JPH04184130A - Pressure gauge - Google Patents
Pressure gaugeInfo
- Publication number
- JPH04184130A JPH04184130A JP31241790A JP31241790A JPH04184130A JP H04184130 A JPH04184130 A JP H04184130A JP 31241790 A JP31241790 A JP 31241790A JP 31241790 A JP31241790 A JP 31241790A JP H04184130 A JPH04184130 A JP H04184130A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- degree
- vibration
- piezoelectric
- piezoelectric resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 230000002093 peripheral effect Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 abstract description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 229910000942 Elinvar Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は圧力計、特に大気圧〜I Torr程度の真空
度を精度よく測定可能な圧力計に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure gauge, and particularly to a pressure gauge that can accurately measure the degree of vacuum from atmospheric pressure to I Torr.
従来、圧力計としては種々のものがあり、例えば静電容
量式圧力計やブルドン管等が公知である。Conventionally, there are various types of pressure gauges, such as capacitance type pressure gauges and Bourdon tubes.
このうち、静電容量式圧力計は高価である欠点があり、
ブルドン管は安価であるか大型で高真空領域に対応でき
ない欠点がある。Among these, capacitance pressure gauges have the disadvantage of being expensive.
Bourdon tubes have the disadvantage that they are cheap or large and cannot be used in high vacuum areas.
このような欠点を解決するものとして、音叉型水晶振動
子圧力計が提案されている。音叉型水晶振動子圧力計は
真空度に依存して変化する水晶振動子の共振抵抗または
反共振抵抗を測定することにより、真空度を知るもので
あり、小型でかつ高精度に測定できる利点がある。A tuning fork type quartz resonator pressure gauge has been proposed as a solution to these drawbacks. A tuning fork type crystal oscillator pressure gauge determines the degree of vacuum by measuring the resonance resistance or anti-resonance resistance of the crystal oscillator, which changes depending on the degree of vacuum, and has the advantage of being compact and capable of highly accurate measurement. be.
しかしながら、音叉型水晶振動子の問題点は、真空度に
よって共振周波数が変化してしまうことである。そのた
め、音叉型水晶振動子を圧力計として利用するには、
■発振回路に音叉型水晶振動子を組み込んで実際に発振
させ、その発振特性の変化により真空度を知る、
■真空度に応じて変化する共振周波数と同じ周波数の信
号を入れ、共振抵抗の変化を測定する、といった方法を
採用しなければならない。そのため、■では振動子自体
に固育インピーダンスが小さく感度が高いものが要求さ
れるという問題があり、■では測定が複雑で周波数を変
化させる装置が別途必要になるという問題があった。However, the problem with the tuning fork type crystal resonator is that the resonant frequency changes depending on the degree of vacuum. Therefore, in order to use a tuning fork type crystal resonator as a pressure gauge, the following steps are required: - Incorporate the tuning fork type crystal resonator into the oscillation circuit and actually oscillate it, and determine the degree of vacuum by changing the oscillation characteristics. ■ Depending on the degree of vacuum. A method must be adopted in which a signal of the same frequency as the changing resonant frequency is input and the change in resonant resistance is measured. Therefore, the problem with (2) is that the vibrator itself is required to have low static impedance and high sensitivity, and the problem with (2) is that measurement is complicated and requires a separate device to change the frequency.
ところで、本出願人は既に、恒弾性金属板の周縁部を枠
部とし、その内側に幅狭な連結部を介して振動部を一体
に設け、この振動部の上面に圧電薄膜を形成するととも
に、圧電薄膜上に電極を形成してなる圧電共振子を提案
している(例えば特公昭1−19650号公報)。この
圧電共振子のインピーダンス特性について種々検討した
ところ、気圧に応じて圧電共振子の共振抵抗および反共
振抵抗がほぼリニアに変化し、しかもこのとき共振周波
数および反共振周波数が全く変化しないことを発見した
。By the way, the present applicant has already used the peripheral edge of a constant elastic metal plate as a frame, integrally provided a vibrating part inside the frame via a narrow connecting part, and formed a piezoelectric thin film on the upper surface of this vibrating part. proposed a piezoelectric resonator in which electrodes are formed on a piezoelectric thin film (for example, Japanese Patent Publication No. 1-19650). After various studies on the impedance characteristics of this piezoelectric resonator, we discovered that the resonant resistance and anti-resonant resistance of the piezoelectric resonator change almost linearly depending on the atmospheric pressure, and that the resonant frequency and anti-resonant frequency do not change at all at this time. did.
そこで、本発明の目的は、圧電薄膜を用いた圧電共振子
を利用して、簡単かつ高精度に圧力を測定できる圧力計
を得ることにある。Therefore, an object of the present invention is to obtain a pressure gauge that can easily and accurately measure pressure by using a piezoelectric resonator using a piezoelectric thin film.
上記目的を達成するために、本発明の圧力計は、1枚の
恒弾性金属板の周縁部を枠部とし、その内側に幅狭な連
結部を介して振動部を一体に設け、この振動部の上面に
圧電薄膜を形成するとともに、圧電薄膜上に電極を形成
してなる圧電共振子と、圧電共振子の電極と恒弾性金属
板との間に共振周波数または反共振周波数に相当する一
定周波数信号を入力することにより、真空度に依存して
変化する圧電共振子の共振抵抗または反共振抵抗を測定
する測定装置と、を具備したものである。In order to achieve the above object, the pressure gauge of the present invention uses the peripheral edge of a constant elastic metal plate as a frame, and a vibrating part is integrally provided inside the frame through a narrow connection part, and the vibration A piezoelectric resonator is formed by forming a piezoelectric thin film on the upper surface of the piezoelectric resonator and forming an electrode on the piezoelectric thin film, and a constant frequency corresponding to the resonant frequency or anti-resonant frequency between the electrode of the piezoelectric resonator and the constant elastic metal plate. The apparatus is equipped with a measuring device that measures the resonant resistance or anti-resonant resistance of the piezoelectric resonator, which changes depending on the degree of vacuum, by inputting a frequency signal.
圧電共振子を大気圧中に露出させて配置し、これに高周
波信号を入力すると、圧電共振子のインピーダンス特性
は第1図実線のようになる。これに対し、気圧を下げて
ゆくと、真空度が上昇するに連れて第1図破線のように
インピーダンス特性が変化する。つまり、共振抵抗R1
が低下するとともに反共振抵抗R1が上昇する。ただし
、共振周波数f、および反共振周波数f、は全く変化し
ない。When a piezoelectric resonator is placed exposed to atmospheric pressure and a high frequency signal is input to it, the impedance characteristic of the piezoelectric resonator becomes as shown by the solid line in FIG. On the other hand, as the atmospheric pressure is lowered, the impedance characteristics change as indicated by the broken line in FIG. 1 as the degree of vacuum increases. In other words, the resonant resistance R1
As the resistance decreases, the anti-resonance resistance R1 increases. However, the resonant frequency f and the anti-resonant frequency f do not change at all.
圧電薄膜を用いた圧電共振子の場合、共振抵抗。In the case of a piezoelectric resonator using a piezoelectric thin film, this is the resonant resistance.
反共振抵抗が真空度に依存してリニアに変化するため、
共振抵抗または反共振抵抗と真空度との関係を予め求め
ておけば、この圧電共振子を真空度を測定すべき環境下
に設置し、共振周波数または反共振周波数の信号を入力
してそのときの共振抵抗または反共振抵抗を測定するだ
けで、真空度を簡単に知ることができる。そのため、音
叉型水晶振動子のように、発振回路に実際に組み込んで
発振させる必要がなく、共振子自体に感度が高いものか
要求されることがなく、また真空度に関係なく一定周波
数信号を入力すればよいので、測定が簡単である。Since the anti-resonance resistance changes linearly depending on the degree of vacuum,
If you have determined the relationship between the resonant resistance or anti-resonant resistance and the degree of vacuum in advance, you can install this piezoelectric resonator in the environment where the degree of vacuum is to be measured, input the resonant frequency or anti-resonant frequency signal, and then The degree of vacuum can be easily determined by simply measuring the resonant resistance or anti-resonant resistance. Therefore, unlike a tuning fork type crystal resonator, there is no need to actually incorporate it into an oscillation circuit to generate oscillation, there is no requirement for the resonator itself to be highly sensitive, and it can generate a constant frequency signal regardless of the degree of vacuum. Measurement is easy because all you have to do is input it.
第2図〜第4図は本発明で用いられる圧電共振子の一例
を示す。2 to 4 show an example of a piezoelectric resonator used in the present invention.
図において、lは矩形状の恒弾性金属薄板であり、その
周縁部を枠部2とし、その内側に2個のコ字形溝3,3
を隔てて矩形状の振動部4を形成しである。そして、枠
部2と振動部4は幅狭な連結部5を介して連結され、連
結部5は振動部4に生起されるひろがり振動の節点を支
持している。In the figure, l is a rectangular constant-elastic metal thin plate, its peripheral portion is a frame portion 2, and two U-shaped grooves 3, 3 are formed inside the frame portion 2.
A rectangular vibrating section 4 is formed between the two. The frame portion 2 and the vibrating portion 4 are connected via a narrow connecting portion 5, and the connecting portion 5 supports the nodes of the spreading vibration generated in the vibrating portion 4.
なお、この実施例では連結部5の形状を周縁部側から中
心部に向かって漸次幅狭となるテーパ形状としである。In this embodiment, the connecting portion 5 has a tapered shape that gradually becomes narrower from the peripheral edge toward the center.
恒弾性金属は温度の変化に対してその弾性係数が殆ど変
化しない合金であり、エリンバ−(商品名)は代表的な
恒弾性金属(Fe−Ni −Cr系)である。上記枠部
2.振動部4および連結部5は一枚の恒弾性金属板1か
らフォトリソグラフィ等の手法により一体に形成される
。Constant modulus metals are alloys whose elastic modulus hardly changes with changes in temperature, and Elinvar (trade name) is a typical constant modulus metal (Fe-Ni-Cr series). Above frame part 2. The vibrating section 4 and the connecting section 5 are integrally formed from a single elastic metal plate 1 by a method such as photolithography.
上記振動部4上、片方の連結部5上および枠部2の一部
の上面には、連続的に圧電薄膜6a、 6b、 6cが
スパッタリング法、真空蒸着法、イオンブレーティング
法、気相蒸着法等の公知の手法で形成されている。圧電
薄膜の素材としては、酸化亜鉛、チタン酸バリウム系、
チタン酸ジルコン酸鉛系、チタン酸鉛系の他、硫化カド
ミウム、セレン化カドミウム、酸化ベリリウム、ウルツ
鉱硫化亜鉛の中から選ばれる何れかあるいはこれらの固
溶体(この中には酸化亜鉛も含む)、さらにAl1N(
窒化アルミニウム)等も使用可能である。Piezoelectric thin films 6a, 6b, and 6c are continuously deposited on the vibrating part 4, on one of the connecting parts 5, and on the upper surface of a part of the frame part 2 by sputtering, vacuum deposition, ion blating, or vapor phase deposition. It is formed by a known method such as the method. Piezoelectric thin film materials include zinc oxide, barium titanate,
In addition to lead zirconate titanate and lead titanate, any one selected from cadmium sulfide, cadmium selenide, beryllium oxide, wurtzite zinc sulfide, or a solid solution thereof (including zinc oxide), Furthermore, Al1N (
Aluminum nitride) etc. can also be used.
圧電薄膜6a〜6C上には電極7がスパッタリング法、
真空蒸着法等の公知の方法で形成されている。Electrodes 7 are formed on the piezoelectric thin films 6a to 6C by sputtering,
It is formed by a known method such as a vacuum evaporation method.
電極材料としては例えばNi、Ai!、An等が使用さ
れる。電極7は、振動部4上の圧電薄膜6a上の振動電
極7aと、枠部2上の圧電薄膜6c上の端子電極7cと
、連結部5上の圧電薄膜6b上の引出電極7bとで構成
され、振動電極7aと端子電極7cは引出電極7bによ
って接続されている。なお、引出電極7bおよび端子電
極7cと、連結部5および枠部2との間に介在する圧電
薄膜6b、 6cは絶縁体として機能している。Examples of electrode materials include Ni, Ai! , An, etc. are used. The electrode 7 is composed of a vibrating electrode 7a on the piezoelectric thin film 6a on the vibrating part 4, a terminal electrode 7c on the piezoelectric thin film 6c on the frame part 2, and an extraction electrode 7b on the piezoelectric thin film 6b on the connecting part 5. The vibrating electrode 7a and the terminal electrode 7c are connected by an extraction electrode 7b. Note that the piezoelectric thin films 6b and 6c interposed between the extraction electrode 7b and the terminal electrode 7c, and the connecting portion 5 and frame portion 2 function as insulators.
上記のように、恒弾性金属板lの振動部4と、その上に
形成された圧電薄膜6aと、圧電薄膜6a上に形成され
た振動電極7aとによって圧電共振子Aが構成される。As described above, the piezoelectric resonator A is constituted by the vibrating part 4 of the constant elastic metal plate l, the piezoelectric thin film 6a formed thereon, and the vibrating electrode 7a formed on the piezoelectric thin film 6a.
この圧電共振子Aは、端子電極7cと恒弾性金属板1の
枠部2との間に高周波信号を入力することにより、圧電
薄膜6aの作用により恒弾性金属板lの振動部4にひろ
がり振動が励振される。そして、圧電共振子Aのインピ
ーダンスは真空度に依存してリニアに変化する。This piezoelectric resonator A is configured such that by inputting a high frequency signal between the terminal electrode 7c and the frame portion 2 of the constant elastic metal plate 1, vibration spreads to the vibrating portion 4 of the constant elastic metal plate l due to the action of the piezoelectric thin film 6a. is excited. The impedance of the piezoelectric resonator A varies linearly depending on the degree of vacuum.
第5図は第3図に示された形状および寸法の圧電共振子
Aを用いて得られた共振抵抗(Ω)と真空度(Torr
)との特性図である。なお、恒弾性金属板(エリンバ−
)、圧電薄1 (ZnO)および電極(Ni)の各厚み
を0.1mm 、 20μm、 l amとした。図
から明らかなように、l Torr〜大気圧(760T
orr)まで共振抵抗がほぼ直線的に増大していること
がわかる。Figure 5 shows the resonance resistance (Ω) and degree of vacuum (Torr) obtained using piezoelectric resonator A having the shape and dimensions shown in Figure 3.
). In addition, constant elastic metal plate (Elinbar)
), the thicknesses of piezoelectric thin 1 (ZnO) and electrode (Ni) were set to 0.1 mm, 20 μm, and 1 am. As is clear from the figure, l Torr ~ atmospheric pressure (760T
It can be seen that the resonance resistance increases almost linearly up to (orr).
!6図は上記形状の圧電共振子Aを用いて得られた真空
度と反共振抵抗との特性図を示す。この場合には、共振
抵抗とは逆に真空度が大気圧に近づくに従い反共振抵抗
が減少する傾向を示す。なお、100Torr未滴の領
域における反共振抵抗のばらつきは測定誤差によるもの
である。! FIG. 6 shows a characteristic diagram of the degree of vacuum and anti-resonance resistance obtained using the piezoelectric resonator A having the above shape. In this case, contrary to the resonance resistance, the anti-resonance resistance tends to decrease as the degree of vacuum approaches atmospheric pressure. Incidentally, the variation in anti-resonance resistance in the region where 100 Torr is not applied is due to measurement error.
上記圧電共振子Aを用いて実際に真空度を測定する方法
について説明する。A method of actually measuring the degree of vacuum using the piezoelectric resonator A will be explained.
まず、第7図のように圧電共振子へを密閉された空気室
!θ内に露出状態で設置する。空気室IOの排気管11
は図示しない真空ポンプと接続されている。そして、圧
電共振子Aの端子電極7cと枠部2の一部とにリード線
12.13の一端を接続し、リード線12.13の他端
を空気室lOの外部に設けたインピーダンスアナライザ
14に接続する。First, as shown in Figure 7, the air chamber is sealed to the piezoelectric resonator! Install it in an exposed state within θ. Air chamber IO exhaust pipe 11
is connected to a vacuum pump (not shown). Then, one end of the lead wire 12.13 is connected to the terminal electrode 7c of the piezoelectric resonator A and a part of the frame portion 2, and the other end of the lead wire 12.13 is provided outside the air chamber IO. Connect to.
いま、インピーダンスアナライザ14から圧電共振子A
に共振周波数f、または反共振周波数f。Now, from the impedance analyzer 14, the piezoelectric resonator A
has a resonant frequency f, or an anti-resonant frequency f.
に相当する一定周波数信号を入力すると、圧電共振子A
の共振抵抗R1または反共振抵抗R6が真空度に応じて
変化する。この共振抵抗R7または反共振抵抗R1を測
定すれば、第5図または第6図から簡単に真空度を求め
ることができる。When a constant frequency signal corresponding to is input, the piezoelectric resonator A
The resonance resistance R1 or anti-resonance resistance R6 changes depending on the degree of vacuum. By measuring this resonance resistance R7 or anti-resonance resistance R1, the degree of vacuum can be easily determined from FIG. 5 or FIG. 6.
なお、本発明における測定装置としては、実施例のよう
なインピーダンスアナライザに限らず、例えば共振周波
数または反共振周波数に相当する一定周波数信号を出力
する高周波電源と、共振抵抗または反共振抵抗を測定す
るインピーダンスメータ等で構成してもよい。Note that the measuring device in the present invention is not limited to the impedance analyzer as in the embodiment, but also includes, for example, a high frequency power source that outputs a constant frequency signal corresponding to the resonant frequency or anti-resonant frequency, and a device that measures the resonant resistance or anti-resonant resistance. It may also be configured with an impedance meter or the like.
また、圧電共振子Aの形状や構造は実施例に限定するも
のではない。Further, the shape and structure of the piezoelectric resonator A are not limited to those in the embodiment.
さらに、本発明の圧力計は真空度の測定だけでなく、正
圧測定にも使用できる。Furthermore, the pressure gauge of the present invention can be used not only to measure the degree of vacuum but also to measure positive pressure.
以上の説明で明らかなように、本発明の圧電薄膜型圧電
共振子は、その共振周波数が真空度によって変化しない
ため、一定の周波数信号を入力することにより、真空度
の関数として共振抵抗または反共振抵抗を直接測定でき
る。この際、圧電共振子の感度は多少低くても支障はな
く、しかも測定に際して周波数を変化させる装置も不要
であり、極めて簡単に真空度を測定できる。As is clear from the above explanation, since the resonant frequency of the piezoelectric thin film piezoelectric resonator of the present invention does not change depending on the degree of vacuum, by inputting a constant frequency signal, the resonant resistance or resonant resistance can be changed as a function of the degree of vacuum. Resonant resistance can be measured directly. At this time, there is no problem even if the sensitivity of the piezoelectric resonator is somewhat low, and there is no need for a device to change the frequency during measurement, making it possible to measure the degree of vacuum extremely easily.
第1図は本発明のかかる圧電薄膜型圧電共振子のインピ
ーダンス特性図、第2図は圧電共振子の斜視図、第3図
は圧電共振子の平面図、第4v1は第3図のIV−■線
断面図、第5図は共振抵抗の真空度依存特性図、第6図
は反共振抵抗の真空度依存特性図、第7図は圧力計の一
構成図である。
A・・・圧電共振子、l・・・恒弾性金属板、2・・・
枠部、4・・・振動部、5・・・連結部、6a〜6C・
・・圧電薄膜、7゜7a〜7C・・・電極、14・・・
インピーダンスアナライザ。
特許出願人 株式会社 村田製作所
代 理 人 弁理士 筒井 秀隆
第1図
第2図
第7図 5・・・連結部アナライザ
第3r!!1
第4図
第5図
第6図
真空度(TORR)Fig. 1 is an impedance characteristic diagram of the piezoelectric thin film type piezoelectric resonator according to the present invention, Fig. 2 is a perspective view of the piezoelectric resonator, Fig. 3 is a plan view of the piezoelectric resonator, and Fig. 4v1 is an IV- of Fig. 3. 5 is a vacuum degree dependent characteristic diagram of the resonant resistance, FIG. 6 is a vacuum degree dependent characteristic diagram of the antiresonant resistance, and FIG. 7 is a configuration diagram of a pressure gauge. A...Piezoelectric resonator, l...constant elastic metal plate, 2...
Frame part, 4... Vibrating part, 5... Connecting part, 6a to 6C.
...Piezoelectric thin film, 7°7a~7C...electrode, 14...
impedance analyzer. Patent Applicant: Murata Manufacturing Co., Ltd. Representative: Hidetaka Tsutsui, Patent Attorney Figure 1 Figure 2 Figure 7 5...Connection Analyzer No. 3r! ! 1 Figure 4 Figure 5 Figure 6 Vacuum degree (TORR)
Claims (1)
側に幅狭な連結部を介して振動部を一体に設け、この振
動部の上面に圧電薄膜を形成するとともに、圧電薄膜上
に電極を形成してなる圧電共振子と、 圧電共振子の電極と恒弾性金属板との間に共振周波数ま
たは反共振周波数に相当する一定周波数信号を入力する
ことにより、真空度に依存して変化する圧電共振子の共
振抵抗または反共振抵抗を測定する測定装置と、 を具備したことを特徴とする圧力計。(1) The peripheral edge of one constant elastic metal plate is used as a frame, a vibrating part is integrally provided inside the frame via a narrow connecting part, a piezoelectric thin film is formed on the upper surface of this vibrating part, and a piezoelectric By inputting a constant frequency signal corresponding to the resonant frequency or anti-resonant frequency between the piezoelectric resonator, which has electrodes formed on a thin film, and the electrodes of the piezoelectric resonator and a constant elastic metal plate, the A pressure gauge characterized by comprising: a measuring device for measuring the resonant resistance or anti-resonant resistance of a piezoelectric resonator that changes as the piezoelectric resonator changes;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31241790A JPH04184130A (en) | 1990-11-16 | 1990-11-16 | Pressure gauge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31241790A JPH04184130A (en) | 1990-11-16 | 1990-11-16 | Pressure gauge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04184130A true JPH04184130A (en) | 1992-07-01 |
Family
ID=18028980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31241790A Pending JPH04184130A (en) | 1990-11-16 | 1990-11-16 | Pressure gauge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04184130A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004015385A1 (en) * | 2002-08-09 | 2004-02-19 | Bosch Automotive Systems Corporation | Pressure sensor, method of producing the sensor, and in-cylinder pressure detection structure of internal combustion engine |
JP2007240449A (en) * | 2006-03-10 | 2007-09-20 | Kagawa Univ | Pressure sensor, pressure detection device, and pressure detection method |
-
1990
- 1990-11-16 JP JP31241790A patent/JPH04184130A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004015385A1 (en) * | 2002-08-09 | 2004-02-19 | Bosch Automotive Systems Corporation | Pressure sensor, method of producing the sensor, and in-cylinder pressure detection structure of internal combustion engine |
JP2007240449A (en) * | 2006-03-10 | 2007-09-20 | Kagawa Univ | Pressure sensor, pressure detection device, and pressure detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4757026B2 (en) | Acceleration sensor characteristic adjustment method | |
US5668303A (en) | Sensor having a membrane as part of an electromechanical resonance circuit forming receiver and transmitter converter with interdigital structures spaced apart from one another | |
EP0221467B1 (en) | Vibrating type transducer | |
US4435986A (en) | Pressure transducer of the vibrating element type | |
JPH047459B2 (en) | ||
JP4973718B2 (en) | Pressure detection unit and pressure sensor | |
CN112816109B (en) | RF pressure sensor | |
US4472656A (en) | Temperature sensor and method using a single rotated quartz crystal | |
JP5135566B2 (en) | Quartz crystal unit, crystal unit, crystal oscillator, and method of manufacturing the same | |
JP2004093574A (en) | Cantilever with force azimuth sensor for atomic force microscope | |
JPH04184130A (en) | Pressure gauge | |
JP5293413B2 (en) | Pressure sensor and manufacturing method thereof | |
JP4517332B2 (en) | Quartz crystal unit, crystal unit and crystal oscillator manufacturing method | |
JP4836016B2 (en) | Quartz crystal unit, crystal unit and crystal oscillator manufacturing method, crystal unit, crystal unit and crystal oscillator | |
JPH11173967A (en) | Method and apparatus for measuring viscosity of liquid | |
JP3522022B2 (en) | Cantilever with force displacement sensor for atomic force microscope | |
JPH03252204A (en) | Temperature compensated crystal oscillator | |
EP0847136A2 (en) | Piezoelectric resonator of tuning fork type and method for making same | |
JP3401112B2 (en) | Oscillation circuit for piezoelectric crystal oscillation type film thickness meter | |
JPH05322670A (en) | Load detector | |
GB2224599A (en) | Piezoelectric shear mode accelerometer | |
JP2010197379A (en) | Pressure detection unit and pressure sensor | |
JP2012002562A (en) | Vibration type force detecting sensor element, vibration type force detecting sensor and vibration type force detecting sensor device | |
JPH035876Y2 (en) | ||
JPH01189531A (en) | Force detector |