[go: up one dir, main page]

JPH04175313A - α-olefin polymerization catalyst - Google Patents

α-olefin polymerization catalyst

Info

Publication number
JPH04175313A
JPH04175313A JP30097190A JP30097190A JPH04175313A JP H04175313 A JPH04175313 A JP H04175313A JP 30097190 A JP30097190 A JP 30097190A JP 30097190 A JP30097190 A JP 30097190A JP H04175313 A JPH04175313 A JP H04175313A
Authority
JP
Japan
Prior art keywords
component
compound
polymerization
catalyst
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30097190A
Other languages
Japanese (ja)
Inventor
Satoshi Ueki
聰 植木
Tomoko Aoki
倫子 青木
Ryuji Sato
隆二 佐藤
Masako Ishikawa
石川 雅子
Hiroyuki Furuhashi
古橋 裕之
Miyuki Usui
碓氷 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP30097190A priority Critical patent/JPH04175313A/en
Publication of JPH04175313A publication Critical patent/JPH04175313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain a polymerization catalyst which can keep an ability to perform highly stereoregular polymerization of an alpha-olefin and can exhibit high polymerization activity by mixing activated titanium trichloride with an organometallic compound and a specified organosilicon compound. CONSTITUTION:An alpha-olefin polymerization catalyst comprising activated titanium trichloride (A), an organometallic compound (B) and an organosilicon compound (C) of the formula (wherein R<1> and R<2> are the same or different 1-10 C hydrocarbon groups; OR<4>, OSiR, or SiR ; R<3> is a 1-10 C bivalent hydrocarbon group; and R<4>, R<5> and R<6> are each a 1-10 C hydrocarbon group). The mixing ratio among components A, B and C is such that 0.5-100g mol of component B is used per g atom of the titanium atoms of component A, and 0.001-10mol of component C is used per mol of component B.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、α−オレフィン重合用触媒に関する。[Detailed description of the invention] Industrial applications The present invention relates to a catalyst for α-olefin polymerization.

従来の技術 活性化三塩化チタンと有機アルミニウム化合物とからな
るα−オレフィン重合用触媒は、マグネシウム化合物に
チタン化合物を担持した、いわゆるマグネシウム担持型
触媒を成分とする触媒とは異なる性質を有するポリマー
を製造することができる、又耐被毒性に優れている等の
特徴を有している。
Conventional technology α-olefin polymerization catalysts made of activated titanium trichloride and organoaluminum compounds contain polymers with different properties from catalysts whose components are so-called magnesium-supported catalysts, in which a titanium compound is supported on a magnesium compound. It has the characteristics of being easy to manufacture and having excellent resistance to poisoning.

しかしながら、活性化三塩化チタンはマグネシウム担持
型触媒に比べ、重合活性が低く、又立体規則性も若干低
いという問題がある。
However, activated titanium trichloride has problems in that it has lower polymerization activity and slightly lower stereoregularity than magnesium-supported catalysts.

マグネシウム担持型触媒と有機アルミニウム化合物を組
み合せた触媒に、更に5i−0−C結合を有する、或い
は一船蔵SiR’R2,(OR’)3−、、(n =0
〜2)で表わされる有機珪素化合物を用いると生成する
ポリマーの立体規則性が向上することが知られている(
例えば、特開昭54−94690号、同56−3620
3号、同57−63310号、同58−83016号、
同62−11705号公報等)。
A catalyst that is a combination of a magnesium-supported catalyst and an organoaluminum compound further has a 5i-0-C bond, or a single-ship SiR'R2, (OR')3-, (n = 0
It is known that the use of organosilicon compounds represented by ~2) improves the stereoregularity of the resulting polymer (
For example, JP-A-54-94690, JP-A-56-3620
No. 3, No. 57-63310, No. 58-83016,
Publication No. 62-11705, etc.).

一方、活性化三塩化チタン及び有機アルミニウム化合物
からなる触媒に、更に一船蔵R’、5i(OR”)、−
、(0≦nく4)で表わされる有機珪素化合物を組み合
せることにより、重合活性及び立体規則性を高めたα−
オレフィン重合体の製造法が提案されている(特開昭6
3−238110号公報)。
On the other hand, a catalyst consisting of activated titanium trichloride and an organoaluminum compound was further added with R', 5i (OR"), -
By combining organosilicon compounds represented by , (0≦n×4), α-
A method for producing olefin polymers has been proposed (Japanese Unexamined Patent Publication No.
3-238110).

しかしながら、立体規則性の向上に反して、重合活性が
有機珪素化合物を用いない場合に比べ半分以下に低下す
ることがあり、立体規則性の向上と、重合活性の低下の
関係は、有機珪素化合物の種類に依存する。
However, despite the improvement in stereoregularity, the polymerization activity may be reduced to less than half of that when no organosilicon compound is used, and the relationship between the improvement in stereoregularity and the decrease in polymerization activity is Depends on the type of.

発明が解決しようとする課題 本発明は、α−オレフィンの重合において、高立体規則
性を維持し、高重合活性を示す重合触媒を提供すること
を目的とする。
Problems to be Solved by the Invention An object of the present invention is to provide a polymerization catalyst that maintains high stereoregularity and exhibits high polymerization activity in the polymerization of α-olefins.

課題を解決するための手段 本発明者らは、活性化三塩化チタン及び有機アルミニウ
ム化合物と組み合せる有機珪素化合物について鋭意研究
を行った結果、O−3i−0結合を有する環状の有機珪
素化合物を用いることにより本発明の目的を達成し得る
ことを見出して本発明を完成した。
Means for Solving the Problems As a result of extensive research into organosilicon compounds to be combined with activated titanium trichloride and organoaluminum compounds, the present inventors have discovered that a cyclic organosilicon compound having an O-3i-0 bond has been developed. The present invention was completed based on the discovery that the object of the present invention can be achieved by using the present invention.

発明の要旨 すなわち、本発明の要旨は、 (A)活性化三塩化チタン、 (B)有機金属化合物及び (C)−船蔵 〔但し、R1及びR2は同一か異なる炭素数1〜10個
の炭化水素基、OR’ 、03iR:又はStR:。
The gist of the invention, that is, the gist of the present invention is as follows: (A) activated titanium trichloride, (B) organometallic compound, and (C) -shipping [provided that R1 and R2 are the same or different carbon atoms of 1 to 10]. Hydrocarbon group, OR', 03iR: or StR:.

R3は炭素数1〜10個の二価の炭化水素基であり、R
4、R5及びR6はそれぞれ炭素数1〜10個の炭化水
素基である。〕 で表わされる有機珪素化合物 とからなるα−オレフィン重合用触媒にある。
R3 is a divalent hydrocarbon group having 1 to 10 carbon atoms;
4, R5 and R6 are each a hydrocarbon group having 1 to 10 carbon atoms. ] An α-olefin polymerization catalyst comprising an organosilicon compound represented by the following.

活性化三塩化チタン 本発明で用いられる活性化三塩化チタン(以下、成分A
という。)は、四塩化チタンを有機アルミニウム化合物
で還元して得られたβ型三塩化チタンを、更に活性化し
たものである。
Activated titanium trichloride Activated titanium trichloride (hereinafter referred to as component A) used in the present invention
That's what it means. ) is a β-type titanium trichloride obtained by reducing titanium tetrachloride with an organoaluminum compound, which is further activated.

β型三塩化チタンの活性化は、該三塩化チタンをアルコ
ール、エーテル、エステル、ラクトン、アミン、酸ハロ
ゲン化物、酸無水物等の電子供与性化合物で処理するこ
とによりなされる。
Activation of β-type titanium trichloride is performed by treating the titanium trichloride with an electron-donating compound such as an alcohol, ether, ester, lactone, amine, acid halide, acid anhydride, or the like.

更に、活性化した三塩化チタンを四塩化チタン、四塩化
珪素、ハロゲン化水素、ハロゲン化炭化水素、ハロゲン
化有機アルミニウム化合物等のハロゲン含有化合物又は
ヨウ素、塩素等のノ\ロゲン元素等の活性化剤で処理す
ることも可能であり、又上記の電子供与性化合物による
処理をこれらの活性化剤の存在下で行うこともできる。
Furthermore, activated titanium trichloride is activated with halogen-containing compounds such as titanium tetrachloride, silicon tetrachloride, hydrogen halides, halogenated hydrocarbons, and halogenated organic aluminum compounds, or with halogen elements such as iodine and chlorine. It is also possible to carry out the treatment with an activator, and the treatment with the above-mentioned electron-donating compound can also be carried out in the presence of these activators.

成分Aのより詳細な調製法は、例えば特開昭47−34
478号、同50−74594号、同50−74595
号、同50−123090号、同50−123091号
、同52−107294号、同53−14192号、同
53−65286号、同53−65287号公報等に開
示されている。
A more detailed method for preparing component A is described, for example, in JP-A-47-34.
No. 478, No. 50-74594, No. 50-74595
No. 50-123090, No. 50-123091, No. 52-107294, No. 53-14192, No. 53-65286, No. 53-65287, etc.

すなわち、 ■ TlC14を有機アルミニウム化合物で還元し、得
られた固体(以下、還元固体という。)を、錯化剤(電
子供与性化合物)で処理し、更にTiCl4と反応させ
る方法(特開昭47−34478号)。
Namely, (1) A method in which TlC14 is reduced with an organoaluminum compound, the obtained solid (hereinafter referred to as the reduced solid) is treated with a complexing agent (electron-donating compound), and further reacted with TiCl4 (Japanese Patent Laid-Open No. 47 -34478).

■ 該還元固体を錯化剤で処理し、更にモノアルキルア
ルミニウムシバライドで処理する方法(特開昭50−7
4594号)。
■ A method in which the reduced solid is treated with a complexing agent and further treated with a monoalkylaluminium cibaride (Japanese Patent Laid-Open No. 50-7
No. 4594).

■ 上記■で得られた触媒成分を、更に錯化剤で処理す
る方法(特開昭50−74595号)。
(2) A method in which the catalyst component obtained in (1) above is further treated with a complexing agent (Japanese Patent Application Laid-open No. 74595/1983).

■ 該還元固体を錯化剤で処理し、更に40℃以下の温
度においてTlC14で処理する方法(特開昭50−1
23090号)。
■ A method in which the reduced solid is treated with a complexing agent and further treated with TlC14 at a temperature of 40°C or less (Japanese Patent Application Laid-open No. 50-1
No. 23090).

■ 上記■で得られた触媒成分を、更に四塩化炭素で処
理する方法(特開昭50−123091号)。
(2) A method in which the catalyst component obtained in (1) above is further treated with carbon tetrachloride (Japanese Patent Application Laid-open No. 123091/1983).

■ 該還元固体を錯化剤の存在下、炭素数2の塩素化炭
化水素で処理する方法(特開昭52−107294号)
■ A method of treating the reduced solid with a chlorinated hydrocarbon having 2 carbon atoms in the presence of a complexing agent (Japanese Unexamined Patent Publication No. 107294/1983)
.

■ 該還元固体を錯化剤の存在下、炭素数3以上の塩素
化炭化水素で処理する方法(特開昭53−14192号
)。
(2) A method in which the reduced solid is treated with a chlorinated hydrocarbon having 3 or more carbon atoms in the presence of a complexing agent (Japanese Patent Laid-Open No. 14192/1983).

■ 該還元固体を錯化剤及びTlC14の存在下、炭素
数2以上の塩素下戻化水素で処理する方法(特開昭53
−65286号)。
■ A method of treating the reduced solid with hydrogenated hydrogen having a carbon number of 2 or more in the presence of a complexing agent and TlC14 (Japanese Patent Application Laid-Open No. 53
-65286).

■ 該還元固体を錯化剤及びAlCl3−エーテルの存
在下、炭素数2以上の塩素化炭化水素で処理する方法(
特開昭53−65287号)。
(2) A method of treating the reduced solid with a chlorinated hydrocarbon having 2 or more carbon atoms in the presence of a complexing agent and AlCl3-ether (
Japanese Patent Publication No. 53-65287).

上記のようにして成分Aは調製されるが、成分Aは必要
に応じて前記の不活性媒体で洗浄してもよく、更に乾燥
してもよい。
Component A is prepared as described above, and if necessary, component A may be washed with the above-mentioned inert medium and may be further dried.

又、成分Aは、更に有機アルミニウム化合物の存在下、
オレフィンと接触させて成分A中に生成するオレフィン
ポリマーを含有させてもよい。有機アルミニウム化合物
としては、本発明の触媒の一成分である後記の有機金属
化合物の中から選ばれる。
In addition, component A further comprises, in the presence of an organoaluminum compound,
Olefin polymers formed in component A upon contact with olefins may also be included. The organoaluminum compound is selected from the organometallic compounds described below that are one of the components of the catalyst of the present invention.

オレフィンとしては、エチレンの他プロピレン、1−ブ
テン−1−ヘキセン、4−メチル−1−ペンテン等のα
−オレフィンが使用し得る。
Examples of olefins include ethylene, propylene, 1-butene-1-hexene, 4-methyl-1-pentene, etc.
-Olefins may be used.

オレフィンとの接触は、前記の不活性媒体の存在下行う
のが望ましい。接触は、通常100℃以下、望ましくは
一10〜+50℃の温度で行われる。成分A中に含有さ
せるオレフィンポリマーの量は、成分A1g当り通常0
.1〜100gである。
Contact with the olefin is preferably carried out in the presence of the inert medium described above. The contact is usually carried out at a temperature of 100°C or less, preferably -10°C to +50°C. The amount of olefin polymer contained in component A is usually 0 per gram of component A.
.. It is 1-100g.

成分Aとオレフィンの接触は、有機アルミニウム化合物
と共に電子供与性化合物を存在させてもよい。電子供与
性化合物としてはカルボン酸エステル類、アミン類、ホ
スファイト類等が特に望ましい。オレフィンと接触した
成分Aは、必要に応じて前記の不活性媒体で洗浄するこ
とができ、又更に乾燥することができる。
In the contact between component A and the olefin, an electron-donating compound may be present together with the organoaluminum compound. Particularly preferable electron-donating compounds include carboxylic acid esters, amines, and phosphites. Component A that has been in contact with the olefin can be washed, if necessary, with the above-mentioned inert medium or further dried.

有機金属化合物 有機金属化合物(以下成分Bという。)は、周期表第1
族ないし第■族金属の有機化合物である。成分Bとして
は、リチウム、マグネシウム、カルシウム、亜鉛及びア
ルミニウムの有機化合物が使用し得る。これらの中でも
特に、有機アルミニウム化合物が好適である。用い得る
有機アルミニウム化合物としては、−船蔵R,AlX3
−、  (但し、Rはアルキル基又はアリール基、Xは
ハロゲン原子、アルコキシ基又は水素原子を示し、nは
1≦n≦3の範囲の任意の数である。)で示されるもの
であり、例えばトリアルキルアルミニウム、ジアルキル
アルミニウムモノハライド、モノアルキルアルミニウム
シバライド、アルキルアルミニウムセスキハライド、ジ
アルキルアルミニウムモノアルコキシド及びジアルキル
アルミニウムモノハイドライドなどの炭素数1ないし1
8個、好ましくは炭素数2ないし6個のアルキルアルミ
ニウム化合物又はその混合物もしくは錯化合物が特に好
ましい。具体的には、トリメチルアルミニウム、トリエ
チルアルミニウム、トリプロピルアルミニウム、トリイ
ソブチルアルミニウム、トリヘキシルアルミニウムなど
のトリアルキルアルミニウム、ジメチルアルミニウムク
ロリド、ジエチルアルミニウムクロリド、ジエチルアル
ミニウムプロミド、ジエチルアルミニウムアイオダイド
、ジイソブチルアルミニウムクロリドなどのジアルキル
アルミニウムモノハライド、メチルアルミニウムジクロ
リド、エチルアルミニウムジクロリド、メチルアルミニ
ウムジクロリド、エチルアルミニウムジクロリド、エチ
ルアルミニウムジアイオダイド、イソブチルアルミニウ
ムジクロリドなどのモノアルキルアルミニウムシバライ
ド、エチルアルミニウムセスキクロリドなどのアルキル
アルミニウムセスキハライド、ジメチルアルミニウムメ
トキシド、ジエチルアルミニウムエトキシド、ジエチル
アルミニウムフェノキシド、ジプロピルアルミニウムエ
トキシド、ジイソブチルアルミニウムエトキシド、ジイ
ソブチルアルミニウムフェノキシドなどのジアルキルア
ルミニウムモノアルコキシド、ジメチルアルミニウムハ
イドライド、ジエチルアルミニウムハイドライド、ジプ
ロピルアルミニウムハイドライド、ジイソブチルアルミ
ニウムハイドライドなどのジアルキルアルミニウムハイ
ドライドが挙げられる。これらの化合物は二種以上併用
することができる。
Organometallic compoundsOrganometallic compounds (hereinafter referred to as component B) are found in the first part of the periodic table.
It is an organic compound of a group metal to a group II metal. As component B, organic compounds of lithium, magnesium, calcium, zinc and aluminum can be used. Among these, organoaluminum compounds are particularly suitable. As organoaluminum compounds that can be used, - Funagura R, AlX3
-, (wherein R is an alkyl group or an aryl group, X is a halogen atom, an alkoxy group, or a hydrogen atom, and n is an arbitrary number in the range of 1≦n≦3), For example, trialkylaluminum, dialkylaluminum monohalide, monoalkylaluminum civalide, alkylaluminum sesquihalide, dialkylaluminum monoalkoxide, and dialkylaluminum monohydride having 1 to 1 carbon atoms.
Particularly preferred are alkylaluminum compounds having 8, preferably 2 to 6 carbon atoms, or mixtures or complexes thereof. Specifically, trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum, dimethylaluminum chloride, diethylaluminum chloride, diethylaluminum bromide, diethylaluminum iodide, diisobutylaluminum chloride, etc. dialkylaluminum monohalides, methylaluminum dichloride, ethylaluminum dichloride, methylaluminum dichloride, ethylaluminum dichloride, ethylaluminum diiodide, isobutylaluminum dichloride, monoalkylaluminum cybarides, alkylaluminum sesquihalides such as ethylaluminum sesquichloride, Dialkyl aluminum monoalkoxides such as dimethyl aluminum methoxide, diethylaluminum ethoxide, diethylaluminum phenoxide, dipropyl aluminum ethoxide, diisobutyl aluminum ethoxide, diisobutyl aluminum phenoxide, dimethyl aluminum hydride, diethyl aluminum hydride, dipropyl aluminum hydride, diisobutyl aluminum Examples include dialkyl aluminum hydride such as hydride. Two or more of these compounds can be used in combination.

又、酸素原子や窒素原子を介して2個以上のアルミニウ
ムが結合した有機アルミニウム化合物も使用可能である
。そのような化合物としては、例えば ((1,2H5
) 2AIOA1 (C2H5) 2 。
Furthermore, an organic aluminum compound in which two or more pieces of aluminum are bonded via an oxygen atom or a nitrogen atom can also be used. Examples of such compounds include ((1,2H5
) 2AIOA1 (C2H5) 2 .

(C,H,)2^10Al([:、R9)2  、  
 (C2H,、)2AINAI(口2H,,)22H5 等を例示できる。
(C,H,)2^10Al([:,R9)2,
Examples include (C2H,,)2AINAI(口2H,,)22H5.

アルミニウム金属以外の金属の有機化合物としては、ジ
エチルマグネシウム、エチルマグネシウムクロリド、ジ
エチル亜鉛等の他 LiA1(CJs)4. LiAI(CJ+s)−等の
化合物が挙げられる。
Examples of organic compounds of metals other than aluminum include diethylmagnesium, ethylmagnesium chloride, diethylzinc, etc., as well as LiA1 (CJs)4. Examples include compounds such as LiAI(CJ+s)-.

有機珪素化合物 本発明の触媒の一成分である有機珪素化合物(以下、成
分Cという。)は、前記一般式で表わされる。練武にお
いて、R’、 R”の炭化水素基及びOR’ 、 05
iRチ、 SiRg  に?けるR’、 R5,R6の
炭化水素基としては、アルキル基、アルケニル基、シク
ロアルキル基、シクロアルケニル基、シクロアルカジェ
ニル基、アリール基、アルアルキル基等が挙げられる。
Organosilicon Compound The organosilicon compound (hereinafter referred to as component C), which is one component of the catalyst of the present invention, is represented by the above general formula. In training, hydrocarbon groups of R', R'' and OR', 05
iR Chi, SiRg? Examples of the hydrocarbon group for R', R5, and R6 include an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, a cycloalkagenyl group, an aryl group, and an aralkyl group.

アルキル基としては、メチル、エチル、プロピル、1−
プロピル、ブチル、1−ブチル、S−ブチル、t−ブチ
ル、アミル、l−アミル、t−アミル、ヘキシル、オク
チル、2−エチルヘキシル、デシル基等が、アルケニル
基としては、ビニル、アリル、プロペニル、1−ブテニ
ル、1−ペンテニル、1−へキセニル、1−オクテニル
、1−デケニル、1−メチル−1−ペンチニル、1−メ
チル−1−へブテニル等力、シクロアルキル基としては
、シクロペンチル、シクロヘキシル、メチルシクロヘキ
シル基等が、シクロアルケニル基としては、シクロペン
テニル、シクロへキセニル、メチルシクロへキセニル基
等が、シクロアルカジェニル基としては、シクロペンタ
ジェニル、メチルシクロペンタジェニル、インデニル基
等が、アリール基としては、フェニル、トリル、キシリ
ル基等が、アルアルキル基としては、ベンジル、フェネ
チル、3−フェニルプロピル基等が挙げられる。
Alkyl groups include methyl, ethyl, propyl, 1-
Propyl, butyl, 1-butyl, S-butyl, t-butyl, amyl, l-amyl, t-amyl, hexyl, octyl, 2-ethylhexyl, decyl, etc., and alkenyl groups include vinyl, allyl, propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 1-octenyl, 1-dekenyl, 1-methyl-1-pentynyl, 1-methyl-1-hebutenyl, etc., cycloalkyl groups include cyclopentyl, cyclohexyl, Methylcyclohexyl group etc., cycloalkenyl group such as cyclopentenyl, cyclohexenyl, methylcyclohexenyl group, etc., cycloalkagenyl group such as cyclopentagenyl, methylcyclopentagenyl, indenyl group, etc. Examples of the aryl group include phenyl, tolyl, and xylyl groups, and examples of the aralkyl group include benzyl, phenethyl, and 3-phenylpropyl groups.

又、前記一般式におけるR3は、二価の炭化水素基であ
り、具体的には下記の一般式で表わされる基が挙げられ
る。
Further, R3 in the above general formula is a divalent hydrocarbon group, and specific examples include groups represented by the following general formula.

上記において、mは1〜10であり、n、p。In the above, m is 1 to 10, n, p.

qはそれぞれ2〜8である。q is 2 to 8, respectively.

上記■〜■の基の具体例は下記の通りである。Specific examples of the groups (1) to (2) above are as follows.

−C2H,。-C2H,.

成分Cは、通常、−船蔵R’R25IX2  (Xは)
10ゲン原子)で表わされる化合物と一般式HOR30
Hで表わされる化合物とを、ピリジン、キノリン等の脱
ハロゲン化水素剤の存在下反応させるか、−船蔵R’R
25I (OR’) 2  (R7は炭化水素基)で表
わされる化合物と一般式HOR30Hで表わされる化合
物とを酸又は塩基触媒の存在下で反応させることにより
合成することができる。
Component C is usually -Ship stock R'R25IX2 (X is)
10 gene atoms) and the general formula HOR30
The compound represented by H is reacted with the compound represented by H in the presence of a dehydrohalogenating agent such as pyridine or quinoline.
It can be synthesized by reacting a compound represented by 25I (OR') 2 (R7 is a hydrocarbon group) with a compound represented by the general formula HOR30H in the presence of an acid or base catalyst.

本発明の触媒は、成分A、酸成分、成分Cからなるが、
それらの構成割合は、成分Bが成分A中のチタン1グラ
ム原子当り0.5〜100グラムモル、望ましくは1〜
40グラムモル、成分Cが成分81モルに対して0.0
01〜10モル、望ましくは0.01〜1.0モルとな
るように用いられる。
The catalyst of the present invention consists of component A, acid component, and component C.
The composition ratio of component B is 0.5 to 100 g mol, preferably 1 to 100 g mol per 1 gram atom of titanium in component A.
40 g mol, component C is 0.0 for 81 mol of component
It is used in an amount of 0.01 to 10 mol, preferably 0.01 to 1.0 mol.

α−オレフィンの重合 本発明の触媒は、炭素数3〜10個のα−オレフィンの
単独重合又は他のモノオレフイン若しくは炭素数3〜1
0個のジオレフィンとの共重合の触媒として有用である
が、特に炭素数3ないし6個のα−オレフィン、例えば
プロピレン、1−ブテン、4−メチル−1−ペンテン、
1−ヘキセン等の単独重合又は上記のα−オレフィン相
互及び/又はエチレンとのランダム及びブロック共重合
の触媒として極めて優れた性能を示す。
Polymerization of α-olefins The catalyst of the present invention is suitable for homopolymerization of α-olefins having 3 to 10 carbon atoms or other monoolefins or monoolefins having 3 to 1 carbon atoms.
It is particularly useful as a catalyst for copolymerization with C3 to C6 alpha-olefins, such as propylene, 1-butene, 4-methyl-1-pentene,
It exhibits extremely excellent performance as a catalyst for homopolymerization of 1-hexene, etc., or random and block copolymerization with each other and/or with ethylene.

重合反応は、気相、液相のいずれでもよく、液相で重合
させる場合は、ノルマルブタン、イソブタン、ノルマル
ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタ
ン、シクロヘキサン、ベンゼン、トルエン、キシレン等
の不活性炭化水素中及び液状モノマー中で行うことがで
きる。重合温度は、通常−80℃〜+150℃、好まし
くは40〜120℃の範囲である。重合圧力は、例えば
1〜60気圧でよい。又、得られる重合体の分子量の調
節は、水素若しくは他の公知の分子量調節剤を存在せし
めることにより行なわれる。又、共重合においてα−オ
レフィンに共重合させる他のオレフィンの量は、α−オ
レフィンに対して通常30重量%迄、特に0.3〜15
重量%の範囲で選ばれる。本発明に係る触媒系による重
合反応は、連続又はバッチ式反応で行ない、その条件は
通常用いられる条件でよい。又、共重合反応は一段で行
ってもよく、二段以上で行ってもよい。
The polymerization reaction may be performed in either a gas phase or a liquid phase. When polymerizing in a liquid phase, inert carbonization of normal butane, isobutane, normal pentane, isopentane, hexane, heptane, octane, cyclohexane, benzene, toluene, xylene, etc. It can be carried out in hydrogen and in liquid monomers. The polymerization temperature is usually in the range of -80°C to +150°C, preferably 40 to 120°C. The polymerization pressure may be, for example, 1 to 60 atmospheres. The molecular weight of the resulting polymer can also be controlled by the presence of hydrogen or other known molecular weight regulators. In addition, the amount of other olefin to be copolymerized with the α-olefin in the copolymerization is usually up to 30% by weight, particularly 0.3 to 15% by weight based on the α-olefin.
Selected within the range of weight %. The polymerization reaction using the catalyst system according to the present invention may be carried out in a continuous or batchwise reaction, and the conditions may be those commonly used. Further, the copolymerization reaction may be carried out in one stage, or may be carried out in two or more stages.

発明の効果 本発明の触媒は、α−オレフィンの重合において、高立
体規則性の重合体を高収率で製造することができる。
Effects of the Invention The catalyst of the present invention can produce a highly stereoregular polymer in high yield in the polymerization of α-olefins.

実施例 本発明を実施例及び応用例により具体的に説明する。な
お、例におけるパーセント(%)は特に断らない限り重
量による。
EXAMPLES The present invention will be specifically explained by examples and application examples. Note that percentages (%) in the examples are based on weight unless otherwise specified.

ポリマー中の結晶性ポリマーの割合を示すヘプタン不溶
分(以下HIと略称する。)は、改良型ソックスレー抽
出器で沸騰n−へブタンにより6時間抽出した場合の残
量である。
The heptane insoluble content (hereinafter abbreviated as HI), which indicates the proportion of crystalline polymer in the polymer, is the residual amount when extracted with boiling n-hebutane for 6 hours using a modified Soxhlet extractor.

実施例1 成分A(活性化三塩化チタン)の調製 攪拌機を取り付けた21のフラスコを0℃に保った恒温
水槽中に設置し、このフラスコに700mNの精製へブ
タンと250−の四塩化チタンを加えて混合した。次で
この四塩化チタンのへブタン溶液の温度を0℃に保持し
なから315rnlのジエチルアルミニウムクロリド、
117−のエチルアルミニウムジクロリド及び400r
nlの精製へブタンから成る混合物を3時間にわたって
滴下混合した。滴下終了後、内容物を攪拌機しながら加
熱し1時間後に65℃とし、さらにこの温度で1時間攪
拌することによって還元固体を得た。得られた還元固体
を分離し、精製へブタンで洗浄後、減圧下65℃で30
分乾燥した。
Example 1 Preparation of component A (activated titanium trichloride) 21 flasks equipped with a stirrer were placed in a constant temperature water bath kept at 0°C, and 700 mN purified hebutane and 250 mN titanium tetrachloride were added to the flasks. Add and mix. Next, while maintaining the temperature of this hebutane solution of titanium tetrachloride at 0°C, 315 rnl of diethylaluminum chloride,
117-ethylaluminum dichloride and 400r
A mixture consisting of nl of purified hebutane was mixed dropwise over a period of 3 hours. After completion of the dropwise addition, the contents were heated with a stirrer and brought to 65° C. after 1 hour, and further stirred at this temperature for 1 hour to obtain a reduced solid. The resulting reduced solid was separated, washed with purified hepatane, and then incubated at 65°C under reduced pressure for 30
Dry for a minute.

次に、この還元固体25gを100−の精製へブタンに
分散した懸濁液を調製し、次でこの懸濁液に還元固体中
のチタン1グラム原子当りへキサクロルエタン1グラム
モルに相当する量のへキサクロルエタンを100mj2
中に25gのへキクロルエタンを含む溶液の形で加え、
さらに還元固体中のチタン1グラム原子当り0.ログラ
ムモルに相当する量のジノルマルブチルエーテルを加え
て攪拌混合した。
Next, a suspension of 25 g of this reduced solid is dispersed in 100-purified hexachloroethane is prepared, and then an amount of hexachloroethane corresponding to 1 gram mole of hexachloroethane per gram atom of titanium in the reduced solid is added to the suspension. 100 mj2 of hexachloroethane
Add in the form of a solution containing 25 g of hexchloroethane,
Furthermore, per gram atom of titanium in the reduced solid, 0. Di-n-butyl ether in an amount corresponding to 100 g moles was added and mixed with stirring.

次に、この混合液を攪拌下に加熱して80℃とし、5時
間攪拌を行った後、得られた固体を100m1l!の精
製へブタンで5回洗浄し、65℃で30分間乾燥して成
分Aを調製した。
Next, this mixed solution was heated to 80° C. while stirring, and after stirring for 5 hours, the obtained solid was 100 ml! Component A was prepared by washing 5 times with butane and drying at 65° C. for 30 minutes.

プロピレンの重合 攪拌機を取付けた1、51のステンレス製オートクレー
ブに、窒素ガス雰囲気下、上記で得られた成分A12.
6mg、n−ヘプタンll中に1モルのジエチルアルミ
ニウムクロリド(以下DEACという。)を含む溶液2
mf及びn−ヘプタン11中に0.2モルの2−シクロ
へキシル−2−メチル−2−シラー1,3−ジオキサン
(以下、CMR5という。)を含む溶液1mfを混合し
5分間保持したものを入れた。次いで、分子量制御剤と
しての水素ガス750m1l!及び液体プロピレンII
lを圧入した後、反応系を70℃に昇温しで、1時間プ
ロピレンの重合を行った。重合終了後、未反応のプロピ
レンをパージし、HI97.2%の白色のポリプロピレ
ン粉末を得た。触媒の重合活性(RT)は、5.7 k
g/g・成分Aであった。
The above-obtained component A12.
Solution 2 containing 6 mg, 1 mol of diethylaluminium chloride (hereinafter referred to as DEAC) in 1 liter of n-heptane
1 mf of a solution containing 0.2 mol of 2-cyclohexyl-2-methyl-2-silar 1,3-dioxane (hereinafter referred to as CMR5) in 11 mf and n-heptane was mixed and held for 5 minutes. I put it in. Next, 750 ml of hydrogen gas as a molecular weight control agent! and liquid propylene II
After pressurizing the reactor, the temperature of the reaction system was raised to 70° C., and propylene was polymerized for 1 hour. After the polymerization was completed, unreacted propylene was purged to obtain a white polypropylene powder with an HI of 97.2%. The polymerization activity (RT) of the catalyst is 5.7 k
g/g・Component A.

なお、ここでCMR3は次のようにして調製した。反応
容器に乾燥エーテル150mA’を入れ氷冷した。これ
に、シクロヘキシルメチルジクロロシラン47.5 g
と乾燥エーテル100艷の混合物並びに1.3−プロパ
ンジオール18.8g1ピリジン40g及び乾燥エーテ
ル10〇−の混合物を、攪拌下同時に滴下した。滴下後
、室温で16時間攪拌した。生成した沈澱物を濾別し、
濾液を蒸留することによりCMR319,9gを得た。
Note that CMR3 was prepared as follows. 150 mA' of dry ether was placed in a reaction vessel and cooled on ice. To this, 47.5 g of cyclohexylmethyldichlorosilane
A mixture of 18.8 g of 1,3-propanediol, 40 g of pyridine and 100 g of dry ether were simultaneously added dropwise with stirring. After the dropwise addition, the mixture was stirred at room temperature for 16 hours. The formed precipitate is filtered,
By distilling the filtrate, 319.9 g of CMR was obtained.

沸点は83℃/ 0.1 mmHgであった。The boiling point was 83°C/0.1 mmHg.

実施例2〜4 CMR3の代りに、第1表に示す有機珪素化合物を用い
た以外は、実施例1と同様にしてプロピレンの重合を行
い、それらの結果を第1表に示した。
Examples 2 to 4 Propylene was polymerized in the same manner as in Example 1, except that the organic silicon compounds shown in Table 1 were used instead of CMR3, and the results are shown in Table 1.

比較例I CMR3を用いない以外は、実施例1と同様にしてプロ
ピレンの重合を行い、その結果を第1表に示した。
Comparative Example I Polymerization of propylene was carried out in the same manner as in Example 1, except that CMR3 was not used, and the results are shown in Table 1.

実施例5〜7 有機金属化合物としてDEACの代りにトリエチルアル
ミニウムを用い、かつ有機珪素化合物としてCMR3の
す代りに第1表に示す化合物を用いた以外は、実施例1
と同様にしてプロピレンの重合を行い、それらの結果を
第1表に示した。
Examples 5 to 7 Example 1 except that triethylaluminum was used instead of DEAC as the organometallic compound, and the compounds shown in Table 1 were used instead of CMR3 as the organosilicon compound.
Polymerization of propylene was carried out in the same manner as above, and the results are shown in Table 1.

比較例2 有機珪素化合物を用いない以外は、実施例5〜8と同様
にしてプロピレンの重合を行い、その結果を第1表に示
した。
Comparative Example 2 Propylene was polymerized in the same manner as in Examples 5 to 8, except that no organosilicon compound was used, and the results are shown in Table 1.

第   1   表 比較例1      □ 比較例2      □ RT           HI (kg/g・成分A)      (%)5、7   
       97.2 6、1          97.4 6、2          97.8 4、2          96.7 2、0          97.0 14.3          96.116、2   
       96.616、8          
95.818、5          84.3
Table 1 Comparative Example 1 □ Comparative Example 2 □ RT HI (kg/g・Component A) (%) 5, 7
97.2 6, 1 97.4 6, 2 97.8 4, 2 96.7 2, 0 97.0 14.3 96.116, 2
96.616,8
95.818, 5 84.3

【図面の簡単な説明】 第1図は、本発明の触媒の調製工程を示すフローチャー
ト図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing the steps for preparing the catalyst of the present invention.

Claims (1)

【特許請求の範囲】 (A)活性化三塩化チタン、 (B)有機金属化合物及び (C)一般式 ▲数式、化学式、表等があります▼ 〔但し、R^1及びR^2は同一か異なる炭素数1〜1
0個の炭化水素基、OR^4、OSiR^5_3又はS
iR^6_3、R^3は炭素数1〜10個の二価の炭化
水素基であり、R^4、R^5及びR^6はそれぞれ炭
素数1〜10個の炭化水素基である。〕 で表わされる有機珪素化合物 とからなるα−オレフィン重合用触媒。
[Claims] (A) Activated titanium trichloride, (B) Organometallic compound, and (C) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [However, are R^1 and R^2 the same? Different number of carbons 1-1
0 hydrocarbon groups, OR^4, OSiR^5_3 or S
iR^6_3 and R^3 are divalent hydrocarbon groups having 1 to 10 carbon atoms, and R^4, R^5 and R^6 are each hydrocarbon groups having 1 to 10 carbon atoms. ] An α-olefin polymerization catalyst comprising an organosilicon compound represented by:
JP30097190A 1990-11-08 1990-11-08 α-olefin polymerization catalyst Pending JPH04175313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30097190A JPH04175313A (en) 1990-11-08 1990-11-08 α-olefin polymerization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30097190A JPH04175313A (en) 1990-11-08 1990-11-08 α-olefin polymerization catalyst

Publications (1)

Publication Number Publication Date
JPH04175313A true JPH04175313A (en) 1992-06-23

Family

ID=17891284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30097190A Pending JPH04175313A (en) 1990-11-08 1990-11-08 α-olefin polymerization catalyst

Country Status (1)

Country Link
JP (1) JPH04175313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619049B1 (en) 2009-04-13 2009-11-17 Formosa Plastics Corporation, U.S.A. Cyclic organosilicon compounds as electron donors for polyolefin catalysts
US7790819B1 (en) 2009-04-13 2010-09-07 Formosa Plastics Corporation, U.S.A. Bicyclic organosilicon compounds as electron donors for polyolefin catalysts
CN109053792A (en) * 2018-07-18 2018-12-21 石家庄圣泰化工有限公司 Cyclic silicate ester compounds in battery electrolyte and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619049B1 (en) 2009-04-13 2009-11-17 Formosa Plastics Corporation, U.S.A. Cyclic organosilicon compounds as electron donors for polyolefin catalysts
US7790819B1 (en) 2009-04-13 2010-09-07 Formosa Plastics Corporation, U.S.A. Bicyclic organosilicon compounds as electron donors for polyolefin catalysts
CN109053792A (en) * 2018-07-18 2018-12-21 石家庄圣泰化工有限公司 Cyclic silicate ester compounds in battery electrolyte and preparation method thereof

Similar Documents

Publication Publication Date Title
US4163831A (en) High efficiency titanate catalyst for polymerizing olefins
EP0012397B1 (en) Polymerization catalyst and process for polymerizing alpha-olefins
US4189553A (en) High efficiency catalyst for polymerizing olefins
US4364851A (en) Process for producing olefin polymers
JPS6124403B2 (en)
JPH04175313A (en) α-olefin polymerization catalyst
JP2709628B2 (en) α-Olefin polymerization catalyst
CA2001411C (en) Alkene polymerization process and catalyst compositions therefor
JPH04175311A (en) α-olefin polymerization catalyst
JPH0128049B2 (en)
JPS5915123B2 (en) Olefin polymerization catalyst
JPH04175310A (en) Alpha-olefin polymerization catalyst
JPH06220114A (en) Catalyst for alpha-olefin polymerization
JPH04175312A (en) α-olefin polymerization catalyst
JPH0471924B2 (en)
JPH0693028A (en) α-Olefin polymerization catalyst
JPH06136042A (en) α-Olefin polymerization catalyst
JPH06136043A (en) α-Olefin polymerization catalyst
JPS61207405A (en) Polymerization of ethylene
JPS584924B2 (en) Method for manufacturing polyolefin
JPH06116327A (en) α-Olefin polymerization catalyst
JPH06172442A (en) α-Olefin polymerization catalyst
JPH0725932A (en) Polymerization of ethylene and catalytic component therefor
JPS6349682B2 (en)
JPH0625351A (en) Method for producing polyethylene