[go: up one dir, main page]

JPH04177738A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04177738A
JPH04177738A JP30470990A JP30470990A JPH04177738A JP H04177738 A JPH04177738 A JP H04177738A JP 30470990 A JP30470990 A JP 30470990A JP 30470990 A JP30470990 A JP 30470990A JP H04177738 A JPH04177738 A JP H04177738A
Authority
JP
Japan
Prior art keywords
resist
gate
electron beam
section
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30470990A
Other languages
Japanese (ja)
Inventor
Hiroyuki Minami
巳浪 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30470990A priority Critical patent/JPH04177738A/en
Publication of JPH04177738A publication Critical patent/JPH04177738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a fine gate having a T-shaped cross section by forming the opening of an upper electrode by optical exposure by using a negative resist for electron beams. CONSTITUTION:After an active layer 2 is formed on a semi-insulating GaAs substrate 1, a lower opening 10 is formed by applying a negative resist 7 for electron beams, exposing an electron beam exposure section 12 which is an area for supporting an upper electrode and has a certain width to an electron beam, and developing the exposed section 12. Then an upper opening 11 is formed by applying a resist 8 to the entire surface, subjecting the pattern of the upper electrode to optical exposure, and developing the exposed pattern. Since the negative resist 7 for electron beam is formed unsoluble, the resist does not melt at the time of development and a resist pattern having a T-shaped cross section can be formed at a gate pad section. Accordingly, the gate pad section can be formed with the resist 8. Therefore, a fine gate electrode having a T-shaped cross section can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に関し、特に、高電
子移動トランジスタ(HEMT)等の高周波電界効果型
半導体装置の低抵抗微細ゲートの形成方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, and in particular, a method of forming a low resistance fine gate of a high frequency field effect semiconductor device such as a high electron mobility transistor (HEMT). It is related to.

〔従来の技術〕[Conventional technology]

カリウム砒素(GaAs)の高周波電界効果型トランジ
スタにおいては、特性を向上させるために、特にゲート
電極か短いゲート長でかつ低抵抗なものが要求され、そ
のため断面T字型のゲート電極形成技術の研究がなされ
ている。
In order to improve the characteristics of potassium arsenide (GaAs) high-frequency field effect transistors, a particularly short gate length and low resistance are required for the gate electrode.Therefore, research has been carried out on technology for forming gate electrodes with a T-shaped cross section. is being done.

第4図は例えば特開昭6177370号公報に示された
従来の断面T字型ゲート電極の形成方法である。図にお
いて、21は半絶縁性GaAs基板、22はノンドープ
GaAsバッファ層、23はn−GaAs活性層(n−
1×1017〜2×10 ”/cnf) 、24は下層
レジスト膜、25は」二層レジスト膜、26はゲートパ
ターン電子ビーム露光を示す線、27は電子ビーム補助
露光を示す線、28は上層レジストの開口、29は下層
レジストの開口、30はケートリセス、31はゲートメ
タル材料、32はゲートをそれぞれ示す。
FIG. 4 shows a conventional method of forming a gate electrode having a T-shaped cross section, as disclosed in, for example, Japanese Patent Laid-Open No. 6177370. In the figure, 21 is a semi-insulating GaAs substrate, 22 is a non-doped GaAs buffer layer, and 23 is an n-GaAs active layer (n-
1×1017 to 2×10”/cnf), 24 is the lower resist film, 25 is the double layer resist film, 26 is the line indicating gate pattern electron beam exposure, 27 is the line indicating electron beam auxiliary exposure, 28 is the upper layer 29 is an opening in the resist, 30 is a gate recess, 31 is a gate metal material, and 32 is a gate.

以下、この第4図を参照して従来の製造方法を説明する
The conventional manufacturing method will be explained below with reference to FIG.

ます、第4図(a)に示すように、半絶縁性基板2■上
にノンドープGaAsバッファ層22、n−GaAs活
性層23を順にエピタキシャル成長し、更にレジスl−
CMR(CMRは特開昭54−66829号公報記載の
レジスl−)の下層レジスト膜24、レジストEBR=
9(東しく掬製レジストの商品名)の上層レジスト25
を塗布形成する。次にこれらのレジストに第4図(b)
に示す照射量となるように電子ビームを照射する。この
グラフにおいて、横軸は上層レジスト膜25の位置、縦
軸は照射量強度を示しており、27で示される照射量D
aは上層レジスト25のみを露光する補助露光、26で
示される照射量DOは下層レジストまて露光する照射量
をそれぞれ示している。
First, as shown in FIG. 4(a), a non-doped GaAs buffer layer 22 and an n-GaAs active layer 23 are epitaxially grown in this order on a semi-insulating substrate 2, and then a resist l-
Lower resist film 24 of CMR (CMR is resist l- described in JP-A No. 54-66829), resist EBR=
Upper layer resist 25 of 9 (product name of resist manufactured by Toshikukiki)
Form by applying. Next, these resists are coated as shown in Fig. 4(b).
The electron beam is irradiated to achieve the irradiation amount shown in . In this graph, the horizontal axis shows the position of the upper resist film 25, and the vertical axis shows the irradiation intensity, and the irradiation amount D is indicated by 27.
The symbol a indicates the auxiliary exposure for exposing only the upper resist layer 25, and the dose DO indicated by 26 indicates the dose for exposing the lower layer resist as well.

この第4図(b)に示す照射量で電子ビーム露光を行い
、次にメチルイソブチルケトン(MIBK)とイソプロ
ピルアルコール(IPA)の混合液でレジスト膜を現像
し、第4図(C)に示されるパターンを得る。
Electron beam exposure was performed at the dose shown in Figure 4(b), and then the resist film was developed with a mixture of methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA), as shown in Figure 4(C). Obtain a pattern.

次に、第4図(d)で示されるように開口29′のレジ
スト膜をマスクとし、ウェットエツチングによりゲート
リセス30を形成する。このゲートリセスはn−GaA
s活性層23を流れる電流をしゃ断しうる適当な厚さの
層を残すように形成する。
Next, as shown in FIG. 4(d), a gate recess 30 is formed by wet etching using the resist film in the opening 29' as a mask. This gate recess is n-GaA
The active layer 23 is formed so as to leave a layer with an appropriate thickness that can block the current flowing through it.

次にAff、Ti、 またはAuの如きゲートメタル材
料31を蒸着し、リフトオフによってゲート32以下の
ゲートメタル材料31を除去すると、第4図(e)に示
されるゲート長Lg、上部寸法Lhを有する断面T字型
のゲート32が得られる。
Next, a gate metal material 31 such as Aff, Ti, or Au is deposited, and when the gate metal material 31 below the gate 32 is removed by lift-off, the gate has a length Lg and an upper dimension Lh as shown in FIG. 4(e). A gate 32 having a T-shaped cross section is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の断面T字型ゲートの製造方法は、二層レジスト構
造を用いて、電子ビーム露光で上部および下部レジスト
に開口を形成するが、電子ビーム露光でパターンを形成
すると、レジスト断面形状が逆テーパー状にならず、ゲ
ートメタルをリフトオフすることか困難であり、また2
回も電子ビーム露光技術をもちいなければならず、量産
性か低く歩留りが低下するなどの問題があった。
The conventional method for manufacturing T-shaped cross-sectional gates uses a two-layer resist structure and forms openings in the upper and lower resists by electron beam exposure. However, when a pattern is formed by electron beam exposure, the cross-sectional shape of the resist becomes inversely tapered. It is difficult to lift off the gate metal, and it is difficult to lift off the gate metal.
However, this method still required the use of electron beam exposure technology, which caused problems such as low mass production and low yields.

また、下層にポジ型のレジストを使用しているため、ゲ
ートリセスを形成するためのウェットエツチングに耐性
が乏しく、ゲートリセスの形状および制御性か悪く、高
性能化への妨げとなっていた。
Furthermore, since a positive resist is used for the lower layer, it has poor resistance to wet etching for forming the gate recess, and the shape and controllability of the gate recess is poor, which hinders high performance.

また、単層レジスI−構造を用いて、電子ビーム露光技
術で、上部および下部ゲート電極部の照射量を変えて開
口を形成する方法も提案されているが、前記方法と同様
に上部ゲート電極に対応するレジスト形状の再現性か悪
く、また、下部ゲート電極部の照射量が上部の照射量よ
り大てあり、露光時間が長く、また前述と同様に、上部
電極の開口のパターン形状が逆テーパー状にならないた
め、リフトオフ法で断面T字型ゲートが安定に形成され
ないなどの問題点があった。
In addition, a method has been proposed in which an opening is formed using a single-layer resist I-structure by changing the irradiation amount of the upper and lower gate electrode parts using electron beam exposure technology. The reproducibility of the resist shape corresponding to the pattern is poor, the irradiation amount of the lower gate electrode part is larger than the irradiation amount of the upper part, the exposure time is long, and as mentioned above, the pattern shape of the opening of the upper electrode is reversed. Since it does not have a tapered shape, there are problems such as the inability to stably form a gate with a T-shaped cross section using the lift-off method.

この発明は、上記のような問題点を解消するためになさ
れたもので、電子ビーム露光の露光時間を短縮すること
ができ、上部開口のレジストパターンを安定に逆テーパ
状にてき、リフトオフ法で安定的に断面T字型ゲートの
微細ゲートを形成することができる半導体装置の製造方
法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to shorten the exposure time of electron beam exposure, stably form the resist pattern in the upper opening into a reverse taper shape, and use the lift-off method. An object of the present invention is to obtain a method for manufacturing a semiconductor device that can stably form a fine gate having a T-shaped cross section.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記の課題を解決するため、本発明は、二層レジスト構
造を用い、まず、下層となる電子ビーム用のネガ型レジ
ストで、ゲートフィンガー部の両側にゲート長の幅だけ
離れ上部電極を支えるためのある幅をもつ領域を電子ビ
ーム露光で形成し、その後全面にレジストを塗布形成し
、上部電極に対応する開口を前記レジストパターン上に
光学露光で形成することにより断面T字型のレジスト形
状を形成し、ゲート電極材料を蒸着し、リフトオフ法に
より断面T字型の微細ゲートを形成するようにしたもの
である。
In order to solve the above problems, the present invention uses a two-layer resist structure. First, a negative resist for electron beam is used as the lower layer to support the upper electrode at a distance equal to the width of the gate length on both sides of the gate finger part. A region with a certain width is formed by electron beam exposure, then a resist is applied to the entire surface, and an opening corresponding to the upper electrode is formed on the resist pattern by optical exposure to form a resist shape with a T-shaped cross section. A fine gate having a T-shaped cross section is formed by depositing a gate electrode material and using a lift-off method.

〔作用〕[Effect]

この発明における半導体装置の製造方法は、低抵抗な微
細ゲートを形成するため、ネガ型レジストを用いてゲー
トフィンガー部の両側にゲート長の幅だけ離れ、上部電
極を支えるための、ある幅をもつ領域を電子ビーム露光
し、次に全面にレジス1へを塗布し、光学露光を使い上
部ゲート電極に対応するパターンを前記のネガレジスト
のゲートフィンガー部の両側に形成した」一部電極を支
えるためのパターン上に形成するようにしたので、」二
部寸法は逆テーパ状に大きくゲート長にあたる下部寸法
は小さい断面T字型のレジストパターンを形成でき、ゲ
ートリセス形成後、ゲートメタル材料を蒸着し、リフト
オフを行なうことにより断面T字型の微細ゲートを再現
性よく、安価で高精度に形成できる。
In order to form a fine gate with low resistance, the method for manufacturing a semiconductor device according to the present invention uses a negative resist, which is spaced apart by the width of the gate length on both sides of the gate finger part, and has a certain width to support the upper electrode. The area was exposed to an electron beam, and then the entire surface was coated with resist 1, and a pattern corresponding to the upper gate electrode was formed on both sides of the gate finger part of the negative resist using optical exposure.''To partially support the electrode. Since the resist pattern is formed on the pattern, it is possible to form a resist pattern with a T-shaped cross section, where the second part dimension is in a reverse taper shape and the bottom dimension corresponding to the gate length is small. After the gate recess is formed, a gate metal material is deposited, By performing lift-off, a fine gate with a T-shaped cross section can be formed with good reproducibility, at low cost, and with high precision.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の実施例方法によって形成された半導体
装置の断面図を示す。図において、1は半絶縁性GaA
a基板(半導体基板)、2は活性層、3はソース電極、
4はドレイン電極、5はゲ−1−リセス、6はゲート電
極を示す。
FIG. 1 shows a cross-sectional view of a semiconductor device formed by an embodiment method of the present invention. In the figure, 1 is semi-insulating GaA
a substrate (semiconductor substrate), 2 is an active layer, 3 is a source electrode,
Reference numeral 4 indicates a drain electrode, 5 indicates a gate electrode, and 6 indicates a gate electrode.

電流は活性層3を図中左右の横方向に流れ、それを制御
するゲート電極5の活性層2と接している部分の長さ、
即ち、グー1〜長か小である方か特性の良い半導体か得
られる。
The current flows through the active layer 3 in the left and right directions in the figure, and the length of the portion of the gate electrode 5 that is in contact with the active layer 2 that controls the current flows.
That is, it is possible to obtain a semiconductor with good characteristics, whether it is long or small.

第2図は本発明の一実施例による半導体装置の製造方法
を示すプロセスフロー図であり、図において、1は半絶
縁性GaAa基板、2は活性層、5はゲートリセス、6
はゲート電極、7は電子ビーム用ネガレジスト、8はレ
ジスI・、9はゲート電極材料、10は下部開口、11
は」二部開口をそれぞれ示す。
FIG. 2 is a process flow diagram showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. In the figure, 1 is a semi-insulating GaAa substrate, 2 is an active layer, 5 is a gate recess, and 6
is a gate electrode, 7 is a negative resist for electron beam, 8 is a resist I, 9 is a gate electrode material, 10 is a lower opening, 11
” respectively indicate a two-part opening.

また第3図は、電子ビーム露光を行うパターンの位置と
その照射量を示すグラフを示し、図中、12は電子ビー
ム露光部、グラフの縦軸は、照射量の強度、横軸は電子
ビーム用ネガレジスト7の位置をそれぞれ示す。
Further, FIG. 3 shows a graph showing the position of a pattern subjected to electron beam exposure and its irradiation amount. In the figure, 12 is the electron beam exposure area, the vertical axis of the graph is the intensity of the irradiation amount, and the horizontal axis is the electron beam The positions of the negative resists 7 are shown.

以下、その製造方法を第2図を用いて説明する。Hereinafter, the manufacturing method will be explained using FIG. 2.

まず、第2図(a)に示すように、半絶縁性GaAS基
板1の上に、エピタキシャル成長で活性層2を形成した
後、電子ビーム用ネガレジスl−7、例えば、5AL6
01ER7(シプレー、ファーイース)・銖)のレジス
)・の商品名)て膜厚を0.  ]〜0.3μm塗布形
成する。次に、電子ビーム用ネガレジスト7を電子ビー
ム露光で、第3図に示すグラフの照射ff1o+で、ゲ
ートフィンガー部の両側に幅L bを例えは1μmとし
、グー1〜長となる幅Laを例えば0.2μmとし、ゲ
ート長の幅たけ離れ」一部電極を支えるためのある幅を
もつ領域である電子ビーム露光部12を露光し、アルカ
リ現像液で現像し第2図(b)の状態を得る。その照射
量D1は例えば5〜20μC/cn?で行い、下部開口
10は0.2μmで形成する。
First, as shown in FIG. 2(a), after forming an active layer 2 by epitaxial growth on a semi-insulating GaAS substrate 1, a negative resist 1-7 for electron beam, for example, 5AL6
The film thickness was reduced to 0. ]~0.3 μm coating is formed. Next, the negative resist 7 for electron beam is subjected to electron beam exposure using the irradiation ff1o+ shown in the graph shown in FIG. For example, the electron beam exposure area 12, which is a region having a certain width to support a part of the electrode, is exposed to light at a distance of 0.2 μm from the gate length, and developed with an alkaline developer, resulting in the state shown in FIG. 2(b). get. Is the irradiation amount D1, for example, 5 to 20 μC/cn? The lower opening 10 is formed to have a thickness of 0.2 μm.

次に、第2図FC)に示すように、全面にレジスト8を
塗布形成する。この時のレジストはポジ型。
Next, as shown in FIG. 2 (FC), a resist 8 is coated on the entire surface. The resist at this time was positive type.

ネガ型のどちらでも良く、厚さ1μmで形成する。Either negative type may be used, and the thickness is 1 μm.

次に」二部電極のパターンを前記レジストパターン上に
、例えば幅0.8μmとし光学露光で露光し現像して上
部開口11を形成し、第2図(d)の状態を得る。この
時、電子ビーム用ネガ型しジスI〜7はネガ化されてい
るため、現像によってほとんど溶解することはない。こ
のようにゲートフィンガー部は断面T字型のレジストパ
ターンが形成でき、ゲー)・パッド部は、レジスト8を
用いて形成できる。
Next, a two-part electrode pattern with a width of, for example, 0.8 μm is formed on the resist pattern by optical exposure and development to form an upper opening 11, resulting in the state shown in FIG. 2(d). At this time, since the electron beam negative resistors I to 7 are negative, they are hardly dissolved by development. In this way, the gate finger portion can be formed with a resist pattern having a T-shaped cross section, and the gate pad portion can be formed using the resist 8.

次に、下部開010を通し、電子ビーム用ネガレジスト
7をマスクとし、ウェットエツチングでゲートリセス5
を形成し、全面にゲート金属材料9、例えばAj?、T
iおよびAuなどを蒸着し、第2図(e)の状態を得る
。そして第2図げ)のように、必要のないゲート金属相
料9.レジスト8.電子ビーム用ネガ型レジスI−7を
リフトオフ法で除去し、断面T字型微細ゲート電極を形
成する。
Next, through the lower opening 010, using the negative resist 7 for electron beam as a mask, the gate recess 5 is etched by wet etching.
is formed, and a gate metal material 9, for example Aj?, is formed on the entire surface. , T
I, Au, etc. are deposited to obtain the state shown in FIG. 2(e). As shown in Figure 2), unnecessary gate metal phase material 9. Resist 8. The negative resist I-7 for electron beam is removed by a lift-off method to form a fine gate electrode with a T-shaped cross section.

本発明により、従来の、電子ビーム用ポジ型レジストの
2層レジスト構造で形成した場合、0゜2μmのゲート
長を得るために照射量200〜300μC/crdで行
っていたのが、照射量5〜20μC/cnrて行えるた
め、従来の露光時間の1/2〜1/3で形成でき、量産
に有効である。なお、第2図ではソース、ドレイン電極
は省略した。
According to the present invention, when forming a conventional two-layer resist structure using a positive resist for electron beams, the irradiation dose is 5 to 300 μC/crd, which was used to obtain a gate length of 0°2 μm. Since it can be performed at ~20 μC/cnr, it can be formed in 1/2 to 1/3 of the conventional exposure time, and is effective for mass production. Note that the source and drain electrodes are omitted in FIG.

このように、本実施例によれば、ウェブI・エツチング
耐性に優れている電子ビーム用ネガ型レジストを塗布形
成し電子ビーム露光すべき面積を減らすため、ゲーI・
フィンガ一部の両側にゲート長の幅だけ離れ、上部電極
を支えるためのあらゆる幅をもつ領域たけ露光し、現像
し、次に全面にレジスト膜を塗布し、上部電極を支える
ためのある幅をもつ領域たけ露光し、現像し、次に全面
にレジスト膜を塗布し、」二部電極に対応する開口を前
記レジストパターン上に光学露光で形成するようにした
ので、電子ビーム露光の露光時間を短縮することかでき
、上部開口のレジスI・パターンを安定に逆テーパ状に
てき、リフトオフ法で安定的に断面T字型ゲートの微細
ゲートを有する半導体装置を製造することかてき、Ga
As  MESFET、GaAs低雑音HEMTなとの
製造に有効である。
As described above, according to this embodiment, in order to reduce the area to be exposed to the electron beam by coating a negative type resist for electron beam which has excellent resistance to web I and etching,
A resist film is applied to the entire surface, separated by the width of the gate length on both sides of a part of the finger, and exposed and developed to cover an area with a width sufficient to support the upper electrode. The exposed area was exposed to light, developed, and then a resist film was applied to the entire surface, and an opening corresponding to the two-part electrode was formed on the resist pattern by optical exposure. The Ga
It is effective in manufacturing As MESFETs and GaAs low-noise HEMTs.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体装置の製造方法に
よれば、電子ビーム用ネガ型レジストを塗布し、電子ビ
ーム露光を用いて、ゲートフィンガー部の両側にゲート
長の幅だけ離れ、上部電極を支えるためのある幅をもつ
領域を露光し、現像し、上部電極を支えるパターンと微
細なゲーI・どなる開口を形成し、次に全面にレジスト
膜を塗布し、光学露光により前記レジストパターン上に
上部電極の開口を形成するため、電子ビーム用ネガレジ
ストを用いることにより、電子ビーム露光時間か大幅に
短縮することができ、またウェットエツチング耐性も優
れているためゲートリセス形成か容易にできる。また上
部電極の開口を光学露光で形成するため、レジスト断面
形状を逆テーパー状にすることか容易であり、安定的に
量産性に優れた微細なゲートを低抵抗にすることかでき
る効果がある。
As described above, according to the method of manufacturing a semiconductor device according to the present invention, a negative resist for electron beam is applied, and using electron beam exposure, the upper electrode A region with a certain width to support the upper electrode is exposed and developed to form a pattern to support the upper electrode and a fine gate I/groove opening, then a resist film is applied to the entire surface, and a resist film is formed on the resist pattern by optical exposure. By using an electron beam negative resist to form an opening for the upper electrode, the electron beam exposure time can be significantly shortened, and since it has excellent wet etching resistance, it is easy to form a gate recess. In addition, since the opening of the upper electrode is formed by optical exposure, it is easy to make the cross-sectional shape of the resist into a reverse taper shape, which has the effect of making it possible to stably create a fine gate with low resistance and excellent mass production. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による製造方法で形成される
GaAs  FETの断面図、第2図は本発明の一実施
例の工程図、第3図は電子ビーム露光を行うパターンの
位置と照射量との関係を示す図、第4図は従来の製造方
法を示す図である。 図において、Iは半絶縁性GaAs基板、2は活性層、
3はソース電極、4はドレイン電極、5はゲートリセス
、7は電子ビーム用ネガ型レジスト、8はレジスト、9
はゲート金属材料、1oは下部開口、11は上部開口、
12は電子ビーム露光部、21は半絶縁性GaAs基板
、22はノンドープGaAsバッファ層、23はn−G
aAs活性層、24は下層レジスト膜、25は上層レジ
スト膜、26はゲートパターン電子ビーム露光を示す線
、27は電子ビーム補助露光を示す線、28は上層レジ
スト膜の開口、29は下層レジスト膜の開口、30はゲ
ートリセス、31はゲートメタル材料、32はゲートで
ある。 なお図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view of a GaAs FET formed by a manufacturing method according to an embodiment of the present invention, FIG. 2 is a process diagram of an embodiment of the present invention, and FIG. 3 is a diagram showing the position of a pattern for electron beam exposure. A diagram showing the relationship with the irradiation amount, and FIG. 4 is a diagram showing the conventional manufacturing method. In the figure, I is a semi-insulating GaAs substrate, 2 is an active layer,
3 is a source electrode, 4 is a drain electrode, 5 is a gate recess, 7 is a negative resist for electron beam, 8 is a resist, 9
is the gate metal material, 1o is the lower opening, 11 is the upper opening,
12 is an electron beam exposure section, 21 is a semi-insulating GaAs substrate, 22 is a non-doped GaAs buffer layer, and 23 is an n-G
aAs active layer, 24 is a lower resist film, 25 is an upper resist film, 26 is a line indicating gate pattern electron beam exposure, 27 is a line indicating electron beam auxiliary exposure, 28 is an opening in the upper resist film, 29 is a lower resist film 30 is a gate recess, 31 is a gate metal material, and 32 is a gate. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に断面T字型の微細ゲートを有する
半導体装置の製造方法において、ネガ型の電子ビーム用
レジストを基板上に塗布形成する工程と、 ゲートフィンガー部の両側にゲート長に相当する幅だけ
離れかつ上部電極を支えるための幅をもつ上記レジスト
の領域を電子ビームにより露光する工程と、 電子ビーム露光により露光されていないレジストを現像
し取り除く工程と、 全面にレジスト膜を形成し光学露光で前記レジストパタ
ーン上に上部電極の開口を形成する工程と、 ゲートリセスを形成しゲート金属材料を蒸着しリフトオ
フする工程とを含むことを特徴とする半導体装置の製造
方法。
(1) In a method of manufacturing a semiconductor device having a fine gate with a T-shaped cross section on a semiconductor substrate, there is a step of coating a negative electron beam resist on the substrate, and a step of forming a negative electron beam resist on both sides of the gate finger portion corresponding to the gate length. a step of exposing regions of the resist with an electron beam that are separated by a width corresponding to the upper electrode and having a width sufficient to support the upper electrode; a step of developing and removing the unexposed resist by electron beam exposure; and forming a resist film on the entire surface. A method for manufacturing a semiconductor device, comprising: forming an opening for an upper electrode on the resist pattern by optical exposure; and forming a gate recess, depositing a gate metal material, and lifting off.
JP30470990A 1990-11-09 1990-11-09 Manufacture of semiconductor device Pending JPH04177738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30470990A JPH04177738A (en) 1990-11-09 1990-11-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30470990A JPH04177738A (en) 1990-11-09 1990-11-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04177738A true JPH04177738A (en) 1992-06-24

Family

ID=17936270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30470990A Pending JPH04177738A (en) 1990-11-09 1990-11-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04177738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679497A (en) * 1995-03-24 1997-10-21 Mitsubishi Denki Kabushiki Kaisha Resist material and method for forming resist pattern
US6881688B2 (en) 2002-02-05 2005-04-19 Bernd E. Maile Method of fabricating a vertically profiled electrode and semiconductor device comprising such an electrode
JP2012094726A (en) * 2010-10-28 2012-05-17 Fujitsu Ltd Field-effect transistor and method of manufacturing the same
CN102569046A (en) * 2010-12-07 2012-07-11 中国科学院微电子研究所 Method for preparing T-shaped gate on indium phosphide substrate
CN105789295A (en) * 2015-10-21 2016-07-20 西安电子科技大学 Fin-high electron mobility transistor (HEMT) device based on GaN heterojunction material and fabrication method of Fin-HEMT device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679497A (en) * 1995-03-24 1997-10-21 Mitsubishi Denki Kabushiki Kaisha Resist material and method for forming resist pattern
US6881688B2 (en) 2002-02-05 2005-04-19 Bernd E. Maile Method of fabricating a vertically profiled electrode and semiconductor device comprising such an electrode
EP1335418B1 (en) * 2002-02-05 2005-09-07 Bernd E. Dr. Maile Method of fabricating a T-shaped electrode
JP2012094726A (en) * 2010-10-28 2012-05-17 Fujitsu Ltd Field-effect transistor and method of manufacturing the same
CN102569046A (en) * 2010-12-07 2012-07-11 中国科学院微电子研究所 Method for preparing T-shaped gate on indium phosphide substrate
CN105789295A (en) * 2015-10-21 2016-07-20 西安电子科技大学 Fin-high electron mobility transistor (HEMT) device based on GaN heterojunction material and fabrication method of Fin-HEMT device

Similar Documents

Publication Publication Date Title
JPH04177738A (en) Manufacture of semiconductor device
US5587328A (en) Method for manufacturing semiconductor device
JPH0260216B2 (en)
JPS6177370A (en) Pattern formation method
JPH04186639A (en) Manufacture of semiconductor device
KR100592765B1 (en) Method for manufacturing tee gate of semiconductor device
JPH0414212A (en) Resist pattern formation
JP3071481B2 (en) Method for forming GaAs device and T-shaped gate electrode
JPH0442940A (en) Manufacture of semiconductor device
JPH10107044A (en) Manufacture of field effect transistor
JPH03147338A (en) Manufacture of semiconductor device
JPH0323643A (en) Semiconductor device and manufacture thereof
JPH02273939A (en) Manufacture of field effect type semiconductor device
JPH01243476A (en) Formation of electrode
JPS6215861A (en) Manufacture of semiconductor device
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor
JP2626238B2 (en) Method for manufacturing semiconductor device
JPH04179128A (en) Manufacture of semiconductor device
JPH0371643A (en) Manufacture of semiconductor device
JPH09266216A (en) Semiconductor device
JPH02189918A (en) Forming method for resist pattern
JPH10144582A (en) Manufacture of semiconductor device
JPH0745639A (en) Method for manufacture of t-gate of 0.1 micrometer or lower for field-effect transistor
JPH0329329A (en) Manufacture of field-effect transistor
JPH02263443A (en) Field effect transistor