JPH0416894Y2 - - Google Patents
Info
- Publication number
- JPH0416894Y2 JPH0416894Y2 JP12532986U JP12532986U JPH0416894Y2 JP H0416894 Y2 JPH0416894 Y2 JP H0416894Y2 JP 12532986 U JP12532986 U JP 12532986U JP 12532986 U JP12532986 U JP 12532986U JP H0416894 Y2 JPH0416894 Y2 JP H0416894Y2
- Authority
- JP
- Japan
- Prior art keywords
- holding member
- magnetic sensor
- magnetic
- mounting
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005415 magnetization Effects 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000005452 bending Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は磁気式ロータリエンコーダに係り、特
に磁気信号検出用の磁気センサを回転体に設けら
れた磁化パターンの対向位置に保持するための保
持部材に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a magnetic rotary encoder, and in particular to a holding device for holding a magnetic sensor for detecting magnetic signals in a position facing a magnetization pattern provided on a rotating body. Regarding parts.
〔従来の技術〕
従来より知られている磁気式ロータリエンコー
ダの一例を第6図および第7図に示す。これらの
図において、1はデイスク、2は回転軸、3は磁
化パターン、4は磁気センサ、5は保持部材、6
はケース、7はネジ、14は軸受けである。[Prior Art] An example of a conventionally known magnetic rotary encoder is shown in FIGS. 6 and 7. In these figures, 1 is a disk, 2 is a rotating shaft, 3 is a magnetization pattern, 4 is a magnetic sensor, 5 is a holding member, 6
is a case, 7 is a screw, and 14 is a bearing.
磁性材料からなるデイスク1は、ケース6に軸
受14を介して支承された回転軸2を中心として
回転自在であつて、その平坦なデイスク面1aに
は磁気記録技術によつて磁化パターン3が着磁さ
れている。第7図に示すように、この磁化パター
ン3はN、S、S、N、N、S、S、N……のご
とく隣合う磁極対が逆極性になるように等ピツチ
間隔で連続形成されている。磁気センサ4は、例
えば磁気抵抗効果素子からなる公知のもので、保
持部材5のセンサ取付面5aに接着等により固着
されている。保持部材5はアルミニウム等の金属
材料や合成樹脂材料からなり、その下面が取付基
準面5bとなつてケース6の平面部6a上にネジ
7により取り付けられている。この平面部6a
は、ケース6の中央に孔部6bを加工する際、該
孔部6bの周面と平行になるように加工されるた
め、両者は比較的簡単に高精度な平行度が保たれ
る。従つて、孔部6bに嵌挿される軸受け14に
支承される回転軸2と平面部6aとの平行度、換
言すると平面部6aとデイスク1のデイスク面と
の直角度は高精度なものとなつている。 A disk 1 made of a magnetic material is rotatable around a rotating shaft 2 supported by a case 6 via a bearing 14, and a magnetization pattern 3 is attached to the flat disk surface 1a by magnetic recording technology. It is magnetized. As shown in FIG. 7, this magnetization pattern 3 is continuously formed at equal pitches such as N, S, S, N, N, S, S, N... so that adjacent magnetic pole pairs have opposite polarities. ing. The magnetic sensor 4 is a known type made of, for example, a magnetoresistive element, and is fixed to the sensor mounting surface 5a of the holding member 5 by adhesive or the like. The holding member 5 is made of a metal material such as aluminum or a synthetic resin material, and is mounted on the flat surface 6a of the case 6 with screws 7, with its lower surface serving as a mounting reference surface 5b. This plane part 6a
When machining the hole 6b in the center of the case 6, the hole 6b is machined so as to be parallel to the circumferential surface of the hole 6b, so that highly accurate parallelism between the two can be maintained relatively easily. Therefore, the parallelism between the rotating shaft 2 supported by the bearing 14 inserted into the hole 6b and the flat portion 6a, in other words, the perpendicularity between the flat portion 6a and the disk surface of the disk 1 is highly accurate. ing.
上記磁気センサ4を構成する磁気抵抗効果素子
は、デイスク1に着磁配列された磁化パターン3
の各磁極ピツチpに対してnp+1/4p(ただしn
は整数)位相がずれるように2組配置されてお
り、またこれら磁気抵抗効果素子のそれぞれの磁
路方向が回転軸2と直交するように磁化パターン
3に対向して配置されている。従つて、デイスク
1が回転すると、磁気センサ4のそれぞれの磁気
抵抗効果素子からは90度の位相差をもつ信号が出
力される。 The magnetoresistive element constituting the magnetic sensor 4 has a magnetization pattern 3 arranged in a magnetized manner on the disk 1.
For each magnetic pole pitch p, np + 1/4p (however, n
is an integer) Two sets of magnetoresistive elements are arranged so as to be out of phase with each other, and are arranged opposite to the magnetization pattern 3 so that the magnetic path direction of each of these magnetoresistive elements is orthogonal to the rotation axis 2. Therefore, when the disk 1 rotates, each magnetoresistive element of the magnetic sensor 4 outputs a signal having a phase difference of 90 degrees.
以上のように構成された磁気式ロータリエンコ
ーダにあつては、デイスク1が所定方向に回転す
ると、磁気センサ4のそれぞれの磁気抵抗効果素
子から90度の位相差をもつ連続的な信号が出力さ
れ、これらに増幅・検波・整合などの処理を行う
ことによりインクレメンタルパルスが得られ、デ
イスク1の変位量と回転方向が検出される。 In the magnetic rotary encoder configured as described above, when the disk 1 rotates in a predetermined direction, a continuous signal with a phase difference of 90 degrees is output from each magnetoresistive element of the magnetic sensor 4. By performing processing such as amplification, detection, and matching on these pulses, incremental pulses are obtained, and the displacement amount and rotation direction of the disk 1 are detected.
ところで、かかる磁気式ロータリエンコーダに
おいて、磁化パターン3が形成されたデイスク1
のデイスク面1aと磁気センサ4との間隔は一定
かつ平行に保たれることが必要であり、例えばデ
イスク面1aと磁気センサ4との平行度(あおり
角)が第8図に示すように角度θ1傾いたり、ある
いは第9図に示すように磁化パターン3の中心線
と磁気センサ4のアジマス角が角度θ2傾くと、磁
気センサ4の出力が低下し、正確な位置検出が不
可能となる。このような理由から、保持部材5の
センサ取付面5aの平面部6aに対する直角度お
よび取付基準面5bの平坦度は高精度に維持され
ていなければならない。
By the way, in such a magnetic rotary encoder, the disk 1 on which the magnetization pattern 3 is formed is
The distance between the disk surface 1a and the magnetic sensor 4 must be kept constant and parallel, for example, if the parallelism (tilt angle) between the disk surface 1a and the magnetic sensor 4 is at an angle as shown in If the magnetic sensor 4 is tilted by θ 1 , or if the center line of the magnetization pattern 3 and the azimuth angle of the magnetic sensor 4 are tilted by an angle θ 2 as shown in FIG. 9, the output of the magnetic sensor 4 will decrease, making accurate position detection impossible. Become. For these reasons, the perpendicularity of the sensor mounting surface 5a of the holding member 5 to the flat portion 6a and the flatness of the mounting reference surface 5b must be maintained with high precision.
そこで従来は、アルミニウム等の金属素材に切
削加工を施して保持部材5のセンサ取付面5aや
取付基準面5bを削り出したり、あるいはダイキ
ヤストや射出成形にて概略の外観形状を得たの
ち、切削加工などの二次加工を施してセンサ取付
面5aと取付基準面5bを仕上げるという手法が
採用されていた。 Conventionally, the sensor mounting surface 5a and mounting reference surface 5b of the holding member 5 are cut out by cutting a metal material such as aluminum, or after obtaining an approximate external shape by die casting or injection molding, cutting is performed. A method has been adopted in which secondary processing such as machining is performed to finish the sensor mounting surface 5a and the mounting reference surface 5b.
しかしながら、これらの従来方法ではセンサ取
付面5aや取付基準面5bの仕上げ状態が安定せ
ず、例えば取付基準面5bが凹凸をもつて仕上げ
られると、ネジ7を締め付けた際に保持部材5と
そこに固着された磁気センサ4が傾くという問題
があり、また、仕上げ加工に多大の時間を要しコ
ストが高騰するという問題があつた。 However, with these conventional methods, the finished state of the sensor mounting surface 5a and the mounting reference surface 5b is not stable. For example, if the mounting reference surface 5b is finished with unevenness, when the screw 7 is tightened, the retaining member 5 and the mounting reference surface 5b are not stable. There is a problem that the magnetic sensor 4 fixed to the magnetic sensor 4 is tilted, and there is also a problem that the finishing process requires a lot of time and the cost increases.
これらの問題点のうち、加工時間の短縮化とい
う点に着目すると、金属平板に押抜きや曲げ等の
プレス加工を施して保持部材5を形成するという
方法が考えられるが、単なるプレス加工では曲げ
加工の際のはねかえり(スプリングバツク)を伴
うため、上記切削加工と同程度の仕上げ精度を得
ることは困難であつた。 Among these problems, focusing on shortening the processing time, it is possible to form the holding member 5 by performing press processing such as punching or bending on a metal flat plate. Since springback occurs during machining, it has been difficult to achieve the same level of finishing accuracy as the above-mentioned cutting process.
また、磁気センサ4の基板は通常ガラスやセラ
ミツクからなるため、保持部材5を上記の如く金
属材料で構成すると、両者の熱膨張率の違いによ
り、磁気センサ4が保持部材5から剥がれ易くな
るという問題があつた。 Furthermore, since the substrate of the magnetic sensor 4 is usually made of glass or ceramic, if the holding member 5 is made of a metal material as described above, the magnetic sensor 4 will easily peel off from the holding member 5 due to the difference in coefficient of thermal expansion between the two. There was a problem.
なお、実開昭60−72517号公報に記載されてい
るように、保持部材5を平面部6aに取付けた
後、アジマス調整機構を用いて第9図に示す角度
θ2を補正する方法も提案されているが、このもの
は調整作業に多大な時間と労力を要するため、量
産には不向きである。 In addition, as described in Japanese Utility Model Application Publication No. 60-72517, a method of correcting the angle θ 2 shown in FIG. 9 using an azimuth adjustment mechanism after attaching the holding member 5 to the flat part 6a is also proposed. However, this method requires a great deal of time and effort for adjustment, making it unsuitable for mass production.
従つて、本考案の目的は、上記した従来技術の
問題点を解消し、プレス加工による保持部材の形
成を可能とし、安価で検出精度の高い磁気式ロー
タリエンコーダを提供するにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a magnetic rotary encoder which is inexpensive and has high detection accuracy, which solves the problems of the prior art described above, which enables the formation of a holding member by press working.
上記目的を達成するために、本考案は、周方向
に着磁配列された磁化パターンを有する回転可能
回転体と、該回転体の外方の所定の基準平面部上
に取付けられた保持部材と、該保持部材に固着さ
れて前記磁化パターンに対向する磁気センサとを
備え、前記回転体の回転運動による磁化パターン
の位置変化を、前記磁気センサからの電気信号の
出力変化に基づいて検出する磁気式ロータリエン
コーダにおいて、金属板からなる前記保持部材
に、所定の間隔を存して対向し、両端に互いに平
行な破断面を有する一対の脚片と、これら脚片間
に延出し、一方の破断面を含む平面に対して段落
ち状に折り曲げられた固着片と、量脚片の他方の
破断面近傍にそれぞれ形成され、当該破断面から
離反した位置で折り曲げられた取付脚部とを設
け、前記磁気センサは一方側の破断面に当接した
状態で前記固着片に接着され、前記保持部材は、
他方側の破断面を前記基準平面部に当接した状態
で前記取付脚部がネジ止めされてなることを、そ
の特徴とする。
In order to achieve the above object, the present invention includes a rotatable rotating body having a magnetization pattern arranged in a circumferential direction, and a holding member mounted on a predetermined reference plane outside the rotating body. , a magnetic sensor that is fixed to the holding member and faces the magnetization pattern, and detects a change in the position of the magnetization pattern due to the rotational movement of the rotating body based on a change in the output of an electric signal from the magnetic sensor. In the rotary encoder, the holding member made of a metal plate has a pair of legs facing each other at a predetermined distance and having fractured surfaces parallel to each other at both ends, and a pair of legs extending between these legs and having one fractured surface. A fixing piece bent in a step-like manner with respect to a plane including the cross section, and a mounting leg formed near the other fracture surface of the metering leg piece and bent at a position away from the fracture surface, The magnetic sensor is bonded to the fixing piece while in contact with the fracture surface on one side, and the holding member is
A feature thereof is that the mounting leg portion is screwed with the other side of the broken surface in contact with the reference plane portion.
〔作用〕
保持部材を上記の如く構成すると、当該保持部
材を所定の基準平面部に支持する際の取付基準面
と磁気センサを位置決めするためのセンサ基準面
とは、いずれも金属平板に所定の間隔を存してプ
レス抜きされた複数の破断面を結ぶ平面によつて
画成されるため、両者の平行度および互いの平坦
度は高精度なものとなる。また、保持部材を上記
基準平面部にネジ止めするための取付脚部が、取
付基準面から離反した位置で脚片に折り曲げ形成
されているため、ネジの締め付け量が変動したと
しても、上記取付基準面とセンサ基準面の平坦度
や両者の平行度が損なわれることはない。さら
に、磁気センサは、上記センサ基準面に直接固定
されるものでなく、センサ基準面に当接した状態
で該センサ基準面に対して段落ち状に形成された
固着片上に接着されるため、温度変化に起因して
保持部材と磁気センサとの間に相対的な移動が発
生した場合でも、磁気センサが保持部材から剥が
れ落ちるおそれは少なくなる。[Function] When the holding member is configured as described above, the mounting reference surface for supporting the holding member on the predetermined reference flat portion and the sensor reference surface for positioning the magnetic sensor are both attached to the predetermined flat metal plate. Since it is defined by a plane connecting a plurality of press-cut fractured surfaces at intervals, their parallelism and mutual flatness are highly accurate. In addition, the mounting legs for screwing the holding member to the reference flat surface are bent into leg pieces at positions away from the reference mounting surface, so even if the amount of screw tightening changes, the mounting The flatness of the reference plane and the sensor reference plane and the parallelism between the two are not impaired. Furthermore, the magnetic sensor is not directly fixed to the sensor reference surface, but is bonded onto a fixed piece formed in a step-like manner with respect to the sensor reference surface while in contact with the sensor reference surface. Even if relative movement occurs between the holding member and the magnetic sensor due to a temperature change, there is less risk that the magnetic sensor will peel off from the holding member.
以下、本考案の実施例を図面に基づいて説明す
る。
Hereinafter, embodiments of the present invention will be described based on the drawings.
第1図は本考案の一実施例に係る磁気式ロータ
リエンコーダの概略構成を示す断面図、第2図は
その磁気式ロータリエンコーダに備えられる保持
部材および磁気センサの斜視図、第3図はその保
持部材の取付状態を示す一部を破断した側面図、
第4図はその保持部材の展開図であつて、符号8
は保持部材を包括的に示し、第6図ないし第9図
に対応する部材には同一符号を付けてある。 FIG. 1 is a sectional view showing a schematic configuration of a magnetic rotary encoder according to an embodiment of the present invention, FIG. 2 is a perspective view of a holding member and a magnetic sensor provided in the magnetic rotary encoder, and FIG. 3 is a perspective view of the magnetic rotary encoder. A partially cutaway side view showing the attachment state of the holding member;
FIG. 4 is a developed view of the holding member, with reference numeral 8.
shows the holding member comprehensively, and members corresponding to those in FIGS. 6 to 9 are given the same reference numerals.
第1図ないし第3図に示すように、保持部材8
は金属平板をプレス加工したものからなり、略四
角形の連結部8aと、透孔9を有する固着片8b
と、上端にセンサ基準面10を下端に取付基準面
11をそれぞれ有する一対の脚片8cと、取付孔
12を有する一対の取付脚部8dとから構成され
ている。 As shown in FIGS. 1 to 3, the holding member 8
is made of a pressed metal flat plate, and has a substantially rectangular connecting portion 8a and a fixing piece 8b having a through hole 9.
, a pair of leg pieces 8c each having a sensor reference surface 10 at the upper end and a mounting reference surface 11 at the lower end, and a pair of mounting leg portions 8d having mounting holes 12.
前記脚片8cは連結部8aの両側からほぼ90度
後方へ折れ曲がるように形成されており、取付脚
部8dは、両脚片8cの下部から外側へほぼ90度
の角度で折り曲げられており、その下面は取付基
準面11より上方に位置している。また、固着片
8bは連結部8aの上縁からほぼ90度後方へ折れ
曲がるように形成されており、その上面はセンサ
基準面10より下方に位置している。 The leg pieces 8c are bent rearward at approximately 90 degrees from both sides of the connecting portion 8a, and the mounting leg portions 8d are bent at an angle of approximately 90 degrees outward from the bottom of both leg pieces 8c. The lower surface is located above the mounting reference surface 11. Further, the fixing piece 8b is formed to be bent approximately 90 degrees rearward from the upper edge of the connecting portion 8a, and its upper surface is located below the sensor reference plane 10.
このように構成された保持部材8を形成するに
は、まず金属平板をプレス抜きして第4図に示す
如き形状を得る。ここで、プレス抜きされる図中
2つの破断面A−AおよびB−Bは互いに平行に
なるよう設定されているが、これらはプレス機械
の抜き型(ダイズおよびポンチ)によつて決定さ
れるため高精度な破断面が得られ、A−A線に沿
う破断面が前述したセンサ基準面10に、B−B
線に沿う破断面が前述した取付基準面11にな
る。次に、これら破断面A−AおよびB−Bに直
交する2つの直線C−C,D−D位置で上記金属
平板をほぼ90度折り曲げると、これら直線で囲ま
れた中央の正方形状部分が連結部8aとなり、両
側の長方形部分が脚片8cとなる。 In order to form the holding member 8 constructed in this way, first, a flat metal plate is pressed out to obtain a shape as shown in FIG. Here, the two fractured surfaces A-A and B-B in the figure that are pressed are set to be parallel to each other, but these are determined by the cutting die (soybean and punch) of the press machine. Therefore, a highly accurate fracture surface can be obtained, and the fracture surface along the A-A line is on the sensor reference plane 10 mentioned above, and the fracture surface along the A-A line is aligned with the B-B
The fractured surface along the line becomes the mounting reference surface 11 described above. Next, when the metal flat plate is bent approximately 90 degrees at the positions of two straight lines C-C and D-D perpendicular to these fracture surfaces A-A and B-B, the central square portion surrounded by these straight lines will be The connecting portion 8a becomes the connecting portion 8a, and the rectangular portions on both sides become the leg pieces 8c.
また、上記の折り曲げ加工に前後して、A−A
およびB−Bに平行なE−EおよびF−F位置で
第4図に示す金属平板をほぼ90度折り曲げると、
前者の折り曲げ線E−Eによつて固着片8bが、
後者の折り曲げ線F−Fによつて取付脚部8dが
形成される。なお、上記した各折り曲げ角は、ス
プリングバツクにより多少ばらつくが、これらの
ばらつきによりセンサ基準面10と取付基準面1
1の平行度等が影響を受けることはない。 Also, before and after the above-mentioned bending process, A-A
And when the flat metal plate shown in Fig. 4 is bent approximately 90 degrees at positions E-E and F-F parallel to B-B,
The fixed piece 8b is formed by the former bending line E-E.
The latter bending line F--F forms the mounting leg portion 8d. Note that each of the above-mentioned bending angles varies somewhat due to spring back, but due to these variations, the sensor reference plane 10 and the mounting reference plane 1
Parallelism etc. of 1 are not affected.
このようにして金属平板から第2図に示す形状
の保持部材8が得られると、磁気センサ4の下面
を両センサ基準面10に押し付けた状態で、固着
片8bの透孔9から接着剤13を充填し、磁気セ
ンサ4を固着片8bに接着する(第3図参照)。
しかる後、第1図に示すように、両取付脚部8d
の取付孔12にネジ7を挿入し、該ネジ7を締め
付けることにより、保持部材8をケース6の基準
平面部6c上に取り付ける。なお、この基準平面
部6cは孔部6bとの関係でデイスク1のデイス
ク面1aに対して高い平行度が保たれるように加
工されているものとする。この場合、第3図に示
すように取付脚部8dは取付基準面11より微小
量Δl(これは第4図に示すB−BとF−F間距離
に相当する)だけ離れた位置にあるため、ネジ7
の締め付け量に多少の変動があつたとしても、基
準平面部6cへの取り付け時に保持部材8が傾く
ことはない。従つて、プレス加工時に高精度に仕
上げられたセンサ基準面10と取付基準面11の
平行度、あるいはそれぞれの平坦度は、保持部材
8のケース6への取り付け時にも維持され、磁気
センサ4はデイスク1のデイスク面1aに対して
平行にかつアジマスずれがなく配設される。ま
た、周囲の温度変化に起因して熱膨張率の異なる
磁気センサ4と保持部材とが相対移動したとして
も、磁気センサ4は下面中央が部分的に固着片8
bに接着されているため、この移動は両センサ基
準面10が磁気センサ4の下面を摺動することに
よつて吸収され、磁気センサ4が保持部材8から
剥離するおそれは少なくなる。 When the holding member 8 having the shape shown in FIG. 2 is obtained from the flat metal plate in this way, the adhesive 13 is inserted through the through hole 9 of the fixing piece 8b while the lower surface of the magnetic sensor 4 is pressed against both sensor reference surfaces 10. and adhere the magnetic sensor 4 to the fixing piece 8b (see FIG. 3).
After that, as shown in FIG.
The holding member 8 is attached onto the reference plane portion 6c of the case 6 by inserting the screw 7 into the attachment hole 12 and tightening the screw 7. It is assumed that this reference plane portion 6c is processed so as to maintain a high degree of parallelism to the disk surface 1a of the disk 1 in relation to the hole portion 6b. In this case, as shown in FIG. 3, the mounting leg 8d is located at a position apart from the mounting reference surface 11 by a minute amount Δl (this corresponds to the distance between B-B and F-F shown in FIG. 4). for screw 7
Even if there is some variation in the amount of tightening, the holding member 8 will not tilt when attached to the reference plane portion 6c. Therefore, the parallelism between the sensor reference surface 10 and the mounting reference surface 11, which were finished with high precision during press working, or the flatness of each is maintained even when the holding member 8 is attached to the case 6, and the magnetic sensor 4 is It is arranged parallel to the disk surface 1a of the disk 1 without any azimuth deviation. Furthermore, even if the magnetic sensor 4 and the holding member, which have different coefficients of thermal expansion, move relative to each other due to a change in the ambient temperature, the magnetic sensor 4 will be partially stuck to the fixed piece 8 at the center of the lower surface.
b, this movement is absorbed by both sensor reference surfaces 10 sliding on the lower surface of the magnetic sensor 4, and the risk of the magnetic sensor 4 peeling off from the holding member 8 is reduced.
なお、固着片8bや取付脚部8dの形状あるい
は形成位置等は適宜変更可能であり、例えば第5
図aに示すように、取り付けスペースの向上を目
的として、取付脚部8dを脚片8cの内側に折り
曲げたり、第5図bに示すように固着片8bを脚
片8cの上縁に折り曲げ形成しても良い。これら
の場合も、センサ基準面10と取付基準面11を
プレス抜きの際の破断面によつて形成し、かつ、
固着片8bと取付脚部8dの折り曲げ位置を上記
破断面から離れた部位に設定すれば、第1実施例
と同様な効果を奏することができる。 Note that the shape or formation position of the fixing piece 8b and the mounting leg 8d can be changed as appropriate; for example, the fifth
As shown in Figure a, for the purpose of improving the mounting space, the mounting leg 8d is bent inside the leg piece 8c, and as shown in Figure 5b, the fixing piece 8b is bent over the upper edge of the leg piece 8c. You may do so. In these cases as well, the sensor reference surface 10 and the mounting reference surface 11 are formed by the fractured surfaces during press punching, and
By setting the bending positions of the fixing piece 8b and the mounting leg portion 8d at a location away from the fracture surface, the same effects as in the first embodiment can be achieved.
また、上記第一実施例では、磁化パターン3を
有する磁気記録媒体としてデイスク1を用いた場
合について説明したが、本考案はドラム状の回転
体の周囲に磁化パターンを形成した磁気記録媒体
にも適用可能であつて、この場合は、磁気記録媒
体の回転軸に平行な基準平面部に上記保持部材8
を取り付ければ良い。 Further, in the first embodiment, the case where the disk 1 is used as the magnetic recording medium having the magnetization pattern 3 has been described, but the present invention can also be applied to a magnetic recording medium in which the magnetization pattern is formed around a drum-shaped rotating body. applicable, and in this case, the holding member 8 is placed on a reference plane parallel to the rotation axis of the magnetic recording medium.
All you have to do is install the .
〔考案の効果〕
以上説明したように、本考案によれば、プレス
抜きの際の破断面によつて保持部材に要求される
所望の平行度や平坦度を得ることができるばかり
でなく、温度変化に拘らず磁気センサを保持部材
に強固に固定でき、安価で検出精度の高い磁気式
ロータリエンコーダを提供することが可能とな
る。[Effects of the invention] As explained above, according to the invention, it is possible not only to obtain the desired parallelism and flatness required for the holding member by the fractured surface during press punching, but also to obtain the desired parallelism and flatness required for the holding member. The magnetic sensor can be firmly fixed to the holding member regardless of changes, and it is possible to provide a magnetic rotary encoder that is inexpensive and has high detection accuracy.
第1図は本考案の一実施例に係る磁気式ロータ
リエンコーダの断面図、第2図はその磁気式ロー
タリエンコーダに備えられる保持部材と磁気セン
サの斜視図、第3図はその保持部材を一部破断し
て示す側面図、第4図はその保持部材の展開図、
第5図a,第5図bは本考案の他の実施例に係る
保持部材の斜視図、第6図は本考案が適用される
磁気式ロータリエンコーダの従来例を示す断面
図、第7図はその磁気式ロータリエンコーダに備
えられるデイスクと保持部材の関係を示す底面
図、第8図および第9図は従来例の問題点を説明
するための側面図および正面図である。
1……デイスク(回転体)、1a……デイスク
面、2……回転軸、3……磁化パターン、4……
磁気センサ、6……ケース、6c……基準平面
部、7……ネジ、8……保持部材、8a……連結
部、8b……固着片、8c……脚片、8d……取
付脚部、9……透孔、10……センサ基準面(破
断面)、11……取付基準面(破断面)、12……
取付孔、13……接着剤、14……軸受。
FIG. 1 is a sectional view of a magnetic rotary encoder according to an embodiment of the present invention, FIG. 2 is a perspective view of a holding member and a magnetic sensor provided in the magnetic rotary encoder, and FIG. 3 is a perspective view of the holding member. A partially broken side view, FIG. 4 is a developed view of the holding member,
5a and 5b are perspective views of a holding member according to another embodiment of the present invention, FIG. 6 is a sectional view showing a conventional example of a magnetic rotary encoder to which the present invention is applied, and FIG. 7 1 is a bottom view showing the relationship between a disk and a holding member provided in the magnetic rotary encoder, and FIGS. 8 and 9 are a side view and a front view for explaining the problems of the conventional example. 1... Disk (rotating body), 1a... Disk surface, 2... Rotating shaft, 3... Magnetization pattern, 4...
Magnetic sensor, 6... Case, 6c... Reference plane part, 7... Screw, 8... Holding member, 8a... Connecting part, 8b... Fixing piece, 8c... Leg piece, 8d... Mounting leg part. , 9...Through hole, 10...Sensor reference surface (fractured surface), 11...Mounting reference surface (fractured surface), 12...
Mounting hole, 13...adhesive, 14...bearing.
Claims (1)
回転可能な回転体と、該回転体の外方の所定の基
準平面部上に取付けられた保持部材と、該保持部
材に固着されて前記磁化パターンに対向する磁気
センサとを備え、前記回転体の回転運動による磁
化パターンの位置変化を、前記磁気センサからの
電気信号の出力変化に基づいて検出する磁気式ロ
ータリエンコーダにおいて、金属板からなる前記
保持部材に、所定の間隔を存して対向し、両端に
互いに平行な破断面を有する一対の脚片と、これ
ら脚片間に延出し、一方の破断面を含む平面に対
して段落ち状に折り曲げられた固着片と、両脚片
の他方の破断面近傍にそれぞれ形成され、当該破
断面から離反した位置で折り曲げられた取付脚部
とを設け、前記磁気センサは、一方側の破断面に
当接した状態で前記固着片に接着され、前記保持
部材は、他方側の破断面を前記基準平面部に当接
した状態で前記取付脚部がネジ止めされてなるこ
とを特徴とする磁気式ロータリエンコーダ。 a rotatable rotating body having a magnetization pattern arranged in a circumferential direction; a holding member mounted on a predetermined reference plane portion on the outside of the rotating body; A magnetic rotary encoder is provided with a magnetic sensor facing the rotor, and detects a change in the position of a magnetization pattern due to the rotational movement of the rotating body based on a change in the output of an electric signal from the magnetic sensor, wherein the holding member is made of a metal plate. A pair of legs that face each other at a predetermined distance from each other and have fractured surfaces parallel to each other at both ends of the member, and a pair of legs that extend between these legs and form a stepped shape with respect to the plane that includes one of the fractured surfaces. A bent fixing piece and a mounting leg formed near the other fracture surface of both leg pieces and bent at a position away from the fracture surface are provided, and the magnetic sensor is placed in contact with the fracture surface on one side. A magnetic rotary rotor, characterized in that the holding member is bonded to the fixing piece in a state in which the holding member is in contact with the reference plane part, and the mounting leg part is screwed with the fractured surface on the other side in contact with the reference plane part. encoder.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12532986U JPH0416894Y2 (en) | 1986-08-18 | 1986-08-18 | |
US07/015,883 US4769600A (en) | 1986-05-29 | 1987-02-18 | Holding member for sensor of magnetic rotary encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12532986U JPH0416894Y2 (en) | 1986-08-18 | 1986-08-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6331323U JPS6331323U (en) | 1988-02-29 |
JPH0416894Y2 true JPH0416894Y2 (en) | 1992-04-15 |
Family
ID=31018135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12532986U Expired JPH0416894Y2 (en) | 1986-05-29 | 1986-08-18 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0416894Y2 (en) |
-
1986
- 1986-08-18 JP JP12532986U patent/JPH0416894Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6331323U (en) | 1988-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4959574A (en) | Precision Gap Magnetic Encode Device | |
US6904695B2 (en) | Position measuring system and method for the assembly thereof | |
JPS6195206A (en) | Measuring device for position | |
US4897745A (en) | Method of adjusting the gaps of two magnetic heads arranged on one head disc, and head disc carrying two magnetic heads | |
JPH03179216A (en) | Magnetic rotation sensor and manufacture thereof | |
JPH0416894Y2 (en) | ||
JPH0416895Y2 (en) | ||
JPH08178694A (en) | Scale for displacement sensor | |
JP6849202B1 (en) | Encoder mounting structure and method using inro section | |
JPH0452650Y2 (en) | ||
US20080028629A1 (en) | Position measuring arrangement and procedure for the assembly of a position measuring arrangement | |
JP4860917B2 (en) | Rotary encoder | |
JPH0416893Y2 (en) | ||
JPH0625673B2 (en) | Motor built-in type pulse encoder mounting method | |
JP2596300B2 (en) | Magnetic encoder and method of manufacturing the same | |
JPH04127506U (en) | Position detection mechanism | |
JPH08338850A (en) | Rotation sensor | |
JPH051765Y2 (en) | ||
JP2551219Y2 (en) | Rotary encoder | |
CN214502405U (en) | Mounting and fixing device for displacement sensor | |
JPH0216253Y2 (en) | ||
JPH052268Y2 (en) | ||
JP3188964B2 (en) | Rotating magnetic field detector | |
JPH0345140Y2 (en) | ||
JPS6250622A (en) | Magnetic encoder |