JPH04184614A - Tree-dimensional range finder - Google Patents
Tree-dimensional range finderInfo
- Publication number
- JPH04184614A JPH04184614A JP2315407A JP31540790A JPH04184614A JP H04184614 A JPH04184614 A JP H04184614A JP 2315407 A JP2315407 A JP 2315407A JP 31540790 A JP31540790 A JP 31540790A JP H04184614 A JPH04184614 A JP H04184614A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- distance
- zero
- time
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 abstract description 7
- 238000007493 shaping process Methods 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 238000002604 ultrasonography Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、コンピュータ入力のための3次元測距装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a three-dimensional ranging device for computer input.
本発明の発信部と受信部とからなる3次元測距装置にお
いて、前記発信部は時分割間欠駆動する3個以上の発信
源を有し、前記受信部は受音体を有し、前記発音源から
前記受音体への音波の受渡し時間を計測するためにゼロ
クロス検出回路と計数回路と複数のラッチ記憶回路を有
し、前記ラッチ記憶回路に格納される前記受渡し時間デ
ータを順次読みだして距離計算する。In the three-dimensional distance measuring device according to the present invention, the transmitting section has three or more transmitting sources driven intermittently in a time division manner, the receiving section has a sound receiving body, and the transmitting section has three or more transmitting sources that are driven intermittently in a time division manner, It has a zero-cross detection circuit, a counting circuit, and a plurality of latch memory circuits to measure the transfer time of the sound wave from the source to the sound receiver, and sequentially reads out the transfer time data stored in the latch memory circuit. Calculate distance.
[従来の技術1
超音波式距離測定装置として各種の出願がなされており
、超音波パルスの受渡し時間を正確に決めることが必要
となっている。その1例として、超音波受信体の出力信
号を、予め設定したレベルから受信時刻を検出し超音波
信号の受渡し時間を求める測定方式がある。しかしかか
る測定法では、測定距離の変動により信号レベルが変化
し前期受渡し時間の誤差が大きいという致命的な欠点を
有する。そのためかかる欠点を改善するものの一例とし
て特開昭62−67481が公知である、第5図にはそ
の回路構成を示し、以下に概略動作を説明する。この測
距装置では、距離の変動に起因する信号レベル変動の影
響を低減するために、異なる信号レベル2値からそれぞ
れの時刻を求め受信時刻を演算して推測するものであっ
た。[Prior Art 1] Various applications have been filed for ultrasonic distance measuring devices, and it is necessary to accurately determine the delivery time of ultrasonic pulses. One example is a measurement method in which the reception time of the output signal of an ultrasound receiver is detected from a preset level and the delivery time of the ultrasound signal is determined. However, this measurement method has a fatal drawback in that the signal level changes due to changes in the measurement distance, resulting in a large error in the initial delivery time. Therefore, as an example of a device for improving such drawbacks, Japanese Patent Application Laid-Open No. 62-67481 is known. FIG. 5 shows the circuit configuration thereof, and the general operation thereof will be explained below. In this distance measuring device, in order to reduce the influence of signal level fluctuations caused by distance fluctuations, each time is determined from two different signal level values and the reception time is calculated and estimated.
[発明が解決しようとする課題〕
しかしながら、受音体の感度の方位依存性は第6図に示
すように大きなもので、±90度の方位角の中での出力
レベルの変動は大きく、かかる測定方式によっても誤差
は大きく、距離マージン・方位マージンの優れた高精度
の測定を行うことはできなかった。[Problems to be Solved by the Invention] However, as shown in Fig. 6, the sensitivity of the sound receiver has a large azimuth dependence, and the output level fluctuates greatly within an azimuth angle of ±90 degrees. Errors were large depending on the measurement method, and it was not possible to perform highly accurate measurements with excellent distance margins and azimuth margins.
[課題を解決するための手段]
本発明はかかる課題を解決するために、信号レベルの変
動に対する測定許容マージンが大きく1、 微小レベ
ルの検出能力に優れたゼロクロス検出法を用いるもので
ある。[Means for Solving the Problems] In order to solve the problems, the present invention uses a zero-cross detection method that has a large measurement tolerance margin for signal level fluctuations1 and is excellent in the ability to detect minute levels.
[実 施 画1
本発明による3次元測距装置のシステム構成を第1図に
示す6発信部は、3次元測定を可能にするだめの少なく
とも3個の超音波発音体11と該超音波発音体の共振周
波数帯で間欠駆動するための発振器12と分周器13と
からなる。受信部は超音波受音体14とゼロクロス検出
回路15と信号整形回路16とからなる。該信号整形回
路から出力する時刻信号は、前期発信部の分周器出力を
ラッチ・記憶するラッチメモリ回路17に超音波信号の
受渡し時間を蓄積する。第2図には、3個の超音波発音
体の配置例を示し、同一平面内の互いに直交する2軸上
の3カ所に配置する。第3図には前記回路の各部の動作
波形を示す、a)b)C)は3個の発音体の駆動波形を
示す1発振周期Tsは、それぞれの発音体に割り当てら
れた超音波信号の最大受渡し許容時間Tri、Tr2、
Tr3(これは測定距離の最大値を規制する)とそれぞ
れの発音体の発振時間Te1.Te2、Te3とにより
つぎのように決定する。[Implementation Picture 1] The system configuration of the three-dimensional distance measuring device according to the present invention is shown in FIG. It consists of an oscillator 12 and a frequency divider 13 for intermittent driving in the resonance frequency band of the body. The receiving section includes an ultrasonic sound receiver 14, a zero-cross detection circuit 15, and a signal shaping circuit 16. The time signal output from the signal shaping circuit stores the delivery time of the ultrasonic signal in a latch memory circuit 17 that latches and stores the frequency divider output of the first transmitting section. FIG. 2 shows an example of the arrangement of three ultrasonic sounding bodies, which are arranged at three locations on two mutually orthogonal axes within the same plane. Figure 3 shows the operating waveforms of each part of the circuit, a) b) c) shows the driving waveforms of three sounding bodies. One oscillation period Ts is the waveform of the ultrasonic signal assigned to each sounding body. Maximum allowable delivery time Tri, Tr2,
Tr3 (which regulates the maximum value of the measurement distance) and the oscillation time Te1 of each sounding body. It is determined as follows based on Te2 and Te3.
Tri=[最大測定距1i1]/[音速]i=1.2.
3
Ts= (Trl+Tr2+Tr3)
+Tel+Te2+Te5)+a
なお発振時間Teiは、測定時間を短縮するために、短
くすることが望ましい。Tri=[maximum measurement distance 1i1]/[sound speed]i=1.2.
3 Ts=(Trl+Tr2+Tr3)+Tel+Te2+Te5)+a Note that the oscillation time Tei is desirably shortened in order to shorten the measurement time.
次に、前記発音体からの超音波パルスは、前記超音波受
音体にパルス信号列(&1形e)を生ずる。該パルス信
号列はゼロクロス回路により高感度増幅したのち〔波形
f)、コンパレータによる波形整形をし、R−Sラッチ
回路によりそれぞれ受渡し時刻t1.t2、t3の単パ
ルス(波形g)得る。該単パルスは、ラッチ・メモリ回
路をラッチし前記超音波受渡し時間データを蓄積する。Next, the ultrasonic pulse from the sounding body generates a pulse signal train (&1 type e) in the ultrasonic sound receiving body. The pulse signal train is highly sensitively amplified by a zero cross circuit (waveform f), then waveform-shaped by a comparator, and the R-S latch circuit determines the delivery time t1. Obtain single pulses (waveform g) at t2 and t3. The single pulse latches a latch memory circuit to store the ultrasound delivery time data.
該データは、データバス等を経てCPtJに読み込まれ
、演算処理により前記受音体の位置座標が求められる。The data is read into the CPtJ via a data bus or the like, and the position coordinates of the sound receiver are determined through arithmetic processing.
次に、本発明の具体例として第4図にキーボードレスコ
ンピュータの外観を示す、ここでは、仮想入力グローブ
44の指に装着した5個の受音体による距離計測行うも
ので、主演算装置41に対して5個の独立入力を可能と
する6発音体に印荷する信号は、CPUの原発振から分
周し、その周波数B1を40KHz、発音体発振時間1
00マイクロ秒、超音波信号の最大受渡し許容時間3゜
1ミリ秒とし、約1メートルまでの距離計測を可能とす
る。測定精度を8ビツトとするために、前記ラッチ・メ
モリ回路には前記分周回路のBOからB7までの出力信
号を入力する。このようにして基準となる3個の発音体
から受音体までの距離データは約10ミリ秒で計測でき
、複数の受音体に対しても、高速で順次に距離データを
読みだせるため、フレーム周波数30Hzで動作するデ
イスプレィの動作速度を十分満足する距離測定を可能と
する。この測定方法では、位置精度4ミリメートルの距
離測定を可能とする。さらに分解精度の高い測定を望む
には、前記分周器の出力信号ビット数を増やすことによ
り可能であり、またべつの例として、測定範囲を限定(
例えば最大測定距離を50センチメートルに)して8ビ
ツトの前記分周器の出力を高周波側にシフトすることで
も良い。Next, as a specific example of the present invention, FIG. 4 shows the appearance of a keyboardless computer. Here, distance measurement is performed using five sound receivers attached to the fingers of a virtual input glove 44, The signals applied to the six sounding bodies that allow five independent inputs are frequency-divided from the original oscillation of the CPU, the frequency B1 is 40KHz, and the sounding body oscillation time is 1.
00 microseconds, and the maximum allowable time for transmitting ultrasonic signals is 3.1 milliseconds, making it possible to measure distances up to about 1 meter. In order to make the measurement accuracy 8 bits, the output signals from BO to B7 of the frequency divider circuit are input to the latch memory circuit. In this way, the distance data from the three standard sounding bodies to the sound receiving body can be measured in about 10 milliseconds, and distance data can be read out sequentially at high speed even for multiple sound receiving bodies. Distance measurement that fully satisfies the operating speed of a display operating at a frame frequency of 30 Hz is made possible. This measurement method enables distance measurement with a positional accuracy of 4 mm. If measurement with even higher resolution accuracy is desired, it is possible to increase the number of output signal bits of the frequency divider, and as another example, it is possible to limit the measurement range (
For example, the maximum measurement distance may be set to 50 centimeters) and the output of the 8-bit frequency divider may be shifted to the high frequency side.
また、第7図には発音体4個を配置した測距装置の例を
示す、ここでは直交する3つの座標軸上に図示するごと
(前記超音波発音体を配置する。FIG. 7 shows an example of a distance measuring device in which four sounding bodies are arranged. Here, the ultrasonic sounding bodies are arranged as shown on three orthogonal coordinate axes.
前記3個の発音体による距離測定から演算により絶対座
標を求めるためにはルート計算を必要としたのに対して
、かかる測定方式では、ルート計算を不要とし演算の簡
素化が計れる。In contrast to the route calculation that was required to calculate the absolute coordinates from the distance measurement using the three sounding bodies, this measurement method eliminates the need for route calculation and simplifies the calculation.
[発明の効果]
本発明は、ゼロクロス検出回路により、広い仮想空間で
の1@離測定とともに超音波受音体の方位−感度依存性
に規制されずに高精度で超音波受渡し時間の測定を可能
にする。このためコンピュータやゲームやシュミレータ
などの仮想入力装置として広い空間領域で操作可能なか
つ高精度の複数機能の入力装置として応用できる。[Effects of the Invention] The present invention uses a zero-cross detection circuit to measure 1@ separation in a wide virtual space and to measure ultrasonic delivery time with high precision without being restricted by the orientation-sensitivity dependence of an ultrasonic sound receiver. enable. Therefore, it can be applied as a virtual input device for computers, games, simulators, etc., which can be operated in a wide spatial area and has multiple functions with high precision.
第1図は、本発明の一実施例を示すシステム構成図。
第2図は、本発明の超音波発音体の配置図。
第3図は、本発明の動作波形を示すチャート図。
第4図は、本発明の1つの応用例のキーボードレスコン
ピュータの外観図。
第5図は、従来の超音波測定装置の構成を示す回路ブロ
ック図。
第6図は、超音波受音体の音源方位による感度依存性を
示す特性図。
第7図は、本発明の超音波発音体の別の配置例を示す図
。
11・・・超音波発音体
12・・・発振器
13・・・分周器
14・・・受信体
15・・・ゼロクロス検出器
16・・・信号整形回路
以上
出願人 セイコーエプソン株式会社
代理人 弁理士 鈴 木 喜三部(他1名)22取り付
は面
第2図
第3図
41 主演算装置
46 画面キーホード
第4図
第5図
第6図FIG. 1 is a system configuration diagram showing an embodiment of the present invention. FIG. 2 is a layout diagram of the ultrasonic sounding body of the present invention. FIG. 3 is a chart showing operational waveforms of the present invention. FIG. 4 is an external view of a keyboardless computer as an application example of the present invention. FIG. 5 is a circuit block diagram showing the configuration of a conventional ultrasonic measuring device. FIG. 6 is a characteristic diagram showing the sensitivity dependence of the ultrasonic sound receiver depending on the sound source direction. FIG. 7 is a diagram showing another arrangement example of the ultrasonic sounding body of the present invention. 11... Ultrasonic sounding body 12... Oscillator 13... Frequency divider 14... Receiving body 15... Zero cross detector 16... Signal shaping circuit and above Applicant Seiko Epson Corporation Agent Patent attorney Kisanbe Suzuki (and 1 other person) 22 Installation surface Figure 2 Figure 3 41 Main processing unit 46 Screen keychain Figure 4 Figure 5 Figure 6
Claims (1)
記発信部は時分割間欠駆動する3個以上の発信源を有し
、前記受信部は受音体を有し、前記発音源から前記受音
体への音波の受渡し時間を計測するためにゼロクロス検
出回路と計数回路と複数のラッチ記憶回路を有し、前記
ラッチ記憶回路に格納される前記伝受渡し時間データを
順次読みだして距離計算することを特徴とする3次元測
距装置。In a three-dimensional distance measuring device including a transmitting section and a receiving section, the transmitting section has three or more transmitting sources that are driven intermittently in a time division manner, and the receiving section has a sound receiving body, and the transmitting section has three or more transmitting sources that are driven intermittently in a time division manner, and the receiving section has a sound receiving body, and It has a zero-crossing detection circuit, a counting circuit, and a plurality of latch memory circuits to measure the transfer time of the sound wave to the sound receiver, and calculates the distance by sequentially reading out the transfer time data stored in the latch memory circuit. A three-dimensional distance measuring device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2315407A JPH04184614A (en) | 1990-11-20 | 1990-11-20 | Tree-dimensional range finder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2315407A JPH04184614A (en) | 1990-11-20 | 1990-11-20 | Tree-dimensional range finder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04184614A true JPH04184614A (en) | 1992-07-01 |
Family
ID=18065016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2315407A Pending JPH04184614A (en) | 1990-11-20 | 1990-11-20 | Tree-dimensional range finder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04184614A (en) |
-
1990
- 1990-11-20 JP JP2315407A patent/JPH04184614A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5812257A (en) | Absolute position tracker | |
US5050134A (en) | Position determining apparatus | |
US5009277A (en) | Method and apparatus for position determination | |
JPH01158375A (en) | Method and apparatus for determining position and state of object on desired surface using ultrasonic wave | |
Tong et al. | A method for short or long range time-of-flight measurements using phase-detection with an analog circuit | |
US3435677A (en) | System for measuring direction and velocity of currents in a liquid medium | |
JPS62204733A (en) | Ultrasonic doppler diagnostic apparatus | |
JPH04184614A (en) | Tree-dimensional range finder | |
RU2104486C1 (en) | Method determining distance to object from mobile observer | |
Figueroa | An ultrasonic ranging system for robot end-effector position measurement | |
KR100457048B1 (en) | Ultrasonic coordinates measurement method | |
JPH04184615A (en) | Three-dimensional range finder | |
US3125756A (en) | Satellite tracking by simulator comparison | |
JPS5834789B2 (en) | Japanese sweets | |
JP3401374B2 (en) | Sound velocity correction method for underwater position measurement system | |
JPS6144378A (en) | Ultrasonic digitizer | |
SU1275493A1 (en) | Device for reading graphic information | |
JPH04313010A (en) | Method and instrument for measuring thickness | |
JPH0512820Y2 (en) | ||
KR970049253A (en) | touch screen | |
JPS635289A (en) | Position detector | |
JPH0346138B2 (en) | ||
Sears | Length of a moving rod | |
JPS5819228B2 (en) | Misdistance measuring device | |
RU2070728C1 (en) | Ultrasonic device measuring range in gaseous atmosphere |