JPH0418021B2 - - Google Patents
Info
- Publication number
- JPH0418021B2 JPH0418021B2 JP62279093A JP27909387A JPH0418021B2 JP H0418021 B2 JPH0418021 B2 JP H0418021B2 JP 62279093 A JP62279093 A JP 62279093A JP 27909387 A JP27909387 A JP 27909387A JP H0418021 B2 JPH0418021 B2 JP H0418021B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- corrosion
- aluminum
- anode
- current efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
Description
(産業上の利用分野)
本発明は鋼構造物の流電防食のために適切な電
極電位を有し、且つ電流効率の優れた流電陽極用
アルミニウム合金に関するものである。
(従来の技術)
鋼構造物、殊に船体構造物、港湾構造物、石油
掘削ジヤケツト、パイプライン等、海洋環境で使
用される鋼構造物は海水等との接触によつて、電
気化学的な腐食を生じやすい。
このような鋼構造物における腐食を防止するた
めには、一般に鋼構造物より電気化学的に卑な金
属を電気的に接続し、これを陽極として作用させ
ることによつて、鋼構造物を保護する所謂流電防
食法が用いられる。
この流電防食法に用いられる陽極金属は、構造
物に対して長期に亘つて性能低下少なく、且つ確
実に安定して防食効果が発揮出来るように鋼構造
物よりも適当に電気化学的に卑で、且つ自己腐食
が少なく、自己腐食生成物の陽極合金への付着に
よる電流効率の低下のない、即ち継続的に高い電
流効率を維持し得るものが望ましい。
アルミニウムは電気化学的当量が大きく、鋼に
比して電気化学的に卑な金属であるから、この種
流電陽極用金属として適したものであると云える
が、アルミニウム表面に形成される酸化皮膜は緻
密で内部保護力が強く、これをそのまま、単体で
流電陽極として使用しても卑な電位を十分に得難
く、また電流効率も低いので、鋼構造物の防食に
用いることは出来ない。
そこで、アルミニウムに亜鉛、インジウム、ガ
リウム、カドミウム、水銀等の元素を種々の割合
で添加することにより、陽極電位および電流効率
を改善した流電陽極用のアルミニウム合金が種々
提案されている。
(発明が解決しようとする問題点)
しかしながら、従来提案されている流電陽極用
アルミニウム合金のうち、カドミウムや水銀を含
むものは環境問題上好ましくなく、またこれらの
元素を含まぬAl−Zn−In系合金、Al−Zn−Ga系
合金およびAl−Zn−In−Ga系合金等は、夫々そ
の合金添加元素の含有割合を適宜調整することに
より、鋼構造物に対して好ましい防食効果を示す
といわれている。−1100mV近傍の陽極電位を得
ることが出来るが、自己腐食量が大きくて、しか
も均一溶解性に欠け、また腐食生成物の一部が陽
極合金の表面に付着して長期に亘る安定した流電
作用を妨げるので、電流効率が90%未満と低く、
実用合金として十分な性能を有するものとは云え
なかつた。
(問題点を解決するための手段)
発明者らは上記した従来の流電陽極用アルミニ
ウム合金における問題点を解決するために種々検
討を進めた結果、インジウムおよびガイウムの何
れか一方、または両方を含むアルミニウム−亜鉛
合金に、マンガンとチタンを同時に添加した合金
は、鋼構造物の防食に好ましい適当な陽極電位を
示すばかりでなく、自己腐食が少なく、腐食生成
物の陽極合金への付着量が少なくて長期に亘つて
継続的に90%以上の高い電流効率が得られるこ
と、またこの合金に更にイツトリウムや希土類元
素等を添加した合金はさらに腐食生成物の付着量
が少なく、一段と高い電流効率が得られることな
どを見出し、本発明を完成した。
即ち、本発明は重量で亜鉛を1.0%を超え10%
まで、マンガンを0.01%を超え1.0%まで、チタ
ンを0.05%を超え0.50%まで含み、更にインジウ
ムを0.005%を超え0.1%まで、またはガリウムを
0.005%を超え0.1%まで、または上記の範囲で、
その両者を合計で0.15%まで含み、残部アルミニ
ウムおよび不純物からなる鋼構造物の防食に使用
する流電陽極用アルミニウム合金と、同上合金に
更にイツトリウムを0.005%を超え0.5%までと、
希土類元素を0.005%を超え1.0%までのうちの1
種または2種以上を含ませてなる鋼構造物の防食
に使用する流電陽極用アルミニウム合金である。
(作用)
本発明によるときは鋼構造物の防食に対して、
必要にして十分な陽極電位が得られると共に、陽
極合金の局部溶解や局部電池の形成、あるいは腐
食生成物の合金表面への部分的付着等が防止され
るので、高い電流効率と安定持続性の優れた鋼構
造物用の流電陽極用アルミニウム合金を得ること
が出来る。次に本発明の流電陽極用アルミニウム
合金における合金成分の添加および限定理由につ
いて説明する。
亜鉛の1.0%を超え10%までの含有は、基質と
なるアルミニウムを活性化して陽極電位を低下さ
せると共に、合金に均一溶解性を付与し、電流効
率を向上させるものであつて、その含有量が下限
値以下のときはその効果が十分でなく、また上限
値を超えると自己腐食量が増加して電流効率を低
下させる。最も好ましい亜鉛含有量の範囲は2.0
〜8.0%である。
インジウムまたはガリウムの夫々0.005%を超
え0.1%までの含有は、亜鉛と同様にアルミニウ
ムを活性化して陽極電位を低下させ、鋼構造物に
対する防食効果をいつそう向上させる作用を有す
る。殊にインジウムの添加は、陽極合金表面にお
ける腐食生成物の付着発生を防止し、合金の均一
溶解性を向上させる効果を有する。
夫々その下限値以下の含有ではその効果が十分
でなく、またインジウムの含有がその上限値を超
えると合金に局部腐食を生じさせ易く、ガリウム
の含有が上限値を超えると合金に孔食を生じさせ
るので何れにしても好ましくない。
インジウム、ガリウムを共に添加すると、夫々
の効果が相加的に作用して好結果をもたらすこと
が多いが、この場合にそれらの合計含有量が0.15
%を超えるとインジウムおよびガリウムが偏析し
て合金に局部腐食を生じ電流効率低下の原因とな
るので、合計含有量を0.15%以下に抑えることが
望ましい。
マンガンの、0.01%を超え1.0%までの含有は、
合金中に不純物として含まれる鉄が基質アルミニ
ウムと反応して生ずる金属間化合物Al3Feの形態
を変化させて、このAl3Feと基質間において発生
する局部電池形成の弊害を低減し、またチタンの
添加と相まつて、インジウム、ガリウムの基質中
への分散析出を助長し、自己腐食を減少させると
ともに自己腐食生成物の陽極合金への付着量を低
減するなどして、合金の電流効率向上に寄与する
効果を有する。
その含有量が下限値以下では、その効果が少な
く、上限値を超えると合金の陽極電位を著しく貴
側に移行させて、鋼構造物との電位差を縮小させ
るので発生電流が減少し、鋼構造物に対する防食
効果を低減する。
チタンの0.05%を超え0.50%までの含有は、合
金に均一溶解性を付与し、マンガンの添加と相ま
つて合金の自己腐食を減少させるとともに自己腐
食生成物の陽極合金への付着量を低減し、電流効
率の向上に寄与するものであつて、その含有量が
下限値以下では効果が少なく、また上限値を超え
るとAl3Ti等の巨大晶出物を発生し、これが合金
基質と局部電池を形成して孔食発生の原因とな
り、また合金の均一溶解性を損なうほか、マンガ
ン同様合金の電位を著しく貴側に移行させるので
防食効果上好ましくない。このような見地からマ
ンガン、チタンの合計含有量を1.2%以下に抑え
ることが望ましい。なお合金の自己腐食生成物の
陽極合金への付着低減効果はマンガン、チタンの
いずれか一方の添加のみでは不十分であり、両者
を同時に添加含有させることが必要である。
また本発明の第1発明合金への、イツトリウム
を0.005%を超え0.5%までと、希土類元素を0.005
%を超え1.0%までのうちの1種または2種以上
の添加は、第1発明合金の均一溶解性と自己腐食
の減少効果を助長し合金の流電陽極としての電流
効率を一層向上させる効果を有するものであつ
て、その含有量が下限値以下であるときはその効
果が十分でなく、また上限値を超えるとこれらの
元素が偏析して電流効率を低下させる。従つてこ
れらの元素を2種以上添加する場合は合計量を
1.2%以下とすることが望ましい。
希土類元素はランタン、セリウム、プラセオジ
ム、ネオジム等を含む元素周期律表第族に属す
る一群の元素であるが、これらの元素を単独に添
加しても、またこれらの元素2種以上を混合添加
してもよい。またこれらの元素の混合物として一
般に市販されている所謂ミツシユメタルは、入手
が容易で且つ廉値であるから、これをそのまま使
用すれば経済的である。
本発明の流電陽極用アルミニウム合金は鋳造物
をそのまま、または適時形状に加工を加えて使用
される。鋳造法、加工法は夫々公知の任意の方法
を採用すればよい。
(実施例)
第1表に示す各種組成の合金を溶製し、金型鋳
造にて20mmφで長さ200mmの丸棒に鋳造し、この
丸棒を側面20cm2を露出するようにして被覆し陽極
試料とし、各試料について陽極電位および電流効
率を測定し、結果を同表に示した。
また試料表面の腐食生成物付着状況を目視にて
観察し、その結果をあわせて示した。
なお、合金の溶製にあたつて、希土類元素の添
加は市販のミツシユメタル(組成:Ce50%、
La45%、Pr,Md残−第1表中MMで表示)を使
用した。
陽極試料の試験条件は次の通りであつた。
浸漬液:室温静止状態の人工海水1000ml
陰極:表面積430cm2のステンレス板
極間距離:35mm陽極電流密度:1mA/cm2
電解時間:240時間
(Industrial Application Field) The present invention relates to an aluminum alloy for galvanic anodes that has an appropriate electrode potential for galvanic corrosion protection of steel structures and has excellent current efficiency. (Prior Art) Steel structures, especially those used in marine environments such as ship hull structures, port structures, oil drilling jackets, pipelines, etc., are susceptible to electrochemical reactions due to contact with seawater, etc. Prone to corrosion. In order to prevent such corrosion in steel structures, it is generally necessary to electrically connect a metal that is less electrochemically base than the steel structure and use it as an anode to protect the steel structure. A so-called galvanic corrosion protection method is used. The anode metal used in this galvanic corrosion protection method is electrochemically less noble than that of steel structures, so that it has less performance deterioration over a long period of time and can reliably and stably exhibit a corrosion protection effect. It is desirable to have a material that has low self-corrosion and no reduction in current efficiency due to adhesion of self-corrosion products to the anode alloy, that is, can continuously maintain high current efficiency. Aluminum has a large electrochemical equivalent and is a less electrochemically base metal than steel, so it can be said to be suitable as a metal for this type of galvanic anode, but the oxidation that forms on the aluminum surface The film is dense and has strong internal protective power, and even if it is used as a galvanic anode alone, it is difficult to obtain a sufficiently base potential and the current efficiency is low, so it cannot be used for corrosion protection of steel structures. do not have. Therefore, various aluminum alloys for galvanic anodes have been proposed in which the anode potential and current efficiency are improved by adding elements such as zinc, indium, gallium, cadmium, and mercury to aluminum in various proportions. (Problems to be Solved by the Invention) However, among the aluminum alloys for galvanic anodes proposed so far, those containing cadmium and mercury are unfavorable from an environmental standpoint, and Al-Zn- which does not contain these elements In-based alloys, Al-Zn-Ga-based alloys, Al-Zn-In-Ga-based alloys, etc. exhibit favorable corrosion protection effects on steel structures by appropriately adjusting the content ratio of alloy additive elements. It is said that. Although it is possible to obtain an anode potential of around -1100mV, the amount of self-corrosion is large and uniform solubility is lacking, and some of the corrosion products adhere to the surface of the anode alloy, resulting in a stable current flow over a long period of time. As the current efficiency is low at less than 90%,
It could not be said that it had sufficient performance as a practical alloy. (Means for Solving the Problems) The inventors conducted various studies in order to solve the problems with the conventional aluminum alloys for galvanic anodes described above, and as a result, they discovered that one or both of indium and gaium was used. An aluminum-zinc alloy in which manganese and titanium are added at the same time not only exhibits an appropriate anode potential suitable for corrosion protection of steel structures, but also exhibits less self-corrosion and a reduced amount of corrosion products adhering to the anode alloy. A high current efficiency of 90% or more can be obtained continuously over a long period of time even if the amount of corrosion is reduced.Also, alloys in which yttrium, rare earth elements, etc. are further added to this alloy have even less adhesion of corrosion products, resulting in even higher current efficiency. The present invention was completed based on the discovery that the following could be obtained. That is, the present invention contains more than 1.0% zinc by weight and 10% zinc by weight.
Contains manganese over 0.01% up to 1.0%, titanium over 0.05% up to 0.50%, and indium over 0.005% up to 0.1%, or gallium.
more than 0.005% up to 0.1%, or within the above range,
An aluminum alloy for galvanic anodes used for corrosion protection of steel structures, containing both of them up to a total of 0.15%, and the balance consisting of aluminum and impurities, and the above alloy further containing yttrium exceeding 0.005% and up to 0.5%.
1 of rare earth elements exceeding 0.005% and up to 1.0%
This is an aluminum alloy for galvanic anodes used for corrosion protection of steel structures, containing one or more species. (Function) According to the present invention, for corrosion protection of steel structures,
In addition to obtaining the necessary and sufficient anode potential, local dissolution of the anode alloy, formation of local batteries, and partial adhesion of corrosion products to the alloy surface are prevented, resulting in high current efficiency and stable durability. An excellent aluminum alloy for galvanic anodes for steel structures can be obtained. Next, the addition of alloy components in the aluminum alloy for galvanic anodes of the present invention and the reasons for their limitations will be explained. The content of zinc in excess of 1.0% and up to 10% activates the aluminum substrate and lowers the anode potential, as well as imparts uniform solubility to the alloy and improves current efficiency. When is less than the lower limit, the effect is not sufficient, and when it exceeds the upper limit, the amount of self-corrosion increases and the current efficiency decreases. The most preferred zinc content range is 2.0
~8.0%. The content of indium or gallium in an amount exceeding 0.005% and up to 0.1% each has the effect of activating aluminum, lowering the anode potential, and improving the anticorrosion effect on steel structures, similarly to zinc. In particular, the addition of indium has the effect of preventing corrosion products from adhering to the anode alloy surface and improving the uniform solubility of the alloy. If the content is below the lower limit, the effect will not be sufficient, and if the indium content exceeds the upper limit, local corrosion will easily occur in the alloy, and if the gallium content exceeds the upper limit, pitting corrosion will occur in the alloy. This is not desirable in any case. When indium and gallium are added together, their effects are additive and often produce good results, but in this case, their total content is 0.15
If it exceeds 0.1%, indium and gallium will segregate, causing local corrosion in the alloy and reducing current efficiency, so it is desirable to keep the total content below 0.15%. The content of manganese exceeding 0.01% and up to 1.0% is
Iron contained as an impurity in the alloy reacts with the substrate aluminum to change the form of the intermetallic compound Al 3 Fe, reducing the harmful effects of local battery formation that occurs between this Al 3 Fe and the substrate, and titanium. Coupled with the addition of , it promotes the dispersion and precipitation of indium and gallium in the matrix, reduces self-corrosion and reduces the amount of self-corrosion products attached to the anode alloy, improving the current efficiency of the alloy. It has a contributing effect. If the content is below the lower limit, the effect will be small, and if it exceeds the upper limit, the anode potential of the alloy will shift significantly to the noble side, reducing the potential difference with the steel structure, resulting in a decrease in the generated current, and the steel structure Reduces the anti-corrosion effect on objects. The content of titanium exceeding 0.05% and up to 0.50% imparts uniform solubility to the alloy, and together with the addition of manganese, reduces self-corrosion of the alloy and reduces the amount of self-corrosion products attached to the anode alloy. , which contributes to improving current efficiency, has little effect if its content is below the lower limit, and if it exceeds the upper limit, giant crystals such as Al 3 Ti are generated, which damage the alloy matrix and the local battery. In addition to impairing the homogeneous solubility of the alloy, it also causes the potential of the alloy to shift significantly toward the noble side, which is undesirable in terms of corrosion prevention. From this standpoint, it is desirable to suppress the total content of manganese and titanium to 1.2% or less. Note that addition of either manganese or titanium alone is not sufficient to reduce the adhesion of self-corrosion products of the alloy to the anode alloy, and it is necessary to add and contain both at the same time. Furthermore, in the first invention alloy of the present invention, yttrium is added in excess of 0.005% to 0.5%, and rare earth elements are added in an amount of 0.005% to 0.5%.
The addition of one or more of the above % to 1.0% has the effect of promoting uniform solubility and reducing self-corrosion of the first invention alloy, and further improving the current efficiency of the alloy as a galvanic anode. If the content is below the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, these elements will segregate and reduce current efficiency. Therefore, when adding two or more of these elements, the total amount should be
It is desirable to keep it below 1.2%. Rare earth elements are a group of elements that belong to Group 3 of the periodic table of elements, including lanthanum, cerium, praseodymium, neodymium, etc., but these elements can be added alone or in combination with two or more of these elements. It's okay. Furthermore, the so-called Mitsushi metal, which is generally commercially available as a mixture of these elements, is easily available and inexpensive, so it is economical to use it as it is. The aluminum alloy for galvanic anodes of the present invention is used as a cast product, or after being processed into a suitable shape. Any known casting method and processing method may be used. (Example) Alloys with various compositions shown in Table 1 were melted and cast into a round bar with a diameter of 20 mm and a length of 200 mm using die casting, and the round bar was coated with 20 cm 2 of the side surface exposed. The anode potential and current efficiency of each sample were measured, and the results are shown in the same table. In addition, the state of corrosion product adhesion on the sample surface was visually observed, and the results are also shown. When melting the alloy, rare earth elements were added using commercially available Mitsushi Metal (composition: 50% Ce,
La 45%, Pr, Md balance (indicated by MM in Table 1) was used. The test conditions for the anode samples were as follows. Immersion liquid: 1000 ml of artificial seawater in a static state at room temperature Cathode: Stainless steel plate with a surface area of 430 cm 2 Distance between electrodes: 35 mm Anode current density: 1 mA/cm 2 Electrolysis time: 240 hours
【表】【table】
【表】
第1表の結果から、本発明の流電陽極用アルミ
ニウム合金は、第1発明合金(試料No.1〜7)、
第2発明合金(試料No.8〜14)共にその陽極電
位が鋼構造物に対し適当な値とされる−1100mV
近傍を示し、比較合金(試料No.15〜18)、従来
合金(試料No.19〜21)に比べて、合金表面に対
する腐食生成物の付着量も少なく、均一溶解性に
優れ、また電流効率も高いことが判かる。
(効果)
以上述べたように、本発明の流電陽極用アルミ
ニウム合金は鋼構造物に対し適切な陽極電位を有
しており、合金表面への腐食生成物の付着量が少
なく、均一溶解性を示す上に、電流効率も極めて
高いので鋼構造物、特に海洋構造物に対する流電
陽極材料として好適で有る。[Table] From the results in Table 1, the aluminum alloys for galvanic anodes of the present invention are the first invention alloy (sample Nos. 1 to 7),
The anode potential of the second invention alloys (sample Nos. 8 to 14) is −1100 mV, which is an appropriate value for steel structures.
Compared to comparative alloys (Samples No. 15 to 18) and conventional alloys (Samples No. 19 to 21), the amount of corrosion products adhering to the alloy surface is small, the uniform solubility is excellent, and the current efficiency is It turns out that it is also high. (Effects) As described above, the aluminum alloy for galvanic anodes of the present invention has an appropriate anode potential for steel structures, has a small amount of corrosion products adhering to the alloy surface, and has uniform solubility. In addition to this, it also has extremely high current efficiency, making it suitable as a galvanic anode material for steel structures, especially marine structures.
Claims (1)
ガンを0.01%を超え1.0%まで、チタンを0.05%を
超え0.50%まで含み、更にインジウムを0.005%
を超え0.1%まで、またはガリウムを0.005%を超
え0.1%まで、または上記範囲でその両者を合計
で0.15%まで含み、残部アルミニウムおよび不純
物からなる鋼構造物の防食に使用する流電陽極用
アルミニウム合金。 2 重量で、亜鉛を1.0%を超え10%まで、マン
ガンを0.01%を超え1.0%まで、チタンを0.05%を
超え0.50%まで含み、更にインジウムを0.005%
を超え0.1%まで、またはガリウムを0.005%を超
え0.1%まで、または上記範囲でその両者を合計
で0.15%まで含み、残部アルミニウムおよび不純
物からなる合金に、更にイツトリウムを0.005%
を超え0.5%までと希土類元素を0.005%を超え1.0
%までのうちの1種または2種以上を含ませてな
る鋼構造物の防食に使用する流電陽極用アルミニ
ウム合金。[Claims] 1 Contains, by weight, more than 1.0% of zinc up to 10%, more than 0.01% of manganese up to 1.0%, more than 0.05% of titanium up to 0.50%, and furthermore 0.005% of indium.
or more than 0.005% and up to 0.1% gallium, or both in the above range up to a total of 0.15%, with the balance being aluminum and impurities. Aluminum for galvanic anodes used for corrosion protection of steel structures. alloy. 2 Contains zinc from 1.0% to 10%, manganese from 0.01% to 1.0%, titanium from 0.05% to 0.50%, and indium 0.005% by weight.
or more than 0.1% of gallium, or more than 0.005% of gallium up to 0.1%, or both in the above range up to a total of 0.15%, with the balance consisting of aluminum and impurities, and further 0.005% of yttrium.
exceeding 0.5% and rare earth elements exceeding 0.005% 1.0
An aluminum alloy for galvanic anodes used for corrosion protection of steel structures, containing one or more of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27909387A JPH01123046A (en) | 1987-11-06 | 1987-11-06 | Aluminum alloy for galvanic anodes used for corrosion protection of steel structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27909387A JPH01123046A (en) | 1987-11-06 | 1987-11-06 | Aluminum alloy for galvanic anodes used for corrosion protection of steel structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01123046A JPH01123046A (en) | 1989-05-16 |
JPH0418021B2 true JPH0418021B2 (en) | 1992-03-26 |
Family
ID=17606317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27909387A Granted JPH01123046A (en) | 1987-11-06 | 1987-11-06 | Aluminum alloy for galvanic anodes used for corrosion protection of steel structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01123046A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3183604B2 (en) * | 1994-02-16 | 2001-07-09 | 住友金属鉱山株式会社 | Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100249A (en) * | 1982-11-26 | 1984-06-09 | Showa Alum Corp | Aluminum alloy brazing sheet with both high temperature strength characteristics and sacrificial corrosion protection effect |
JPS6151621A (en) * | 1984-08-21 | 1986-03-14 | Fuji Photo Film Co Ltd | Magnetic recording medium |
-
1987
- 1987-11-06 JP JP27909387A patent/JPH01123046A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01123046A (en) | 1989-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4885045A (en) | Aluminium alloys suitable for sacrificial anodes | |
JP2892449B2 (en) | Magnesium alloy for galvanic anode | |
US3368958A (en) | Aluminum alloy for cathodic protection system and primary battery | |
Mance et al. | The effect of small additions of indium and thallium on the corrosion behaviour of aluminium in sea water | |
US2913384A (en) | Aluminum anodes | |
US3383297A (en) | Zinc-rare earth alloy anode for cathodic protection | |
US3393138A (en) | Aluminum alloy anode and method of using same in cathodic protection | |
US3281239A (en) | Aluminum base alloys containing thallium | |
CN100432295C (en) | Aluminium-magnesium sacrificed anode material | |
JPH07118784A (en) | Aluminum alloy for steel structure corrosion protection | |
JPH0418021B2 (en) | ||
JPS6319584B2 (en) | ||
JP4126633B2 (en) | Aluminum alloy galvanic anode for low temperature seawater | |
US4740355A (en) | Aluminum alloy for the production of sacrificial anodes for anodes for cathodic corrosion protection | |
NO167724B (en) | DEVICE FOR STEERING A DRIVE SHIFT DRIVE ON A VEHICLE FRAME. | |
JPH06179936A (en) | Negative electrode material for aluminum battery | |
US4626329A (en) | Corrosion protection with sacrificial anodes | |
US3321305A (en) | Cathodic protection alloys | |
WO2000026426A1 (en) | Zinc-based alloy, its use as a sacrificial anode, a sacrificial anode, and a method for cathodic protection of corrosion-threatened constructions in aggressive environment | |
JPS6250538B2 (en) | ||
JPH09157782A (en) | Magnesium alloy for galvanic anode | |
JP4436553B2 (en) | Aluminum alloy for low temperature seawater environmental current anode | |
JP3183604B2 (en) | Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same | |
Wranglén et al. | On the relation between corrosion potential and galvanic corrosion of C-steels in acid solutions | |
JP2773971B2 (en) | Magnesium alloy for galvanic anode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |