JPH04178517A - Biaxial angular velocity meter - Google Patents
Biaxial angular velocity meterInfo
- Publication number
- JPH04178517A JPH04178517A JP2306866A JP30686690A JPH04178517A JP H04178517 A JPH04178517 A JP H04178517A JP 2306866 A JP2306866 A JP 2306866A JP 30686690 A JP30686690 A JP 30686690A JP H04178517 A JPH04178517 A JP H04178517A
- Authority
- JP
- Japan
- Prior art keywords
- angular velocity
- temperature
- piezoelectric
- time constant
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 15
- 238000006880 cross-coupling reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 101000830021 Equine arteritis virus (strain Bucyrus) Glycoprotein 2b Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Gyroscopes (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、飛翔体などの各種運動体において、姿勢計
測や制御のために用いられ、角速度を検出するもので、
回転軸に直角に一対の圧電検出器を対称、かつ平行に取
付け、その回転軸を回転させ、回転軸と直交する面内の
直交する二軸に関する角速度を検出する二軸角速度計に
関する。Detailed Description of the Invention "Industrial Application Field" This invention is used for attitude measurement and control of various moving objects such as flying objects, and detects angular velocity.
This invention relates to a two-axis angular velocity meter in which a pair of piezoelectric detectors are mounted symmetrically and parallel to a rotational axis, the rotational axis is rotated, and angular velocities about two orthogonal axes in a plane perpendicular to the rotational axis are detected.
「従来の技術」
第3図に従来の二軸角速度計を示す。レートセンサ部1
1内において回転軸12に、一対の平行したビーム状の
圧電検出器13.14が回転軸12と直角に、かつ回転
軸と対称に取付けられている。``Prior Art'' Figure 3 shows a conventional two-axis angular velocity meter. Rate sensor section 1
1 , a pair of parallel beam-shaped piezoelectric detectors 13 , 14 are mounted on the rotation axis 12 at right angles to and symmetrically to the rotation axis.
回転軸12はスピンモータ15により一定速度で回転さ
れる。回転軸12と直交する面内に作用する角速度によ
り圧電検出器13.14にコリオリ力が作用し、圧電検
出器13.14が図に点線で示すように互いに逆方向に
たわみ、このたわみにより圧電検出器13.14に発生
する各【気信号がそれぞれスリ・7プリング及びプラン
16を介して前置増幅器17.18に導ひかれ、前置増
幅器17.18の各出力はレートセンサ部11の外のセ
ンサエレクトロニクス部19内のフィルタ移相回路21
へ供給され、フィルタ移相回路21で両電気信号の感度
及び位相合せが行われる。フィルタ移相回路21の百出
力は差動回路22で互いに引算されて、回転軸11に沿
う加速度にもとすく同相成分が除去される。The rotating shaft 12 is rotated by a spin motor 15 at a constant speed. Coriolis force acts on the piezoelectric detectors 13.14 due to the angular velocity acting in a plane perpendicular to the rotation axis 12, and the piezoelectric detectors 13.14 deflect in opposite directions as shown by dotted lines in the figure, and this deflection causes the piezoelectric Each of the signals generated in the detectors 13 and 14 is led to a preamplifier 17 and 18 via a pick-up ring and a planar 16, respectively, and each output of the preamplifier 17 and 18 is sent to the outside of the rate sensor section 11. Filter phase shift circuit 21 in sensor electronics section 19 of
The filter phase shift circuit 21 adjusts the sensitivity and phase of both electrical signals. The outputs of the filter phase shift circuit 21 are subtracted from each other by the differential circuit 22, and the in-phase component of the acceleration along the rotation axis 11 is quickly removed.
回転軸12に基準パターン板23が取付けられてあり、
この例では基準パターン板23に形成されている基準パ
ターンを光検出器24で検出し、その検出出力が基準信
号発生器25へ供給される。A reference pattern plate 23 is attached to the rotating shaft 12,
In this example, a reference pattern formed on a reference pattern plate 23 is detected by a photodetector 24, and its detection output is supplied to a reference signal generator 25.
基準信号発生器25から回転軸12が基準方間に向いた
時、立上りそれから1800回転すると立下る方形波の
基準信号と、これに対し90度遅れた基準信号とが作ら
れる。差動回路22の出力が同期検波回路26で基準信
号発生器25からの二つの基準信号によりそれぞれ同期
検波され、これら両投波出力はフィルタ増幅器27を通
してX軸角速信号、Y軸角速度信号として出力される。The reference signal generator 25 generates a square wave reference signal that rises when the rotating shaft 12 faces in the reference direction and then falls after 1800 rotations, and a reference signal that is delayed by 90 degrees. The output of the differential circuit 22 is synchronously detected by the synchronous detection circuit 26 using the two reference signals from the reference signal generator 25, and these two projection outputs are passed through the filter amplifier 27 as an X-axis angular velocity signal and a Y-axis angular velocity signal. Output.
「発明が解決しようとする課題」
この従来の二軸角速度計において、差動回路22の出力
に直流分が含まれていると、その直流が同期検波回路2
6でパルス化され、軸回転周波数の雑音となる欠点があ
り、更にスケールファクタとクロスカップリングの温度
計数が大きい欠点を持っていた。"Problem to be Solved by the Invention" In this conventional two-axis angular velocity meter, if the output of the differential circuit 22 contains a DC component, the DC component is transmitted to the synchronous detection circuit 22.
6, which has the drawback of producing noise at the shaft rotation frequency, and also has the drawback of a large scale factor and cross-coupling temperature coefficient.
圧電検出器13.14の伝達特性GP(S)は次式%式
%
に、:比例定数 Cド圧電検出器の内部容量R1:
圧電検出器の内部抵抗
圧電検出器の内部容量C,は温度変化に対して一般に比
較的大きな正の温度係数を持って変化する。The transfer characteristic GP(S) of the piezoelectric detector 13.14 is expressed by the following formula: Proportionality constant Internal capacitance R1 of the piezoelectric detector C:
Internal Resistance of the Piezoelectric Detector The internal capacitance C of the piezoelectric detector generally changes with a relatively large positive temperature coefficient with respect to temperature changes.
このため高温になると時定数T、が大きくなり、利得周
波数特性は第4図Aに示すように曲線28から曲線29
へと利得が大きくなるように変化し、位相周波数特性は
第4図Bに示すように曲線31から曲線32へと位相が
遅れるように変化する。Therefore, as the temperature increases, the time constant T increases, and the gain frequency characteristics change from curve 28 to curve 29 as shown in FIG. 4A.
As shown in FIG. 4B, the phase frequency characteristic changes from curve 31 to curve 32 so that the phase lags.
このため検出される角速度信号の利得はaからbへ大と
なり、位相はCからdへと遅れる。この結果角速度計の
スケールファクタが温度変化で比較的大きく変化する。Therefore, the gain of the detected angular velocity signal increases from a to b, and the phase lags from C to d. As a result, the scale factor of the gyro meter changes relatively significantly with temperature changes.
またX軸まわりの角速度とこれと直角なY軸まわりの角
速度とは本来無関係であり、つまりX軸まわりの角速度
のみが入力されている場合はこれに応じてX軸角速度信
号が出力され、Y軸角速度信号はゼロであるが、温度変
動で、圧電検出器の位相特性が変化すると、圧電検出器
の出力と基準信号との位相関係が正しい状態からずれ、
例えば本来はY軸角速度信号はゼロであるべきであるが
、Y軸角速度信号が現われ、いわゆるクロスカップリン
グが生じる。このクロスカップリングの温度変化係数も
比較的大きい。Furthermore, the angular velocity around the X-axis and the angular velocity around the Y-axis, which is perpendicular to it, are essentially unrelated.In other words, if only the angular velocity around the X-axis is input, the X-axis angular velocity signal will be output accordingly, and the The shaft angular velocity signal is zero, but if the phase characteristics of the piezoelectric detector change due to temperature fluctuations, the phase relationship between the output of the piezoelectric detector and the reference signal will deviate from the correct state.
For example, although the Y-axis angular velocity signal should originally be zero, a Y-axis angular velocity signal appears, causing so-called cross-coupling. The temperature change coefficient of this cross-coupling is also relatively large.
この対策として、圧電検出器における応答の折点周波数
を小さくして(つまり時定数T、を大きくして)角速度
信号のキャリア周波数(回転軸12の回転周波数)に対
して十分小さくすることが考えられる。しかしこの方法
は圧電検出器の電圧出力感度を低下することになり、実
用的でない。As a countermeasure to this, it is possible to reduce the corner frequency of the response in the piezoelectric detector (in other words, increase the time constant T) to make it sufficiently smaller than the carrier frequency of the angular velocity signal (rotational frequency of the rotating shaft 12). It will be done. However, this method reduces the voltage output sensitivity of the piezoelectric detector and is not practical.
このため従来においては軸回転数の雑音を減少するため
、差動回路等にてバイアス調整回路を設け、同期検波回
路入力ハイアスを無くするよう調整する必要かあった。For this reason, in the past, in order to reduce the noise of the shaft rotation speed, it was necessary to provide a bias adjustment circuit using a differential circuit or the like and adjust it to eliminate the input high ass to the synchronous detection circuit.
さらに、温度によるスケールファクタやクロス力・7プ
リングが変化するのを防ぐため、使用温度範囲を制限し
たり、広範囲の温度範囲での使用が要求される場合は、
レートセンサ部11を所定の温度に制御し、外部の周囲
温度の影響を受けないようにしていた。このような温度
制御は二軸角速度計の小形化、軽量化、低価格化に反す
ることになる。あるいは、レートセンサ部11に温度セ
ンサを取付け、その温度センサの出力に応じてマイクロ
プロセッサで角速度信号を補正計算して、スケールファ
クタ及びクロスカップリングの温度変化係数を小さくし
ていた。しかしこのようにマイクロプロセッサによる補
正計算も、二軸角速度計の小形化、軽量化、低価格化に
支障をきたしていた。Furthermore, in order to prevent the scale factor, cross force, and 7-pulling from changing due to temperature, the operating temperature range may be limited, or if use in a wide temperature range is required,
The rate sensor section 11 was controlled to a predetermined temperature so as not to be influenced by the external ambient temperature. Such temperature control goes against the desire to make the two-axis angular velocity meter smaller, lighter, and cheaper. Alternatively, a temperature sensor is attached to the rate sensor section 11, and a microprocessor corrects and calculates the angular velocity signal according to the output of the temperature sensor, thereby reducing the scale factor and the temperature change coefficient of cross coupling. However, such correction calculations using a microprocessor have been a hindrance to reducing the size, weight, and cost of a two-axis angular velocity meter.
「課題を解決するための手段」
この発明によれば差動回路と同期検波回路との間に高域
通過濾波器が挿入され、直流分が遮断されて同期検波回
路へ供給される。この高域通過濾波器の時定数決定素子
の少くとも一部は、圧電検出器とほぼ同一の温度環境に
配置され、かつ高域通過濾波器の時定数TMは圧電検出
器の時定数T、とほぼ等しく、かつこれら時定数TNs
T、の温度変化係数を互いにほぼ等しく、逆極性とさ
れる。"Means for Solving the Problem" According to the present invention, a high-pass filter is inserted between the differential circuit and the synchronous detection circuit, and the DC component is blocked and supplied to the synchronous detection circuit. At least a part of the time constant determining elements of the high-pass filter are placed in substantially the same temperature environment as the piezoelectric detector, and the time constant TM of the high-pass filter is equal to the time constant T of the piezoelectric detector. and these time constants TNs
The temperature change coefficients of T and T are approximately equal to each other and have opposite polarities.
「実施例」
第1図はこの発明の実施例を示し、第3図と対応する部
分に同一符号を付けである。この発明においては差動回
路22と同期検波回路26との間に高域通過濾波器33
が直列に挿入される。高域通過濾波器33は例えばその
濾波器33の入力端に入力抵抗器34の一端が接続され
、その他端がコンデンサ35を通して演算増幅器36の
反転入力端に接続され、演算増幅器36の非反転入力端
は接地され、反転入力端と出力端との間に帰還抵抗器3
7が接続されて構成される。この高域通過濾波器33の
時定数決定素子である入力抵抗器34とコンデンサ35
とのうちコンデンサ35はレートセンサ部11内に配さ
れ、圧電検出器13,14とほぼ同一の温度環境に配置
される。このコンデンサ35としてその容量の温度係数
が圧電検出器13.14の内部容量C7のそれに対し大
きさが等しく、変化の極性が逆の負極性のものが用いら
れる。このようなコンデンサ35は温度補償用コンデン
サとして市販されているものから選んで使用することが
できる。また高域通過濾波器33の時定数T8を圧電検
出器13.14の時定数T、と等しくする。つまり、入
力抵抗器34の抵抗値RHとコンデンサ35の容量CM
との積である時定数TMをTpと等しくする。Embodiment FIG. 1 shows an embodiment of the present invention, and parts corresponding to those in FIG. 3 are given the same reference numerals. In this invention, a high-pass filter 33 is provided between the differential circuit 22 and the synchronous detection circuit 26.
are inserted in series. For example, the high-pass filter 33 has one end of an input resistor 34 connected to the input end of the filter 33, the other end connected to an inverting input end of an operational amplifier 36 through a capacitor 35, and a non-inverting input end of the operational amplifier 36. The terminal is grounded, and a feedback resistor 3 is connected between the inverting input terminal and the output terminal.
7 are connected and configured. An input resistor 34 and a capacitor 35 are time constant determining elements of this high-pass filter 33.
Of these, the capacitor 35 is disposed within the rate sensor section 11 and is placed in approximately the same temperature environment as the piezoelectric detectors 13 and 14. As this capacitor 35, a negative polarity capacitor whose temperature coefficient of capacitance is equal in size to that of the internal capacitance C7 of the piezoelectric detector 13, 14 and whose polarity of change is opposite is used. Such a capacitor 35 can be selected from commercially available temperature compensation capacitors. Further, the time constant T8 of the high-pass filter 33 is made equal to the time constant T of the piezoelectric detectors 13 and 14. In other words, the resistance value RH of the input resistor 34 and the capacitance CM of the capacitor 35
Let the time constant TM, which is the product of , be equal to Tp.
このように構成されているから、差動回路22の出力中
の直流分が高域通過濾波器33により遮断され、同期検
波回路26において軸回転周波数の雑音が発生すること
がない。With this configuration, the DC component in the output of the differential circuit 22 is blocked by the high-pass filter 33, and no noise at the shaft rotation frequency is generated in the synchronous detection circuit 26.
更に、高域通過濾波器33の伝達関数C,(S)は(2
)式で表わされ、(1)式で示した圧電検出器13゜1
4の伝達特性と同じ形式である。Furthermore, the transfer function C, (S) of the high-pass filter 33 is (2
), and the piezoelectric detector 13゜1 shown by the formula (1)
This is the same format as the transfer characteristic of No. 4.
T工S+1 TM=C1l−R。T engineering S+1 TM=C11-R.
R8:入力抵抗器34の抵抗値
CH:コンデンサ35の容量
KM:比例定数
容量C8の温度係数が負で大きさが内部容量C2の温度
計数と等しく 、T、=TFであり、コンデンサ35は
圧電検出器13.14と常に同一温度にあるため、圧電
検出器13.14における温度変化にもとすく利得と位
相との変化は、高域通過濾波器33でこれと大きさが等
しく極性が逆の利得、位相が生じて打消され、高域通過
濾波器33の出力は利得、位相とも温度変化の影響を受
けないものとなり、温度変化に影響されない角速度信号
が得られる。つまりスケールファクタ及びクロスカップ
リングの温度変化を補正することができる。R8: Resistance value of input resistor 34 CH: Capacity of capacitor 35 KM: Proportional constant The temperature coefficient of capacitance C8 is negative and the size is equal to the temperature coefficient of internal capacitance C2, T, = TF, and capacitor 35 is a piezoelectric Since the temperature is always the same as that of the piezoelectric detectors 13 and 14, changes in gain and phase due to temperature changes in the piezoelectric detectors 13 and 14 are caused by high-pass filters 33 having the same magnitude and opposite polarity. The gain and phase of are generated and canceled, and the output of the high-pass filter 33 becomes unaffected by temperature changes in both gain and phase, and an angular velocity signal that is unaffected by temperature changes is obtained. In other words, it is possible to correct temperature changes in scale factors and cross-coupling.
高域通過濾波器33の時定数T、が、圧電検出器13.
14の時定数T、と等しく、かつその温度変化係数が等
しく、変化極性が逆極性であればよい。The time constant T of the high-pass filter 33 is the piezoelectric detector 13.
14, the temperature change coefficients are the same, and the polarity of change is opposite.
従って第2図に示すように、コンデンサ35をセンサエ
レクトロニクス部19内に設け、コンデンサ35として
容量が温度変化で変化が少ないものを用い、入力抵抗器
34及び帰還抵抗器37として負の感温抵抗素子、例え
ばサーミスタを用い、これらを圧電検出器13.14と
同一温度環境下に配置してもよい。帰還抵抗器37も感
温抵抗素子とし、入力抵抗器34と同一温度環境にする
のは濾波器33の利得が温度変化により変化しないよう
にするためである。必要に応して入力抵抗器34、帰還
抵抗器37とそれぞれ直列又は並列に温度係数調整用抵
抗素子34’、37’を接続することもできる。このよ
うにしてT、IとT、とを等しくし、その温度変化係数
が等しく、変化極性を逆とすることができる。コンデン
サ35、抵抗器34.37のすべてを温度変化で変化す
るものを用い、圧電検出器13.14と同一温度環境に
配し、THとT、とを等しくし、その温度変化係数が等
しく、変化極性が逆となるようにしてもよい。レートセ
ンサ部とセンサエレクトロニクス部が同一温度環境に置
かれる場合は、コンデンサ35、抵抗器34.37はレ
ートセンサ内部に設置せず、センサエレクトロニクス部
内に設置してもよい。高域通過濾波器33としては他の
形式のものも使用することができる。Therefore, as shown in FIG. 2, a capacitor 35 is provided in the sensor electronics section 19, and a capacitor whose capacitance changes little with temperature changes is used as the capacitor 35, and a negative temperature-sensitive resistor is used as the input resistor 34 and the feedback resistor 37. Elements, for example thermistors, may be used and placed in the same temperature environment as the piezoelectric detectors 13,14. The reason why the feedback resistor 37 is also a temperature-sensitive resistance element and is placed in the same temperature environment as the input resistor 34 is to prevent the gain of the filter 33 from changing due to temperature changes. If necessary, temperature coefficient adjusting resistance elements 34' and 37' can be connected in series or in parallel with the input resistor 34 and the feedback resistor 37, respectively. In this way, T, I and T can be made equal, their temperature change coefficients can be made equal, and the change polarity can be made opposite. The capacitor 35 and resistors 34 and 37 are all those that change with temperature changes, are placed in the same temperature environment as the piezoelectric detector 13 and 14, TH and T are equal, and their temperature change coefficients are equal. The polarity of change may be reversed. When the rate sensor section and the sensor electronics section are placed in the same temperature environment, the capacitor 35 and the resistors 34, 37 may not be installed inside the rate sensor, but may be installed inside the sensor electronics section. Other types of high pass filters 33 can also be used.
[発明の効果j
以上述べたようにこの発明によれば差動回路22の出力
から高域通過濾波器33で直流分を遮断するため、同期
検波回路26で軸回転周波数の雑音が発生しない。この
結果、従来設けていたバイアス調整回路とバイアスの調
整を省くことができた。しかもこの高域通過濾波器33
の時定数T8を圧電検出器13.14の温度変化と対応
させて変化させ、かつ時定数T□を圧電検出器13.1
4の時定数T、と等しくし、その温度変化係数を等しく
、極性を逆としているため、スケールファクタ及びクロ
スカップリングの温度変化を補正することができる。こ
の補正により、レートセンサ部11を一定温度に制御し
たり、レートセンサ部11の温度を計測し、その計測値
にもとすき、マイクロプロセッサで補正計算する必要が
なく、使用温度範囲を広めることができる。 以上の結
果として小形、軽量、安価で広い使用温度範囲の二軸角
速度計が得られる。[Effects of the Invention j] As described above, according to the present invention, since the DC component is blocked from the output of the differential circuit 22 by the high-pass filter 33, noise at the shaft rotation frequency is not generated in the synchronous detection circuit 26. As a result, the conventional bias adjustment circuit and bias adjustment can be omitted. Moreover, this high-pass filter 33
The time constant T8 of the piezoelectric detector 13.14 is changed in accordance with the temperature change of the piezoelectric detector 13.14, and the time constant T□ of the piezoelectric detector 13.1 is changed.
Since the time constant T is set equal to 4, the temperature change coefficients are equal, and the polarities are reversed, it is possible to correct the scale factor and the temperature change of cross coupling. With this correction, it is possible to control the rate sensor section 11 to a constant temperature, measure the temperature of the rate sensor section 11, and use the measured value, and it is not necessary to perform correction calculations with a microprocessor, thereby widening the operating temperature range. I can do it. As a result of the above, a two-axis angular velocity meter that is small, lightweight, inexpensive, and can be used over a wide temperature range can be obtained.
第1図はこの発明の実施例を示すブロック図、第2図は
その他の例を示すブロック図、第3図は従来の二軸角速
度計を示すブロック図、第4図は圧電検出器の時定数の
変化による利得特性及び位相特性がそれぞれ変化する様
子を示す図である。Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing another example, Fig. 3 is a block diagram showing a conventional two-axis angular velocity meter, and Fig. 4 is a block diagram showing a piezoelectric detector. FIG. 6 is a diagram showing how the gain characteristics and phase characteristics change due to changes in constants.
Claims (1)
電検出器を取付け、その回転軸を回転させ、上記両圧電
検出器の各出力の差を差動回路で取出し、上記回転軸の
回転位置を示す90度位相がずれた二つの基準信号によ
り上記差動回路の出力を同期検波回路でそれぞれ検波し
て、上記回転軸と直角な面内で回転軸と交差する直交し
た二つの軸のまわりの角速度を検出する二軸角速度計に
おいて、 上記差動回路と上記同期検波回路との間に直列に挿入さ
れ、直流成分を遮断する高域通過濾波器が設けられ、 その高域通過濾波器の時定数決定素子の少くとも一部は
上記圧電検出器とほぼ同一の温度環境に配置され、 上記高域通過濾波器の時定数が、上記圧電検出器の内部
容量及び内部抵抗で決る時定数とほぼ等しく、かつその
温度変化係数がほぼ等しく、逆極性とされている、 ことを特徴とする二軸角速度計。(1) Install a pair of piezoelectric detectors perpendicularly symmetrically and parallel to each other, rotate the rotating shaft, extract the difference between the respective outputs of the two piezoelectric detectors using a differential circuit, and The output of the differential circuit is detected by a synchronous detection circuit using two reference signals indicating the rotational position that are out of phase by 90 degrees, and two orthogonal axes intersecting the rotation axis in a plane perpendicular to the rotation axis are detected. In a two-axis angular velocity meter that detects the angular velocity around At least a part of the time constant determining element of the high-pass filter is placed in substantially the same temperature environment as the piezoelectric detector, and the time constant of the high-pass filter is determined by the internal capacitance and internal resistance of the piezoelectric detector. A two-axis angular velocity meter characterized in that it is approximately equal to a constant, and its temperature change coefficient is approximately equal and has opposite polarity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2306866A JPH04178517A (en) | 1990-11-13 | 1990-11-13 | Biaxial angular velocity meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2306866A JPH04178517A (en) | 1990-11-13 | 1990-11-13 | Biaxial angular velocity meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04178517A true JPH04178517A (en) | 1992-06-25 |
Family
ID=17962201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2306866A Pending JPH04178517A (en) | 1990-11-13 | 1990-11-13 | Biaxial angular velocity meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04178517A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0645602A1 (en) * | 1993-09-24 | 1995-03-29 | Murata Manufacturing Co., Ltd. | Vibrating gyroscope |
JPH07113644A (en) * | 1993-10-19 | 1995-05-02 | Shimada Phys & Chem Ind Co Ltd | Vibration gyro and its driving method |
WO1998001722A1 (en) * | 1996-07-10 | 1998-01-15 | Wacoh Corporation | Angular velocity sensor |
US6367326B1 (en) | 1996-07-10 | 2002-04-09 | Wacoh Corporation | Angular velocity sensor |
-
1990
- 1990-11-13 JP JP2306866A patent/JPH04178517A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0645602A1 (en) * | 1993-09-24 | 1995-03-29 | Murata Manufacturing Co., Ltd. | Vibrating gyroscope |
US5962785A (en) * | 1993-09-24 | 1999-10-05 | Murata Manufacturing Co., Ltd. | Vibrating gyroscope |
JPH07113644A (en) * | 1993-10-19 | 1995-05-02 | Shimada Phys & Chem Ind Co Ltd | Vibration gyro and its driving method |
WO1998001722A1 (en) * | 1996-07-10 | 1998-01-15 | Wacoh Corporation | Angular velocity sensor |
US6076401A (en) * | 1996-07-10 | 2000-06-20 | Wacoh Corporation | Angular velocity sensor |
US6367326B1 (en) | 1996-07-10 | 2002-04-09 | Wacoh Corporation | Angular velocity sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7159441B2 (en) | Cloverleaf microgyroscope with electrostatic alignment and tuning | |
EP0497289B1 (en) | A capacitive angular acceleration sensor | |
US5652374A (en) | Method and apparatus for detecting failure in vibrating sensors | |
US6621279B2 (en) | Drive feedthrough nulling system | |
US5747961A (en) | Beat frequency motor position detection scheme for tuning fork gyroscope and other sensors | |
JPS6110774A (en) | Accelerometer device | |
GB1579920A (en) | Gyroscope apparatus | |
JPH04178517A (en) | Biaxial angular velocity meter | |
US4651576A (en) | Gyroscope having temperature controlling arrangement | |
US4887467A (en) | Temperature-compensating circuit for accelerometers | |
US5056052A (en) | Filter arrangement for generating an estimate of a measured variable influenced by disturbances | |
US4807138A (en) | Device for determining the north direction | |
US4993274A (en) | Gyroscope system | |
US4848169A (en) | Two axis rate gyro apparatus | |
JPS6215802B2 (en) | ||
US7377166B2 (en) | Sensor signal processing system and detector | |
JP2926140B2 (en) | Tilt angle measuring device | |
US3618401A (en) | Accelerometer | |
US4930365A (en) | Two axis rate gyroscope | |
US3283587A (en) | Acceleration measuring gyroscope | |
US3882731A (en) | Torquer scale factor temperature correction means | |
US4986139A (en) | Gyroscope control systems | |
IL103644A (en) | Apparatus for measuring the rate of rotation and linear acceleration of a moving body in two perpendicular axes | |
KR100771492B1 (en) | Direct Angle Control Measurement Method Using Vibration Micro Gyroscope | |
RU2075730C1 (en) | Method of indication of absolute angular velocity |