31174990 A JP 31174990A JP 31174990 A JP31174990 A JP 31174990A JP H04185308 A JPH04185308 A JP H04185308A
- Authority
- JP
- Japan
- Prior art keywords
- plated
- base
- metal
- space
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000012779 reinforcing material Substances 0.000 claims abstract description 10
- 239000000853 adhesive Substances 0.000 claims abstract description 6
- 230000003287 optical effect Effects 0.000 claims description 16
- 239000011810 insulating material Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 11
- 230000003014 reinforcing effect Effects 0.000 abstract description 8
- 230000002349 favourable effect Effects 0.000 abstract 3
- 239000012774 insulation material Substances 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 abstract 1
- 238000007747 plating Methods 0.000 description 31
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 239000006121 base glass Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は 微小光学部品を樹脂成型によって安価に高精
度に製作することを必要とされる分野に有効に利用でき
も
従来の技術
従来光学部品 例えば ブリズヘ レンズミラー等は石
灸 ガラス等で研磨等によって作られるため生産性が上
がらず且つ比重が2.7であるので重さの問題があも
特に最近注目を集めている光ディスクや、広く普及して
いるコンパクトディスクに必要とされる光ピツクアップ
用光学部品は軽く且つ安価であることが重要であム
一方近年樹脂成型の進歩はめざめましく各分野に適用が
なされている力丈 樹脂成型品の場合安価で且つ比重も
1,7程度であるので軽量化が図れる等の長所が有るの
で各方面で光学部品を樹脂で作る研究がなされていも
しかし光学部品特に反射鏡を樹脂で成型して構成するた
めには全形表面を精度良く製作する必要がある。[Detailed Description of the Invention] Industrial Fields of Application The present invention can be effectively used in fields where it is necessary to manufacture microscopic optical components at low cost and with high precision by resin molding. Lens mirrors, etc. are made by polishing with stone moxibustion glass, etc., so productivity does not increase, and the specific gravity is 2.7, so there is a problem of weight.
In particular, it is important that the optical components for optical pickup required for optical discs, which have been attracting attention recently, and compact discs, which are widely popular, are lightweight and inexpensive. Resin molded products are inexpensive and have a specific gravity of about 1.7, so they have the advantage of being lightweight, so research on making optical parts from resin is being conducted in various fields.
However, in order to construct optical components, particularly reflective mirrors, by molding resin, it is necessary to manufacture the entire surface with high precision.
従来成されて来た金属面の研磨等による鏡面金型製作法
では 本来金属は結晶体であるため最終この金属微結晶
のため面荒さが規制され300オングストローム以下の
面荒さに仕上げることは不可能であム 又反射面が単な
る平面であればこのように研磨という方法も可能である
力丈 最近各所で研究がなされているグレイティング等
の様に単なる鏡面でなくレリーフ状の凹凸形状が必要と
される時はこの方法で金型を製作する事は不可能であム
従ってこの時には第6図で示される金型製作工程を用
いて金型を作ることが必要になも 以下第6図を用いて
(この工程は光ディスク等のディスクスタンパ−製作工
程と同じであるので以下この工程によって製作される金
型をスタンパ−と記する)スタンパ−製作工程を説明す
もまず基材3上(通常基材として良好な平面度が得られ
るガラス 石虱 シリコン単結晶等が用いられも )に
ホトレジスト18が薄くコートされる(a)。この後種
々の露光法によって前記ホトレジストに光が露光され次
に現像されも 通常ポジタイプのレジストが用いられる
から光が照射されたホトレジストが現像液によって溶か
されもよって(b)図に示されるレリーフパターン11
がホトレジストにて作られも このレリーフパターン1
1上にメッキ層4が施され 金属メッキ層4上にパター
ン11が転写されも このようにして作られた基材3の
上にメッキ層4を施されたものを図(c)に示す。通常
メッキ金属としてはCu、Ni等が用いられその厚みは
通常250−300μmの厚みとなム この時できあが
った状態は第3図に示される如く金属メッキ面に引っ張
られるような形でそることになム このそりが発生する
原因は主に以下に述べる2つ事からであa−つは基材4
の面に金属メッキをする暇 メッキ液を加温する必要が
あり、この時の熱膨張係数による差のためにそりが発生
すも もう一つはメッキ金属内に発生する応力のためで
あム 通常この発生応力を極小にするようにメッキ時に
メッキ液温は40−50℃の間に設定されも またこの
範囲内に液温を設定しないとメッキ液のイオン濃度が低
下するため電流が流れにくくメッキ時間が極端に長くな
ム しかし先に述べた如くメッキ液温をこの範囲に設定
しメッキされるからメッキが終了した後常温に戻した場
合Ni金属と基材ガラスの間で熱膨張係数に差があり金
属側の方がよく収縮するから第3図に示した如く金属面
側に反ることとなも しかしこの反りは光学素子用の金
型を作ることに対しては大問題となム なぜなら光学用
部品 特に鏡面等として使用可能な面精度は1/4λ、
すなはち約5mmφ面内において0゜2μm以内の平面
度が必要とされも 従ってこのような反りがあると光学
部品成型用の金型として使用出来な(−従来はこのよう
に反った金型を強制する方法として6表 単によく平行
度の出された平行2面の内側に金属にメッキを施した基
材4とメッキ面補強用金属補強材を配置し 前記平行2
面により単に締め上げる平面度を出す方法が用いられて
い丸 しかしこのような方法ではよほど各部品 基材、
メッキ罠 補強材等に厚み方向の平行度が出ていないと
加圧がムラとなるから良好な結果が得られなかっ九 ま
た出来上がった後、治具から取り外し測定するまでその
出来上りを確認することが不可能であったので光学反射
面用の金型を精度よく且つ歩留まり良く製作することが
出来なかった
発明が解決しようとする課題
本発明はこのように従来高平面度の金型を容易に製作し
難かった点を解決し これにより樹脂成型により光学部
品に必要とされる金型面精度を確保し樹脂成型で光学面
を形成することを容易ならしめる金型を形成することを
目的としたものであム
課題を解決するための手段
本発明は二つの対向する面を有し 且つこの二つの面の
間(二 −面にメッキが施されかつ他の面にはメッキが
施されていない面を有する基材と、前記基材メッキ面に
接着剤を介して補強材を配置した後、前記二つの対向面
の間隔を狭めることのより前記メッキ面と補強材との接
着を強固にすると共に この内少なくとも一つの面は高
平面度を有する透明基材によって構成され かつ前記基
材のメッキがなされていない面を、この透明体基材に圧
着させこの透明体基材と前記基材との間に光干渉を生じ
させこの干渉模様が間隔が最も広く成るように前記二つ
の対向する面の間隔及び平行度を調整することにより良
好な平面度を有するスタンパー(金型)を製作する装置
を提供するものであム さらに又 本発明は前記二つの
対向する面の九 一つの面は金属としこの金属中に加熱
器を配すると同時に他の一面は断熱材料をもって構成し
前記の方法に因って圧力を加えると同時にメッキ金属面
と基材面の間に熱勾配を持たせることにより良好な平面
度を製作する手段を提供せんとするものであa
作用
本発明の原理を第3.第4図に示しこの原理図に基づい
て説明を加えも
第3FgJに示される如くメッキ工程から得られた基板
上にメッキされた基材3とメッキ層4は本図の如く歪ん
でいも これを光学表面を有する透明体である下部平面
板2と接触点16で接触させ図のごとく参照光9が入射
されるといわゆる基材4の表面反射光と基材表面反射光
との干渉により、第3図下方に示す暗部14、明部15
よりなるニュートンリングを生じ4 17は1/4λず
つの間隔であム このニュートンリングの間隔17から
メッキ層4を設けた事による基材3の歪量を知ることが
出来も いま基材4の厚み状態が正確に管理されて、い
ればこの基材面と光学透明体との干渉模様が結論的にメ
ッキ面と光学透明体との平面度を表示していることにな
4 従って前記光学透明体と基材殿干渉模様を管理する
ことによりメッキ面の表面精度を管理することが可能と
なも第4図は本特許の第2の発明を示していも 先に述
べたごと〈従来(よ メッキ時に発生する歪は単にメッ
キされた基材に圧力をかけその歪を強制していた しか
しこのような方法では圧力を加えるとき必ずしも均一に
延ばされな(t この原因はメッキ金属が延ばされると
きメッキ裏面等にある凹凸や微少なバンプによりうまく
延びる部分と滑りが悪くうまく延びきらない部分とがあ
り一部分は平面性が回復されるが一部分は返って複雑な
面歪が発生するということとなり、必ずしも圧力を単に
加えるだけでは均一に歪の無いメッキ面を得ることが出
来なかった そこで本発明では単にメッキ表面に圧力を
加え 無理やり歪を取るためメッキ金属を延ばすのでは
なく本来この時点で発生している歪の大部分はメッキ時
の液温と空気温度が異なることに因るバイメタル歪が大
部分であることに注目して考案したものであム 従って
メッキ層4の面の平面度を最良にするためにはメッキ時
と同様の温度をメッキ面と基材に加えることが望ましし
従って本発明は相対する面の内−面は加熱するとき補
強材とメッキ金属に有効に熱を伝える必要があるから金
属が望ましL〜 そして反対の面からは出来るだけ熱が
逃げて行かないことが望まし鶏 もし本発明と異なって
相対する平面が金属から形成されていた場合この金属か
らの放熱が激しく基材とメッキ面との接触面内において
−様な温度分布が得られない。従ってこの場合は温度む
らにより良好な面が得られないことになも 従って面内
でできるだけ均一温度分布を実現させるためには断熱材
の方が望ましし−さて本発明のごと〈従来よりもはるか
に弱く加圧しながらメッキ金属が加温されているからメ
ッキ金属は非常に滑らかに延びることとなりメッキ面全
体に渡って滑らかな面を得ることが可能となム
実施例
本発明の実施例を第1皿 第2図に示し本図に基づいて
本発明に付いて詳細に説明を加える。In the conventional method of manufacturing mirror-finished molds by polishing the metal surface, etc., since metal is originally a crystalline substance, the surface roughness is restricted by the final metal microcrystals, and it is impossible to finish the surface to a surface roughness of less than 300 angstroms. In addition, if the reflective surface is simply a flat surface, polishing as described above is also possible.Recently, research is being conducted in various places, such as gratings, which require not just a mirror surface but a relief-like uneven shape. In this case, it is impossible to make a mold using this method.Therefore, in this case, it is necessary to make a mold using the mold manufacturing process shown in Figure 6. (This process is the same as the manufacturing process of disc stampers for optical discs, etc., so the mold manufactured by this process will be referred to as a stamper below.) To explain the stamper manufacturing process, first, a A photoresist 18 is thinly coated on a substrate (glass, stone, silicon single crystal, etc.) that can provide good flatness (a). Thereafter, the photoresist is exposed to light using various exposure methods and then developed. Since a positive type resist is usually used, the photoresist irradiated with light is dissolved by a developer, resulting in the relief pattern shown in (b). 11
Even if it is made with photoresist, this relief pattern 1
A plated layer 4 is applied on the metal plated layer 4, and a pattern 11 is transferred onto the metal plated layer 4.A plated layer 4 is applied on the base material 3 thus produced, as shown in FIG. Usually, Cu, Ni, etc. are used as the plating metal, and the thickness is usually 250-300 μm.The resulting state is that it warps as if being pulled by the metal plating surface, as shown in Figure 3. The cause of this warping is mainly due to the following two reasons.
During metal plating on the surface of the plated metal, it is necessary to heat the plating solution, and warping occurs due to the difference in thermal expansion coefficient. Normally, the temperature of the plating solution during plating is set between 40-50℃ to minimize this generated stress, but if the solution temperature is not set within this range, the ion concentration of the plating solution will decrease, making it difficult for current to flow. The plating time is extremely long.However, as mentioned earlier, since the plating solution temperature is set within this range and the plating is performed, when the temperature is returned to room temperature after plating is completed, the thermal expansion coefficient between the Ni metal and the base glass will change. There is a difference, and the metal side shrinks better, so the metal side will warp as shown in Figure 3. However, this warpage is a big problem when making molds for optical elements. This is because the surface accuracy that can be used as optical parts, especially mirror surfaces, is 1/4λ.
In other words, although a flatness of within 0°2 μm is required within a plane of approximately 5 mmφ, if there is such a warp, it cannot be used as a mold for molding optical components (- Conventionally, molds with this warp As shown in Table 6, a method of forcing the above-mentioned parallel 2 is to simply place a metal-plated base material 4 and a metal reinforcing material for reinforcing the plated surfaces on the inside of two well-parallel surfaces.
However, with this method, each part, base material,
Plating trap If the reinforcing material is not parallel in the thickness direction, the pressure will be uneven and good results will not be obtained. Problems to be Solved by the Invention Since it was impossible to manufacture molds for optical reflective surfaces with high accuracy and high yield, the present invention has solved the problem of manufacturing molds for optical reflective surfaces with high precision and high yield. The aim is to solve the problems that were difficult to achieve, and thereby create a mold that ensures the mold surface precision required for optical parts through resin molding, and makes it easier to form optical surfaces with resin molding. The present invention has two opposing surfaces, and between these two surfaces (the two surfaces are plated and the other surface is not plated). After arranging a reinforcing material on the plating surface of the base material via an adhesive, the adhesion between the plating surface and the reinforcing material is strengthened by narrowing the distance between the two opposing surfaces. At least one of these surfaces is constituted by a transparent base material having a high degree of flatness, and the unplated surface of the base material is pressure-bonded to the transparent base material, and the transparent base material and the base material are bonded together. A device for producing a stamper (mold) having good flatness by adjusting the distance and parallelism between the two opposing surfaces so that the interference pattern has the widest distance between the surfaces. Furthermore, the present invention provides nine of the two opposing surfaces; one surface is made of metal and a heater is disposed in the metal, while the other surface is made of a heat insulating material; The purpose of the present invention is to provide a means for producing good flatness by applying pressure and at the same time creating a thermal gradient between the plated metal surface and the base material surface. Although the explanation is given based on this principle diagram as shown in Fig. 4, the base material 3 and plating layer 4 plated on the substrate obtained from the plating process may be distorted as shown in this figure, as shown in No. 3FgJ. When the lower plane plate 2, which is a transparent body having a surface, is brought into contact with the contact point 16 and the reference light 9 is incident as shown in the figure, the third Dark area 14 and bright area 15 shown at the bottom of the figure
The Newton rings 4 and 17 are spaced at intervals of 1/4λ.The amount of strain on the base material 3 due to the provision of the plating layer 4 can be determined from the spacing 17 of the Newton rings. If the thickness condition is accurately controlled, the interference pattern between the base material surface and the optically transparent body will conclusively indicate the flatness of the plated surface and the optically transparent body. It is possible to control the surface precision of the plated surface by controlling the interference pattern between the body and the base material.Although FIG. 4 shows the second invention of this patent, The strain generated during plating was simply forced by applying pressure to the plated base material. However, with this method, when pressure is applied, the plated metal does not necessarily spread uniformly (t) This is because the plated metal is stretched. Due to irregularities and minute bumps on the back side of the plating, there are parts that can be stretched well and parts that are not smooth and cannot be fully extended, and while flatness is restored in some parts, complex surface distortion occurs in others. However, it was not always possible to obtain a uniformly strain-free plated surface simply by applying pressure.Therefore, in the present invention, pressure is simply applied to the plated surface to remove the strain that would otherwise occur at this point, rather than stretching the plated metal. The idea was to focus on the fact that most of the distortion caused by the bimetallic distortion is caused by the difference between the liquid temperature and the air temperature during plating. Therefore, the flatness of the surface of the plating layer 4 For best results, it is desirable to apply the same temperature to the plated surface and the base material as during plating. Therefore, in the present invention, the inner surfaces of the opposing surfaces effectively apply heat to the reinforcing material and the plated metal when heated. Since it is necessary to transmit heat, it is desirable to use metal.And it is desirable that as much heat as possible does not escape from the opposite surface.If, unlike the present invention, the opposing plane is made of metal, it will be made from this metal. Because of the intense heat dissipation, it is not possible to obtain a -like temperature distribution within the contact surface between the base material and the plated surface.Therefore, in this case, a good surface cannot be obtained due to temperature unevenness.Therefore, the temperature is as uniform as possible within the surface. In order to achieve this distribution, it is preferable to use a heat insulating material; however, in the present invention, since the plated metal is heated while applying much weaker pressure than in the past, the plated metal extends very smoothly. EMBODIMENT OF THE INVENTION An embodiment of the present invention in which a smooth surface can be obtained over the entire plated surface is shown in FIG. 2, and the present invention will be described in detail based on this figure.
本実施例の場合は上部平面板1と下部平面板2によって
相対する平行面が構成されていa 本実施例の場合下部
平面板は支持台13により固定されていも 従ってこの
二面の間に挟まれた基材3、メッキ層4、接着剤となる
樹脂層5、メッキ補強板6に圧力8を加えるためには強
制的に上部平面板1を移動させることになa さて下部
平面板2は暑さ10mmの石英板により構成されてい4
本図では基材3、メッキ層4の面は簡単のため直線で表
示しているが本当は第3図に示される如くメッキ制作時
の温度が約45℃前後であるからこれを大気温度に戻し
た場合金属面の収縮の方が犬であるから第3図の如く反
ム いまこれを光学的に研磨さらた面を有する下部平面
板2の上に図の如く設置した場合この下部平面板2上面
2aから1/4λ (光学波長)だけ離れる毎に室部1
4、明部15よりなる干渉縞が発生すム 従ってこの原
理から出来るだけ基材の反りをなくし平面度を確保する
ためにはこのようにして発生する干渉縞の暗部14の数
が少なくなるように上部平面板1を移動させ圧力8を加
えて下部平面におさえつけることにすれば良し一シかし
本来メッキ補強板6の面平行度までは管理されていな(
t このような場合は一慨に加圧するだけ干渉模様を少
なくすることは出来なt−
な耘 第1図において、 IOは反射光でスクリーン1
2に第2図のごとく前述の干渉縞よりなる陰影部11が
形成されも
このような場合は本発明の第2の物を用いれば良(ち
このため本実施例では上部平面板2の中に加熱用ヒータ
ー7が埋め込まれている。このヒーター7に電流を流す
事により加温が可能となっていも このように張り合わ
せ時に歪が発生した基材にメッキ時に発生または加えら
れた温度と同等の温度に基材をする事により温度差によ
る歪は解消されも
これはメッキの歪がメッキ時温度と大気温度の間に差が
ありこれにより反りか発生する事に対してこれを張り合
わせ時に緩和するためになされた物であも
この間に裏面にこの応力に打ち勝つだけの十分に厚いメ
ッキ補強板6を張り合わせる事により樹脂5が硬化後、
この加熱温度を取り去り常温に戻してもメッキ補強板6
により反りの発生を打ち消すことを利用した物であも
第5図には本発明の実施例における縦方向における温度
分布を示す。この図から明らかな如く加熱用ヒーター7
は金属ブロックからなる上部平面板1の内部に組み込ま
れかつこの上部平面板1はやはり金属からなるメッキ補
強板6と密着しているので両者の間にわ全く熱抵抗はな
いからこの間には熱勾配は存在しな(t そしてその熱
はごく薄い樹脂層5を通じてメッキ層4に熱が加えられ
もしかしこれ以降の基材3及び下部平面板2はガラス等
の断熱材からなるから第5図に示すごとく温度は上がら
ずこの方面からは熱が逃げる事がな(〜従って基材温度
は上昇せずメッキ層のみ温度上昇が効果的になされるか
収 効果的にバイメタル効果によりメッキ時に発生した
反りを解消する事が出来も またこの熱により樹脂層5
を構成する接着剤も良好に硬化する事も可能になム
この後このスタンパー製作器から取り出されホトレジス
ト8が溶媒によって流され ガラス基材も剥離され第2
図に示される良好な平面度を有する金型が製作されも
発明の効果
以上のごとく本発明を適用する事により高平面性を有す
る金型をきわめて精度良くかつ歩留まり良く制作する事
が可能となり、従来不可能であったホログラムを刻んだ
平面性の優れた鏡面を光硬化樹脂もしくはインジェクシ
ョン等の技術によりこれらのレプリカを容易に製作する
ことが可能となっ九In this embodiment, the upper plane plate 1 and the lower plane plate 2 constitute opposing parallel surfaces. In order to apply pressure 8 to the base material 3, the plating layer 4, the adhesive resin layer 5, and the plating reinforcing plate 6, the upper flat plate 1 must be forcibly moved. It is made up of a 10mm thick quartz plate4
In this diagram, the surfaces of the base material 3 and plating layer 4 are shown as straight lines for simplicity, but in reality, as shown in Figure 3, the temperature at the time of plating production was around 45°C, so this should be returned to atmospheric temperature. In this case, the contraction of the metal surface is faster, so it recurs as shown in Figure 3.If this is installed as shown in the figure on the lower flat plate 2, which has an optically polished surface, this lower flat plate 2 Every time 1/4λ (optical wavelength) separates from the upper surface 2a, the chamber 1
4. Interference fringes consisting of bright areas 15 are generated. Therefore, based on this principle, in order to eliminate warpage of the base material as much as possible and ensure flatness, the number of dark areas 14 of the interference fringes generated in this way should be reduced. It would be a good idea to move the upper plane plate 1 and press it against the lower plane by applying pressure 8, but originally the plane parallelism of the plated reinforcing plate 6 was not controlled (
In such a case, it is not possible to reduce the interference pattern by applying pressure all at once.
2, as shown in FIG.
For this reason, in this embodiment, a heating heater 7 is embedded in the upper flat plate 2. Even if heating is possible by passing current through this heater 7, the temperature difference can be increased by heating the base material to the same temperature as the temperature generated or applied during plating to the base material that has been strained during bonding. This was done to alleviate the distortion caused by the plating when there is a difference between the temperature at the time of plating and the atmospheric temperature, which causes warping. After the resin 5 hardens by pasting a plated reinforcing plate 6 thick enough to overcome this stress on the back side,
Even if this heating temperature is removed and the temperature is returned to room temperature, the plated reinforcing plate 6
FIG. 5 shows the temperature distribution in the longitudinal direction in an embodiment of the present invention. As is clear from this figure, the heating heater 7
is incorporated inside the upper flat plate 1 made of a metal block, and this upper flat plate 1 is in close contact with the plated reinforcing plate 6 also made of metal, so there is no thermal resistance between them, so no heat is generated between them. There is no gradient (t), and the heat is applied to the plating layer 4 through the very thin resin layer 5. However, the subsequent base material 3 and lower flat plate 2 are made of a heat insulating material such as glass. As shown in the figure, the temperature does not rise and no heat escapes from this direction. This heat also makes it possible to eliminate warpage in the resin layer 5.
After that, the adhesive constituting the stamper is removed from the stamper making machine, the photoresist 8 is washed away by the solvent, and the glass base material is also peeled off.
Even if a mold with good flatness as shown in the figure is manufactured, by applying the present invention, it is possible to manufacture molds with high flatness with extremely high precision and high yield, as shown by the effects of the invention. It has become possible to easily produce replicas of mirror surfaces with excellent flatness inscribed with holograms using techniques such as photocuring resin or injection, which was previously impossible.
第1図は本発明の一実施例のスタンパー製作装置要部断
面医 第2図はスクリーン上の状態医第3医 第4図は
干渉模様発生の様子を示す医第5図は本発明の実施例に
おける温度分布を示す医 第6@ 第7図はスタンパー
製作法による金型製作法を示す工程断面図であム
1・・・上部平面板、 2・・・下部平面板、 3・・
・基材、 4・・・メッキ恩 5・・・樹脂服6・・・
メッキ補強板、 7・・・加熱用ヒーター、8・・・圧
力 9・・・参照光 10・・・反射光 11・・・陰
影i 12・・・スクリーン、13・・・支持台、
14・・・暗脈 15・・・明!1.6・・・接触、弧
17・・・1/4λ間[1,8−−・ホトレジスト。
代理人の氏名 弁理士 小鍜治 明 ほか2名r−−1
暴p 平 」d 叛
4−メソ岬
s −1fI N& 4
6=−メノヤ、wI法坂
7−10 帖用ヒーター
第 2 ロ
/4−−11台 翻
ts−−tr月 邸P
7 /
第 4 図
ζ′14
第5図Fig. 1 shows a cross-sectional view of the main parts of a stamper production apparatus according to an embodiment of the present invention. Fig. 2 shows the status on the screen. Fig. 4 shows how an interference pattern is generated. Fig. 5 shows an embodiment of the present invention. Fig. 6 @ Fig. 7 is a process cross-sectional view showing the mold manufacturing method using the stamper manufacturing method.
・Base material, 4... Plating 5... Resin clothing 6...
Plated reinforcing plate, 7... Heating heater, 8... Pressure, 9... Reference light, 10... Reflected light, 11... Shadow i, 12... Screen, 13... Support stand,
14...Dark vein 15...Light! 1.6...Contact, arc 17...1/4λ interval [1,8--Photoresist. Name of agent: Patent attorney Akira Okaji and 2 others r--1
4-Mesomisakis -1fI N & 4 6=-Menoya, wI Hosaka 7-10 Book heater No. 2 Ro/4--11 units Translation ts--tr Month House P 7/4 Figure ζ'14 Figure 5
Claims (3)
に、一面にメッキが施されかつ他の面にはメッキが施さ
れていない面を有する基材と、前記基材メッキ面に接着
剤を介して補強材を配置した後、前記二つの対向面の間
隔を狭めることのより前記メッキ面と補強材との接着を
強固にすると共に、少なくとも一つの前記面は高平面度
を有する透明体によって構成され、かつ前記基材のメッ
キがなされていない面を、この透明体に圧着させこの透
明体と前記基材との間に光干渉を生じさせこの干渉模様
が間隔が最も広く成るように前記二つの対向する面の間
隔及び平行度が調整出来ることを特徴とするスタンパー
製作装置(1) A base material having two opposing surfaces, and between these two surfaces, one surface is plated and the other surface is not plated, and the base material is plated. After arranging the reinforcing material on the surface with an adhesive, the distance between the two opposing surfaces is narrowed to strengthen the adhesion between the plated surface and the reinforcing material, and at least one of the surfaces has a high flatness. The non-plated surface of the base material is pressed onto the transparent body to cause optical interference between the transparent body and the base material, and this interference pattern is formed with a maximum spacing. A stamper manufacturing device characterized in that the distance and parallelism between the two opposing surfaces can be adjusted so that the two opposing surfaces become wider.
に二つの面の内、一面にメッキが施された基材とこのメ
ッキ面に接着剤を介して補強材を配置し前記二つの対向
面の間隔を狭めることのより前記メッキ面と補強材との
接着を強固にする機械において、この内少なくとも一つ
の面は金属としこの金属中に加熱器を配すると同時に他
の一面は断熱材料からなることを特徴とするスタンパー
製作装置(2) A base material that has two opposing surfaces, and between these two surfaces, one of the two surfaces is plated, and a reinforcing material is placed on this plated surface via an adhesive. In a machine that strengthens the adhesion between the plated surface and the reinforcing material by narrowing the distance between the two opposing surfaces, at least one of these surfaces is metal, and a heater is disposed in the metal, and at the same time the other surface is is a stamper manufacturing device characterized by being made of a heat insulating material.
て少なくとも一つの面は金属としこの金属中に加熱器を
配すると同時に他の一面は断熱材料からなることを特徴
とするスタンパー製作装置。(3) A stamper manufacturing apparatus according to claim 1, wherein at least one surface is made of metal and a heater is disposed in the metal, and the other surface is made of a heat insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31174990A JPH04185308A (en) | 1990-11-16 | 1990-11-16 | Manufacturing device of stamper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31174990A JPH04185308A (en) | 1990-11-16 | 1990-11-16 | Manufacturing device of stamper |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04185308A true JPH04185308A (en) | 1992-07-02 |
Family
ID=18021016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31174990A Pending JPH04185308A (en) | 1990-11-16 | 1990-11-16 | Manufacturing device of stamper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04185308A (en) |
-
1990
- 1990-11-16 JP JP31174990A patent/JPH04185308A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3565693B2 (en) | Method and apparatus for manufacturing reflector | |
JPH05127154A (en) | Liquid crystal display device and production of the same | |
JP2945440B2 (en) | Method for manufacturing solid-state imaging device | |
JPH05228946A (en) | Optical component manufacturing method and optical component master block | |
JPH04185308A (en) | Manufacturing device of stamper | |
JP2002321227A (en) | Method for manufacturing matrix for molding optical element, method for manufacturing optical element using matrix and optical element by the manufacturing method | |
JPS5835578A (en) | Method for duplicating hologram | |
JPH07108536A (en) | Manufacture of mold for forming reticle | |
JPH03202330A (en) | Manufacture of micro lens | |
JP2003011131A (en) | Mold manufacturing method and method for manufacturing optical element | |
JP3041916B2 (en) | Method for manufacturing lens array | |
JPS5912404A (en) | Manufacture of polarizer | |
JPH01165053A (en) | Method for forming stamper for reproducing optical disk | |
JPS5842435A (en) | Manufacture of signal record carrier | |
JPH02154343A (en) | Manufacture of double-sided stamper | |
Aoyama et al. | Planar microlens arrays using stumping replication method | |
JP2757520B2 (en) | Optical disc manufacturing method | |
KR930002928B1 (en) | Method for manufacturing alignment film of liquid crystal display device | |
JPS62212605A (en) | Production of optical waveguide | |
TWI262497B (en) | Preparation method of disc master | |
JPH01312749A (en) | Production of optical disk | |
JPS61164807A (en) | Manufacture of screen for video projector | |
JPH03279901A (en) | Production of optical element array | |
JPH0239587B2 (en) | ||
JPS61214249A (en) | Manufacture of replica of optical disc |