[go: up one dir, main page]

JPH04184863A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH04184863A
JPH04184863A JP2315630A JP31563090A JPH04184863A JP H04184863 A JPH04184863 A JP H04184863A JP 2315630 A JP2315630 A JP 2315630A JP 31563090 A JP31563090 A JP 31563090A JP H04184863 A JPH04184863 A JP H04184863A
Authority
JP
Japan
Prior art keywords
battery
carbon
nonaqueous electrolyte
electrolyte battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2315630A
Other languages
Japanese (ja)
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2315630A priority Critical patent/JPH04184863A/en
Publication of JPH04184863A publication Critical patent/JPH04184863A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nonaqueous electrolyte battery having least decrease in high rate electric discharge capacity even after being stored at high temperature by using a carbon electrode obtained by sintering a carbon material forming a metallic coat as a negative electrode. CONSTITUTION:A battery constituting material is housed in a battery case consisting of a positive electrode can 5, a negative electrode can 6 respectively formed of a corrosion resistant stainless copper plate and a polypropylene insulating gasket 7, and for example, a nonaqueous electrolyte battery A having diameter of 15.4mm and thickness of 4.8mm can be formed. Next, a material, in which a dispersion Teflon PTFE is attached by 8wt% to the same carbon fiber used for the battery A except that a metallic coat is not carried out thereon, is collected, and after wrapping in a SUS316 wire-netting and then forming in a circular shape by means of pressurization, a nonaqueous electrolyte battery B can be manufactured by treating by means of heating under inert atmosphere. These batteries A and B are charged, for example, at environmental temperature of 20 deg.C, and they are charged up to 4.0V, and are discharged up to 3.0V, and after keeping them for 30 days at 40 deg.C, their capacities are identified. In that case, with regard to the battery A, the lowering of electric discharge capacity is small even after being stored at high temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質電池に関する。[Detailed description of the invention] Industrial applications The present invention relates to non-aqueous electrolyte batteries.

従来の技術とその課題 非水電解質電池は、水溶液系電解液電池に比較して高い
放電電圧および優れたエネルギー密度が期待できる。非
水電解質電池には種々の形式があるが、なかでも正極に
Li、Co02(0≦X≦1 ) 、 L i xMn
02(0≦X≦1 ) + L + x Mn204 
(0≦X≦1)、LiCo、Mn2−x04.a−V2
O3、Tl52またはγ−β−Mn02などを用い、電
解質に固体電解質または有機電解液を用い、負極に炭素
材からなるリチウムインサージョン電極を用いたものが
現在精力的に研究されている。
Conventional technologies and their challenges Non-aqueous electrolyte batteries can be expected to have higher discharge voltage and superior energy density than aqueous electrolyte batteries. There are various types of non-aqueous electrolyte batteries, among which the positive electrode contains Li, Co02 (0≦X≦1), Li x Mn.
02 (0≦X≦1) + L + x Mn204
(0≦X≦1), LiCo, Mn2-x04. a-V2
Currently, active research is underway to use O3, Tl52, or γ-β-Mn02, a solid electrolyte or an organic electrolyte as the electrolyte, and a lithium insertion electrode made of a carbon material as the negative electrode.

前記炭素材としては、グラファイトに近いものも用いら
れているが、グラファイト結晶層とアモルファス層との
ミクロな混合物からなる炭素材が単位重量当りの充放電
容量が多い点て優れている。
As the carbon material, carbon materials similar to graphite are used, but a carbon material consisting of a microscopic mixture of a graphite crystal layer and an amorphous layer is superior in that it has a large charge/discharge capacity per unit weight.

また、炭素材の形状としては、繊維状およびこれをプレ
スして得られる板状のものがよく用いられる。また粒子
状のものや不定形の炭素材も検討されている。
Further, as the shape of the carbon material, fibrous shapes and plate shapes obtained by pressing the same are often used. Particulate and irregularly shaped carbon materials are also being considered.

上記のような炭素材を負極に用いた非水電解質電池につ
いて詳しく検討した結果、高温放置後の高率放電におい
て放電容量が著しく減少するという課題があることがわ
かった。
As a result of detailed studies on non-aqueous electrolyte batteries using carbon materials as described above for the negative electrode, it was found that there is a problem in that the discharge capacity is significantly reduced during high rate discharge after being left at high temperatures.

課題を解決するための手段 本発明は、金属被膜を形成した炭素材を焼結してなる炭
素電極を負極に備えたことを特徴とする非水電解質電池
を用いて前記課題を解決するものである。
Means for Solving the Problems The present invention solves the above problems using a non-aqueous electrolyte battery characterized in that the negative electrode is equipped with a carbon electrode formed by sintering a carbon material on which a metal coating is formed. be.

作用 前記の容量低下について詳しく検討した結果、炭素mi
からなる炭素電極において結着材の添加量を増加させる
と前記の容量低下が抑制されることがわかった。このこ
とから、炭素電極は、高温放置中に電解液との反応によ
って生成する電子伝導性に劣る被膜によって被覆され、
その結果、電極の集電性が低下し高率放電時に放電容量
が減少するとの仮説を立てた。
Effect As a result of a detailed study of the capacity reduction mentioned above, carbon mi
It has been found that increasing the amount of binder added in a carbon electrode made of carbon suppresses the above-mentioned capacity decrease. From this, carbon electrodes are coated with a film with poor electron conductivity that is generated by reaction with electrolyte when left at high temperatures.
As a result, we hypothesized that the current collecting ability of the electrode would decrease and the discharge capacity would decrease during high rate discharge.

そこで、電極の集電性能の向上を目的として炭素繊維に
Nj粉末を添加混合した炭素電極を試作した。この電極
を用いると前記の高温放置後の容量が顕著に増加した。
Therefore, in order to improve the current collection performance of the electrode, a carbon electrode was prototyped by adding and mixing Nj powder to carbon fiber. When this electrode was used, the capacity after being left at high temperatures was significantly increased.

そこで、先の仮説を妥当なものと考えて、ざらに集電性
能を向上させる目的で、炭素繊維などの炭素材をあらか
じめNi、Cuなとの金属皮膜で被覆し、これを焼結し
て炭素電極を形成した。そして、高温放置試験をおこな
ったところ、後述の実施例に詳しく示すように高率放電
時の放電容量の低下が著しく抑制された。
Therefore, considering the above hypothesis to be valid, in order to roughly improve the current collection performance, carbon materials such as carbon fibers were coated in advance with a metal film such as Ni or Cu, and this was sintered. A carbon electrode was formed. Then, when a high-temperature storage test was conducted, the decrease in discharge capacity during high-rate discharge was significantly suppressed, as shown in detail in Examples below.

これは、炭素電極の表面に電解液との反応によって生成
する皮膜が電極の集電性能におよぼす悪影響を著しく小
さくできたことに起因するものと考えられる。
This is thought to be due to the fact that the film formed on the surface of the carbon electrode by reaction with the electrolyte can significantly reduce the adverse effect it has on the current collection performance of the electrode.

実施例 以下では本発明の好適な実施例を示す。Example In the following, preferred embodiments of the present invention will be shown.

繊維径か0.8μtnで、長さが40 /1mで、グラ
ファイトNの層間距離を示すd。82面の平均面間距離
が3.45Aで、Lcの平均1直カイ30への炭素繊維
にNi被覆を施したものここメチルセルロ−ス ーストを帆 12g採集し、3 2 5 m e S 
11のSUS3 1 6金網に包み込んで半径 10m
mで厚さが2mmの円板状に加圧成形し、さらにN2:
95%、H2:5%の過湿混合気中で850℃で10分
間焼結して炭素電極(1)を得た。この炭素電極Cよ、
約20mAhの充放電容量を有して0る。
The fiber diameter is 0.8μtn, the length is 40/1m, and d indicates the interlayer distance of graphite N. The average distance between the 82 surfaces is 3.45 A, and the average distance between the Lc and the 1st straight line is 30. 12 g of methyl cellulose was collected from the carbon fibers and 325 m e S.
Wrapped in 11 SUS3 1 6 wire mesh, radius 10m
Pressure molded into a disc shape with a thickness of 2 mm using N2:
A carbon electrode (1) was obtained by sintering at 850° C. for 10 minutes in a superhumidified mixture of 95% and H2:5%. This carbon electrode C,
It has a charge/discharge capacity of about 20mAh.

7 0 w t%のLiCo02、2 0 w t%の
アセチレンブラックおよび10wt%のポリテトラフル
オロエチレン( PTFE)を混合して正極合剤としこ
の正極合剤を0.5g採集して325meshのステン
レス製金網に包み込んで径が12mmで厚さ力く2mm
の正極板ペレット(2)を試作した。この正極板ベレッ
トの放電容量は、0.5モルの1)チウムが吸蔵放出さ
れるとした場合に約5 0 m A hである。したが
って、上記の負極および正極の組合せでは、負極制限の
電池となる。
70 wt% LiCo02, 20 wt% acetylene black, and 10 wt% polytetrafluoroethylene (PTFE) were mixed to make a positive electrode mixture, and 0.5g of this positive electrode mixture was collected and made into a 325 mesh stainless steel. Wrap it in a wire mesh with a diameter of 12 mm and a thickness of 2 mm.
A positive electrode plate pellet (2) was prototyped. The discharge capacity of this positive electrode plate pellet is approximately 50 mA h when 0.5 mole of 1) lithium is occluded and released. Therefore, the combination of the above negative electrode and positive electrode results in a negative electrode limited battery.

葉脈状の無孔部と、孔が3次元的に配列した有孔部とを
有する平均厚さが23ミクロンのポリエチレン製微孔膜
を直径14mmに打ち抜いて微孔性セパレーター(3)
を試作した。また、ポリプロピレンの不織布を12mm
に打ち抜いて平均厚さが0.2mmの不織布セパレータ
ー(4)を試作した。
A microporous separator (3) made by punching a polyethylene microporous membrane with an average thickness of 23 microns into a diameter of 14 mm, which has a leaf-like non-porous part and a perforated part with three-dimensionally arranged pores.
We made a prototype. In addition, 12mm polypropylene nonwoven fabric
A nonwoven fabric separator (4) having an average thickness of 0.2 mm was produced by punching out the sample.

これらに有機電解液を含浸した。ここでは電解質として
1.5M過塩素酸リチウムを用いた。他の好適な電解質
としては6フツ化リン酸リチウム、6フツ化ヒ酸リチウ
ム、4フツ化ホウ酸リチウムまたはトリフロロメタスル
フォン酸リチウムのそれぞれ単体または混合物等がある
。また、本実施例では溶媒にエチレンカーボネートとア
セトニトリルとの混合物を用いた。他の好適な溶媒とし
てはプロピレンカーボネート、2メチルTHF,THF
,DOL,2メチルDOL,4メチルDOL。
These were impregnated with an organic electrolyte. Here, 1.5M lithium perchlorate was used as the electrolyte. Other suitable electrolytes include lithium hexafluorophosphate, lithium hexafluoride arsenate, lithium tetrafluoride borate, and lithium trifluorometasulfonate, each singly or as a mixture. Further, in this example, a mixture of ethylene carbonate and acetonitrile was used as the solvent. Other suitable solvents include propylene carbonate, 2 methyl THF, THF
, DOL, 2 methyl DOL, 4 methyl DOL.

γブチロラクトン、ジメトキシエタンまたはジメチルフ
ォルメートの単体または混合物等がある。
Examples include γ-butyrolactone, dimethoxyethane, or dimethylformate alone or as a mixture.

さらにこれらにエチレンカーボネート、アセトニトリル
またはベンゼンを添加したものを用いてもよい。
Furthermore, ethylene carbonate, acetonitrile or benzene may be added to these.

上記の電池構成物を耐触性ステンレス鋼板製の正極缶(
5)、負極缶(6)、およびポリプロピレン製の絶縁カ
スゲット(7)からなる電池ケースに収納して第1図に
示したような径が15.4mmで厚さが4.8mmの本
発明の非水電解質電池(A)を試作した。
The above battery components are combined into a cathode can made of an anti-corrosion stainless steel plate (
5), a negative electrode can (6), and a battery case of the present invention having a diameter of 15.4 mm and a thickness of 4.8 mm as shown in FIG. A non-aqueous electrolyte battery (A) was prototyped.

本発明の電池(A)では、炭素材に炭素繊維を用いてい
るが、炭素繊維の径と長さの比(D/L)が10以下で
あるようなほぼ粒子状の炭素繊維や粒状炭素材あるいは
不定形の炭素材を用いてもよい。また、Ni被覆に変え
てCu,FeもしくはCoまたはこれらの合金を用いて
被覆してもよい。
In the battery (A) of the present invention, carbon fibers are used as the carbon material, but almost granular carbon fibers or granular carbon having a diameter-to-length ratio (D/L) of carbon fibers of 10 or less are used. A raw material or an amorphous carbon material may be used. Further, instead of Ni coating, Cu, Fe, Co, or an alloy thereof may be used for coating.

つぎに、金属被覆を施していないこと以外は前記(A)
電池に用いたものと同し炭素繊維にディスバージョンテ
フロン(PTFE)を8wt%添加したものを0.12
g採集し5U5316金網に包み込んで径が10mmで
厚さが2mmの円板状に加圧成形し不活性雰囲気中で2
00℃で30分熱処理して得た炭素電極を用いた以外は
、前記(A)電池と同様の構成を有する比較のための非
水電解質電池(B)を試作した。
Next, the above (A) except that no metal coating is applied.
The same carbon fiber as used in batteries with 8 wt% of dispersion Teflon (PTFE) added is 0.12%.
g collected, wrapped in 5U5316 wire mesh, pressure-molded into a disk shape with a diameter of 10 mm and a thickness of 2 mm, and heated in an inert atmosphere for 2 hours.
A comparative nonaqueous electrolyte battery (B) having the same configuration as the battery (A) was fabricated as a prototype, except that a carbon electrode obtained by heat treatment at 00° C. for 30 minutes was used.

これら(A)、(B)の電池を20℃の環境温度のもと
て2 m A / c m 2て4.OVまで充電した
のち3.0■まで放電する容量確認試験をおこなった。
4. These batteries (A) and (B) were heated at 2 mA/cm2 at an environmental temperature of 20°C. A capacity confirmation test was conducted in which the battery was charged to OV and then discharged to 3.0 ■.

つぎに40℃で30日間保存し、その後同様の容量確認
試験をおこなった。ここで2 m A /cm2の電流
密度は、非水電解質電池では高率放電に属する。
Next, it was stored at 40°C for 30 days, and then a similar capacity confirmation test was conducted. A current density of 2 mA/cm2 here belongs to high rate discharge for non-aqueous electrolyte batteries.

貯蔵前と貯蔵後とて放電容量を比較した結果を第1表に
示す。同表から明らかなように本発明の電池(A)は、
高温貯蔵後の放電容量の低下が少ない。これは、炭素電
極の集電性能の劣化が抑制されたことに起因するものと
考えられる。
Table 1 shows the results of comparing the discharge capacity before and after storage. As is clear from the table, the battery (A) of the present invention is:
There is little decrease in discharge capacity after high temperature storage. This is considered to be due to the fact that the deterioration of the current collection performance of the carbon electrode was suppressed.

なお、このような効果は、−次電池または二次電池にお
いて変わりなく発現されるものである。
In addition, such an effect is expressed without any change in a secondary battery or a secondary battery.

また、前記の実施例に係る電池(A)はボタン型電池で
あるが、円筒形、角形またはペーパー形電池に本発明を
適用しても同様の効果が得られる。
Further, although the battery (A) according to the above embodiment is a button type battery, the same effect can be obtained even if the present invention is applied to a cylindrical, prismatic or paper type battery.

第1表 発明の効果 本発明により従来の電池に比較して高温貯蔵後でも高率
放電容量の減少が少ない非水電解質電池を提供すること
ができるものである。
Table 1 Effects of the Invention According to the present invention, it is possible to provide a non-aqueous electrolyte battery whose high rate discharge capacity decreases less even after high-temperature storage than conventional batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の非水電解質電池の一例であるボタン
電池の内部構造を示した図である。
FIG. 1 is a diagram showing the internal structure of a button battery, which is an example of the nonaqueous electrolyte battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  金属被膜を形成した炭素材を焼結してなる炭素電極を
負極に備えたことを特徴とする非水電解質電池。
A non-aqueous electrolyte battery characterized in that the negative electrode is equipped with a carbon electrode made by sintering a carbon material on which a metal coating is formed.
JP2315630A 1990-11-19 1990-11-19 Nonaqueous electrolyte battery Pending JPH04184863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2315630A JPH04184863A (en) 1990-11-19 1990-11-19 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315630A JPH04184863A (en) 1990-11-19 1990-11-19 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH04184863A true JPH04184863A (en) 1992-07-01

Family

ID=18067678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315630A Pending JPH04184863A (en) 1990-11-19 1990-11-19 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH04184863A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JPH08171936A (en) * 1994-12-16 1996-07-02 Sanyo Electric Co Ltd Lithium secondary battery
US6039903A (en) * 1997-01-10 2000-03-21 Basf Corporation Process of making a bicomponent fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
US5591547A (en) * 1994-07-29 1997-01-07 Sharp Kabushiki Kaisha Method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JPH08171936A (en) * 1994-12-16 1996-07-02 Sanyo Electric Co Ltd Lithium secondary battery
US6039903A (en) * 1997-01-10 2000-03-21 Basf Corporation Process of making a bicomponent fiber

Similar Documents

Publication Publication Date Title
US11387441B2 (en) Negative electrode active material and negative electrode for solid state battery including the same
KR102316342B1 (en) Silicon-based composite, negative electrode and lithium secondary battery comprising the same
KR102254263B1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising the same
KR101165836B1 (en) Positive active material and nonaqueous electrolyte secondary battery produced using the same
KR100797099B1 (en) Cathode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising same
JP6279713B2 (en) Carbonaceous molded body for electrode and method for producing the same
JP3532016B2 (en) Organic electrolyte secondary battery
KR102429238B1 (en) Negative electrode active material, negative electrode and lithium secondary battery comprising the same
JPH10236826A (en) Two-layer structure particulate composition and lithium ion secondary cell
JP4374661B2 (en) Non-aqueous electrolyte secondary battery
KR20160149862A (en) Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same
KR20200007325A (en) Lithium Secondary Battery Comprising Liquid Inorganic Electrolyte
JP2003100284A (en) Lithium secondary battery
KR102563239B1 (en) Negative electrode active material, negative electrode and lithium secondary battery comprising the same
JP4429411B2 (en) Method for producing carbon material for lithium ion secondary battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP2020047572A (en) Zinc secondary battery electrode active material and secondary battery including the same
KR101746188B1 (en) Electrode mixture additives for secondary battery, method for manufacturing the same, elelctrode including the same for secondary battery, and secondary battery
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP2004356048A (en) Electrode material for lithium secondary battery, electrode structure having the electrode material and lithium secondary battery having the electrode structure
WO2008063532A1 (en) Electrode active material for non-aqueous secondary batteries
JPH04184863A (en) Nonaqueous electrolyte battery
KR20050087245A (en) Conductive agent for rechargeable lithium battery and rechargeable lithium battery comprising same
CN116057728A (en) Negative electrode active material, negative electrode including the same, and secondary battery
KR101686332B1 (en) Anode Active Material Containing Metal Oxide Derived From Disposable Heat Pads