JPH04168431A - Wavelength converting element and ultra short optical pulse generating device - Google Patents
Wavelength converting element and ultra short optical pulse generating deviceInfo
- Publication number
- JPH04168431A JPH04168431A JP29577890A JP29577890A JPH04168431A JP H04168431 A JPH04168431 A JP H04168431A JP 29577890 A JP29577890 A JP 29577890A JP 29577890 A JP29577890 A JP 29577890A JP H04168431 A JPH04168431 A JP H04168431A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- pulse
- wavelength
- wavelength conversion
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 102
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 239000004065 semiconductor Substances 0.000 claims abstract description 30
- 230000001360 synchronised effect Effects 0.000 claims abstract description 5
- 230000010355 oscillation Effects 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 8
- 230000005466 cherenkov radiation Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- UNPLRYRWJLTVAE-UHFFFAOYSA-N Cloperastine hydrochloride Chemical compound Cl.C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)OCCN1CCCCC1 UNPLRYRWJLTVAE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明1よ 光情報処理 光計狙 時間分解分光計測等
に応用される可視へ紫外の波長域の超短光パルス発生装
置に関するものであム
従来の技術
従来 可視〜紫外域の超短光パルスの発生は色素レーザ
のモードロック技術によって実現されているが、 励起
用光源として大出力レーザを必要とするため装置が大型
であり、メンテナンスが複雑で寿命も短いという問題点
があった これに対して小型で高寿命の可視〜紫外域の
超短光パルス発生装置力(容重 山本rSHGを用いた
青色レーザ光源によるピコ秒発生」第49回応用物理学
会学術講演予稿集7 a−ZD−8に報告されているよ
うiQ半導体レーザと波長変換素子の組合せによって得
られていも 第8図&へ 従来の波長変換型超短光パル
ス発生装置の概略構成図を示す。1は半導体レーザ、
2は波長変換素子であり、 3は光導波鳳4.5はレン
ス 6はλ/2板である。半導体レーザは 定電流パル
スあるいは高圧力RF信号によって利得スイッチされ
パルス幅20ps程度の超短光パルスを発生ずム 半導
体レーザ1から出射されたTEモード発振の基本波パル
ス7は レンズ4でコリメートされ λ/2板6で偏光
方向を90゜回転された後レンズ5で集光されて波長変
換素子2に形成された光導波路3に入射すム この際光
導波路3の中を導波する基本波とチェレンコフ放射され
る第二高調波8の位相速度が等しくなり、効率良く第二
高調波が発生ず4 波長0.84μ山の半導体レーザを
繰り返し周波数100MHzのコムジェネレータで利得
スイッチすることにより、パルス幅約10pa、 ピ
ーク出力1 mWの波長0,42μ0の第二高調波が得
られていも
発明が解決しようとする課題
上記従来の技術で述べたように 半導体レーザの利得ス
イッチング法では簡単な構成で超短光・・。[Detailed Description of the Invention] Industrial Field of Application The present invention 1 Optical information processing Optical meter Aim This invention relates to an ultrashort optical pulse generator in the visible to ultraviolet wavelength range that is applied to time-resolved spectroscopic measurements, etc. Conventional technology The generation of ultrashort light pulses in the visible to ultraviolet range has been achieved using dye laser mode-locking technology, but since it requires a high-output laser as the excitation light source, the equipment is large and maintenance is complicated. The problem was that the lifespan was short.In contrast, the power of a compact and long-life ultrashort optical pulse generator in the visible to ultraviolet range (Yoshiyuki Yamamoto, 49th Applied Physics for Picosecond Generation from a Blue Laser Light Source Using rSHG) As reported in Proceedings of Academic Conference 7 a-ZD-8, it is possible to obtain the results by combining an iQ semiconductor laser and a wavelength conversion element. The figure shows: 1 is a semiconductor laser;
2 is a wavelength conversion element, 3 is an optical waveguide 4.5 is a lens, and 6 is a λ/2 plate. Semiconductor lasers are gain switched by constant current pulses or high pressure RF signals.
The fundamental wave pulse 7 of the TE mode oscillation emitted from the semiconductor laser 1 is collimated by the lens 4, and the polarization direction is rotated by 90 degrees by the λ/2 plate 6. 5 and enters the optical waveguide 3 formed in the wavelength conversion element 2. At this time, the phase velocity of the fundamental wave guided in the optical waveguide 3 and the second harmonic 8 emitted by Cerenkov are equal. By switching the gain of a semiconductor laser with a wavelength of 0.84μ peak using a comb generator with a repetition frequency of 100MHz, the second harmonic wave can be efficiently generated without generating the second harmonic. Problems to be solved by the invention even when harmonics are obtained As mentioned above in the conventional technology, the semiconductor laser gain switching method uses a simple configuration to produce ultrashort light.
ルスの発生が可能である力交 その出力を波長変換した
場合には、 現状得られている第二高調波の出力は小さ
いた数 半導体レーザの出射光パルスの高出力化が課題
となってい4 半導体レーザの出射光パルスCヨ 励
起する電流パルスのピークを高くすれば大きくなる力(
繰り返し周波数が低い場合には パルス幅が数百ps以
下の高ピーク電流パルスを得るのは困難であった また
電流パルス幅が大きくなると、 レーザの緩和振動に
よる第2パルス光が現れてしまうという問題点かあっ九
本発明法 上述の問題点に鑑みてなされたものて 任意
の繰り返し周波数で高出力かつ単一パルスの第二高調波
を得ることができる超短光パルス発生装置を提供するこ
とを目的とすも
課題を解決するための手段
本発明の波長変換素子&友 非線形光学効果を有する基
板上へ 制御電極を備えた三次元光導波路により形成さ
れた光スイッチを前記光スイッチを光学的に結合された
三次元光導波路を備えた構成であム 本発明の超短光パ
ルス発生装置1−L 半導体レーザ装置と前記波長変
換素子が光学的に結合された構造をiNL 前記半導
体レーザは高周波正弦波電流で利得スイッチされて超短
光パルスを発生し 前記波長変換素子の光スイッチが前
記高周波正弦波電流と同期した任意の周波数の電気信号
でスイッチされ 前記超短光パルスのうち前記波長変換
素子の三次元光導波路に結合した超短光パルスが前記三
次元光導波路で波長変換される構成であム
作用
上記手段で述べた高周波正弦波電流による半導体レーザ
の利得スイッチング法で11 を流パルス幅が小さい
ために 緩和振動のない単一の光パルスが得られも ま
た電流振幅を大きくすることによりピーク出力の大きな
光パルスを得ることが可能となム この半導体レーザか
らの出射光パルスが波長変換素子の光スイツチ部に結合
すると、光スイッチがオン状態では光パルスは三次元光
導波路に結合して波長変換され 第二高調波パルスが発
生ずム 一方 光スイッチがオフ状態では光パルスは三
次元光導波路に結合しないため第二高調波パルスは発生
しな賎 したがって、光スイッチを動作する電気パルス
を利得スイッチを行う高周波歪弦波電流と同期させてス
イッチすることにより、任意の第二高調波パルスを得る
ことが可能であム 第7図に高周波正弦波電流 半導体
レーザ光パルス 光スイッチへの電気パルスおよび第二
高調波パルスの波形の関係を示す。If the output is wavelength converted, the output of the second harmonic that can be obtained at present is only a small number.Increasing the output of the output light pulse of the semiconductor laser is a challenge4. Semiconductor laser output light pulse Cyo If the peak of the exciting current pulse is made higher, the force increases
When the repetition frequency is low, it is difficult to obtain a high peak current pulse with a pulse width of several hundred ps or less.Also, when the current pulse width becomes large, a second pulse of light appears due to the relaxation oscillation of the laser. The method of the present invention has been made in view of the above-mentioned problems.It is an object of the present invention to provide an ultrashort optical pulse generator capable of obtaining a high output and second harmonic of a single pulse at an arbitrary repetition frequency. Objects and Means for Solving the Problems The wavelength conversion element and friend of the present invention An optical switch formed by a three-dimensional optical waveguide having a control electrode is formed on a substrate having a nonlinear optical effect. The ultrashort optical pulse generator 1-L of the present invention has a structure including a coupled three-dimensional optical waveguide. The semiconductor laser has a structure in which the semiconductor laser device and the wavelength conversion element are optically coupled. gain-switched by a wave current to generate an ultra-short optical pulse; the optical switch of the wavelength conversion element is switched by an electrical signal of an arbitrary frequency synchronized with the high-frequency sinusoidal current; The ultrashort optical pulse coupled to the three-dimensional optical waveguide is wavelength-converted by the three-dimensional optical waveguide.The ultrashort optical pulse coupled to the three-dimensional optical waveguide is wavelength-converted by the three-dimensional optical waveguide.The gain switching method of the semiconductor laser using the high-frequency sinusoidal current described in the above means is used to convert the current pulse width to 11. Although it is possible to obtain a single optical pulse without relaxation oscillation because of the small value of oscillation, it is also possible to obtain an optical pulse with a large peak output by increasing the current amplitude.The optical pulse emitted from this semiconductor laser is wavelength converted. When coupled to the optical switch part of the element, when the optical switch is on, the optical pulse is coupled to a three-dimensional optical waveguide and wavelength converted, and no second harmonic pulse is generated.On the other hand, when the optical switch is off, the optical pulse is three-dimensional. Therefore, by switching the electrical pulse that operates the optical switch in synchronization with the high-frequency distorted sinusoidal current that performs the gain switch, it is possible to generate any second harmonic Figure 7 shows the relationship between the waveforms of the high frequency sinusoidal current, the semiconductor laser light pulse, the electrical pulse to the optical switch, and the second harmonic pulse.
実施例
第1図は、 本発明の第1の実施例による超短光パルス
発生装置の概略構成を示すものであって、9は波長0.
83μmの半導体レーザ、10は波長変換素子、11は
制御電機12は光導波應13は光スイッチである。半導
体レーザ9はしきい値電流にバイアスされ 高周波正弦
波電流を重畳して利得スイッチされも 第2図番へ 正
弦波電流の周波数を6゜OMHz、 1.2GHz、
1.6GHzとしたときの半導体レーザからの出射光パ
ルス波形を示す。電流振幅は、 半導体レーザからの平
均光出力が定格最大出力40mWとなるように調整した
周波数600MHzときには電流パルス幅が大きいた
め緩和振動が発生しており、第1パルスのピーク出力も
小さ践 周波数I GHz以上では単一パルスが得られ
周波数1.2GHzのとき最大ピーク出力11.パル
ス幅201)Sの光パルスが得られた さらに周波数を
高くすると平均光出力を401mに保つために光ピーク
出力を小さくしなければならなくなってしまう。Embodiment FIG. 1 shows a schematic configuration of an ultrashort optical pulse generator according to a first embodiment of the present invention, in which 9 indicates a wavelength of 0.
An 83 μm semiconductor laser, 10 a wavelength conversion element, 11 a control electric machine 12, and an optical waveguide 13 an optical switch. The semiconductor laser 9 is biased to the threshold current and gain switched by superimposing a high frequency sine wave current.
The waveform of the light pulse emitted from the semiconductor laser when the frequency is 1.6 GHz is shown. The current amplitude was adjusted so that the average optical output from the semiconductor laser was the rated maximum output of 40 mW.At a frequency of 600 MHz, relaxation oscillation occurred because the current pulse width was large, and the peak output of the first pulse was also small. Above GHz, a single pulse is obtained, and at a frequency of 1.2 GHz, the maximum peak output is 11. An optical pulse with a pulse width of 201) S was obtained.If the frequency was further increased, the optical peak output would have to be reduced in order to maintain the average optical output at 401 m.
波長変換素子10の光スイッチ131;& Z−カッ
トのMgOドープLiNbO5基板上にビロリン酸によ
るプロトン交換法で形成された三次元光導波路からなる
分岐干渉型のものであム 本実施例の光スイッチの半波
長電圧は5vであり、制御電極11に5■の電位差を与
えておくと光スイッチはオフ状態であり、電圧パルスに
より電位差をOvとする光スイッチはオン状態となった
波長変換素子10の光導波路12は光スイッチ13と同
様にプロトン交換法により形成されていも プロトン交
換による光導波路は屈折率差が大きいため光の閉じ込め
が強いた敢 効率の良い波長変換が可能であっな
周波数1.2GHzの正弦波電流で利得スイッチされた
ピーク出力IWの半導体レーザ光パルスをNA−0゜3
のコリメートレンズで平行光とニ λ/2板を通したi
NA−0,6の集光レンズで波長変換素子10に結
合することにより、ピーク出力5 mW、パルス幅12
pSの波長0.415μmの第二高調波パルスがチェレ
ンコフ放射をして得られた
1、2GHzの高周波電流と同期した電圧パルスで光ス
イッチ13をスイッチすることにより、最小周波数10
MHzまでピーク出力5 mW、パルス幅12psの単
一パルス形状の第二高調波パルスを得ることができ九
第3図は本発明の第2の実施例による波長可変型の超短
光パルス発生装置の概略構成を示すものであって、14
は回折格子であり、半導体レーザ素子15からの出射光
をフィードバックすることにより、外部共振器を構成し
ていも 他は第1の実施例と同様の構成である。半導体
レーザ素子15は周波数C/2L(C: 光速 L:外
部共振器長)の正弦波電流で変調することによりモード
同期されて超短光パルスが発生する。回折格子を用いた
外部共振器レーザのモード同期法では 第1の実施例で
述べた利得スイッチ法に比べて、パルス幅およびスペク
トル幅の狭い超短光パルスを得ることができ、回折格子
14の角度を調整することにより、外部共振器レーザの
発振波長を変化することができも
本実施例では外部共振器長を約16cmとり、 90
0MHzで半導体レーザ素子15を変調することにより
、パルス輻15psスペクトル幅0.4r+mの超短光
パルスが得られた また回折格子の角度を調整すること
により発振波長を0.8μmから0.84μmまで変化
することができへ このとき、ピーク出力が最大となる
ように外部共振器長を微調し九 このようにして得られ
た超短光パルスを第1の実施例と同様に波長変換素子1
0に結合することにより、波長0.405μmから0.
42μmまで可変でパルス幅10psの第二高調波パル
スが得られた 第4図に第1および第2の実施例で得ら
れた第二高調波パルスのスペクトルを示す。第2の実施
例ではスペクトル幅の狭いコヒーレンスの良い超短光パ
ルスが得られていることがわかム
第5図に第3の実施例の波長変換素子の構成を示す。本
実施例でC友 波長変換素子10の光スイッチ13が
方向性結合器型となっていも 方向性結合器は第1の実
施例で示した分岐干渉型のように曲がりや斜め導波路を
必要とせずに直線導波路で構成できるた敢 作製が容易
であり、斜め導波路部分でのロスもないた数 効率よく
光導波路12に光を結合することができへ
第6図に第4の実施例の波長変換素子の構成を示す。本
実施例でζよ 波長変換素子10の光スイッチ13がT
E−TMモード変換器となっていム 光導波路12i友
TMモードが結合された時には波長変換される力<、T
Eモードは伝搬しないた&TE−TMのモードスイッチ
によっても光導波路12へ結合する光スイッチすること
が可能であったなお実施例1〜4では非線形光学効果を
有する基板としてLiNbO5を用いた力t 他にLi
TaO5、KNbOs、KTPなどの強誘電i MN
Aなどの有機物質を用いることもできも また光導波路
としてプロトン交換光導波路を用いた力交 他に拡散、
イオン注入光導波路でもよ(を
発明の効果
以上の説明から明らかなよう置 本発明は 高いピーク
出力を持った高速の単一超短光パルスを波長変換素子に
結合し 波長変換を行う光導波路に結合する光パルスを
光スイッチで選択することにより、任意の周期の第二高
調波パルスを効率よく得ることが可能になるという効果
を有する。高周波の場合には光情報処理分野における高
速の短波長光源として、また低周波の場合には 蛍光寿
命の測定等の励起用光源として有効であり、波長可変型
の超短光パルス発生装置は、 フォトケミカルホールバ
ーニングを利用した光メモリ等の光源として有効であ4The optical switch 131 of the wavelength conversion element 10 is a branching interference type optical switch consisting of a three-dimensional optical waveguide formed by a proton exchange method using birophosphoric acid on a &Z-cut MgO-doped LiNbO5 substrate. The half-wave voltage of is 5V, and if a potential difference of 5cm is applied to the control electrode 11, the optical switch is in the OFF state, and the optical switch whose potential difference is set to Ov by the voltage pulse is in the ON state of the wavelength conversion element 10. Although the optical waveguide 12 is formed by the proton exchange method like the optical switch 13, the optical waveguide using proton exchange has a large difference in refractive index, so the light is forced to be confined, so efficient wavelength conversion is not possible. A semiconductor laser light pulse with a peak output IW that was gain switched with a .2 GHz sine wave current was set to NA-0°3.
Parallel light and i passed through a λ/2 plate with a collimating lens.
By coupling to the wavelength conversion element 10 with a condenser lens of NA-0.6, a peak output of 5 mW and a pulse width of 12
By switching the optical switch 13 with a voltage pulse synchronized with a high frequency current of 1.2 GHz obtained by Cherenkov radiation of a second harmonic pulse with a wavelength of 0.415 μm in pS, the minimum frequency of 10
It is possible to obtain a single-pulse second harmonic pulse with a peak output of 5 mW and a pulse width of 12 ps up to MHz. Fig. 3 shows a wavelength tunable ultrashort optical pulse generator according to a second embodiment of the present invention. This shows the schematic configuration of 14
is a diffraction grating and constitutes an external resonator by feeding back the light emitted from the semiconductor laser element 15.The other structure is the same as that of the first embodiment. The semiconductor laser element 15 is mode-locked by modulating with a sinusoidal current having a frequency of C/2L (C: speed of light, L: external resonator length) to generate ultrashort optical pulses. In the mode-locking method of an external cavity laser using a diffraction grating, it is possible to obtain an ultrashort optical pulse with a narrower pulse width and spectral width than in the gain switching method described in the first embodiment. By adjusting the angle, the oscillation wavelength of the external resonator laser can be changed. In this example, the external resonator length is approximately 16 cm.
By modulating the semiconductor laser element 15 at 0 MHz, an ultrashort optical pulse with a pulse radiation of 15 ps and a spectral width of 0.4 r+m was obtained. Furthermore, by adjusting the angle of the diffraction grating, the oscillation wavelength was changed from 0.8 μm to 0.84 μm. At this time, the external resonator length is finely adjusted so that the peak output is maximized.
By coupling to 0, the wavelength ranges from 0.405 μm to 0.
A second harmonic pulse variable up to 42 μm and a pulse width of 10 ps was obtained. FIG. 4 shows the spectrum of the second harmonic pulse obtained in the first and second examples. It can be seen that in the second embodiment, an ultrashort optical pulse with a narrow spectrum width and good coherence is obtained. FIG. 5 shows the configuration of the wavelength conversion element of the third embodiment. In this embodiment, even if the optical switch 13 of the wavelength conversion element 10 is a directional coupler type, the directional coupler requires a bend or an oblique waveguide like the branching interference type shown in the first embodiment. It is easy to fabricate, and there is no loss in the diagonal waveguide portion. Light can be efficiently coupled to the optical waveguide 12. Figure 6 shows the fourth implementation. The configuration of an example wavelength conversion element is shown. In this embodiment, the optical switch 13 of the wavelength conversion element 10 is T
It becomes an E-TM mode converter. When the optical waveguide 12i and the TM mode are coupled, the wavelength conversion force <, T
Although the E mode did not propagate, it was also possible to perform an optical switch to couple it to the optical waveguide 12 by using a TE-TM mode switch. In Examples 1 to 4, LiNbO5 was used as a substrate having a nonlinear optical effect. niLi
Ferroelectric i MN such as TaO5, KNbOs, KTP
It is also possible to use organic substances such as A.Also, it is possible to use a proton exchange optical waveguide as an optical waveguide.
Effects of the InventionAs is clear from the above explanation, the present invention is an optical waveguide that couples a single high-speed ultrashort optical pulse with a high peak output to a wavelength conversion element to perform wavelength conversion. By selecting the optical pulses to be combined using an optical switch, it has the effect of making it possible to efficiently obtain second harmonic pulses of arbitrary periods.In the case of high frequencies, it is possible to efficiently obtain second harmonic pulses with arbitrary periods. It is effective as a light source, and in the case of low frequencies, it is effective as an excitation light source for measurements of fluorescence lifetime, etc. The wavelength tunable ultrashort optical pulse generator is effective as a light source for optical memories using photochemical hole burning, etc. A4
第1図は本発明の第1の実施例による超短光パルス発生
装置の概略構成@ 第2図は第1の実施例における半導
体レーザからの出射光パルス波形医 第3図は本発明の
第2の実施例による波長可変型の超短光パルス発生装置
の概略構成図 第4図は第1および第2の実施例で得ら
れた第二高調波パルスのスペクトルを示す医 第5図は
第3の実施例による波長変換素子の概略斜視医 第6図
は第4の実施例による波長変換素子の概略斜視医第7図
は高周波正弦波電九 半導体レーザ光パル入光スイッチ
への電気パルスおよび第二高調波パルスの波形の関係医
第8図は従来例による超短光パルス発生装置の概略構
成図である。
9・・・・半導体レーサミ10・・・・波長変換素子、
11・・・・制御電板12・・・・光導波路13・・・
・光スイッチ、14・・・・回折格子、15・・・・半
導体レーザ素子。
代理人の氏名 弁理士 小鍜冶 明 ほか2名画
宣 −
硝 2 図
(41#IpHHz
1間
Lb) /、 2 oaz
8ir問
(C)/乙6け2
uff
第4図
p第fの寅1匣イク11;よる男二窩l側5iハΦlレ
スのスヘ0クトIし4/5
41111
4υ
凛米 (s #L )
(0第Zめ寛オ攪シ、伊1+=よる第二高幌二皮ハ0ル
スのスべりl+し4、Lt’
4/; 42
θ已gと42 (倦りパノ
gヒ 伽W
4N/ II
屹
L 錬
呻 蓋ゝ
璽 軸
!
Q 訃
第7図
II−vI′lFI
&+関
11引■
第8図
Z二F!長笈隷蒋jFigure 1 is a schematic configuration of an ultrashort optical pulse generator according to a first embodiment of the present invention. A schematic diagram of the wavelength tunable ultrashort optical pulse generator according to the second embodiment. FIG. 4 shows the spectrum of the second harmonic pulse obtained in the first and second embodiments. Fig. 6 is a schematic perspective view of the wavelength conversion element according to the fourth embodiment. Fig. 7 is a schematic perspective view of the wavelength conversion element according to the fourth embodiment. FIG. 8 is a schematic diagram of a conventional ultrashort optical pulse generator. 9...Semiconductor LASAMI 10...Wavelength conversion element,
11... Control electric board 12... Optical waveguide 13...
- Optical switch, 14...diffraction grating, 15... semiconductor laser element. Name of agent: Patent attorney Akira Kodaji and 2 other people Illustrations - 2 illustrations (41#IpHHz 1Lb) /, 2 oaz 8ir question (C) / Otsu 6 ke 2 uff Fig. 4 P No. F Tora 1 box Iku 11; Two male two-hole l side 5i Φl-less suhe 0 ct I 4/5 41111
4υ
Rinmai (s #L) (0th Zme Kanoshi, I1+ = Yoru second Takahoro second skin ha 0rus' slip l+shi4, Lt'
4/; 42
θ已g and 42 (Fatigue pano ghi 伽W 4N/ II 屹L Ren groan lid ゝ璽 axis! Q 訃 7th figure II-vI'lFI &+Seki 11 pull■ 8th figure Z2F! Nagatorei Chiang J.
Claims (4)
えた三次元光導波路により形成された光スイッチと前記
光スイッチと光学的に結合された三次元光導波路を備え
たことを特徴とする波長変換素子。(1) A substrate having a nonlinear optical effect is provided with an optical switch formed by a three-dimensional optical waveguide having a control electrode and a three-dimensional optical waveguide optically coupled to the optical switch. Wavelength conversion element.
結合器型スイッチ又はTE−TMモード変換器であるこ
とを特徴とする特許請求の範囲第1項記載の波長変換素
子。(2) The wavelength conversion element according to claim 1, wherein the optical switch is a branching interference type optical switch, a directional coupler type switch, or a TE-TM mode converter.
波長変換素子が光学的に結合された構造を備え、前記半
導体レーザは高周波正弦波電流で利得スイッチされて超
短光パルスを発生し、前記波長変換素子の光スイッチが
前記高周波正弦波電流と同期した任意の周波数の電気信
号でスイッチされ、前記超短光パルスのうち前記波長変
換素子の三次元光導波路に結合した超短光パルスが前記
三次元光導波路で波長変換されることを特徴とする超短
光パルス発生装置。(3) A structure is provided in which a semiconductor laser device and the wavelength conversion element according to claim 1 are optically coupled, and the semiconductor laser is gain-switched by a high-frequency sinusoidal current to generate ultrashort optical pulses. , the optical switch of the wavelength conversion element is switched by an electrical signal of an arbitrary frequency synchronized with the high frequency sinusoidal current, and the ultrashort optical pulse is coupled to the three-dimensional optical waveguide of the wavelength conversion element among the ultrashort optical pulses. An ultrashort optical pulse generator, characterized in that the wavelength of the optical pulse is converted by the three-dimensional optical waveguide.
波長変換素子が光学的に結合された構造を備え、前記半
導体レーザ装置は、半導体レーザ素子と回折格子を備え
た外部共振器型レーザであり、前記半導体レーザ素子が
、周波数C/2L(C:光速、L:外部共振器長)の正
弦波電流で変調することによりモード同期されて超短光
パルスを発生し、前記回折格子の角度を制御することに
より外部共振器型レーザの発振波長を可変し、前記波長
変換素子の光スイッチが前記正弦波電流と同期した任意
の周波数の電気信号でスイッチされ、前記超短光パルス
のうち前記波長変換素子の三次元光導波路に結合した超
短光パルスが前記三次元光導波路で波長変換されること
を特徴とする波長可変型超短光パルス発生装置。(4) A semiconductor laser device is provided with a structure in which a wavelength conversion element according to claim 1 is optically coupled, and the semiconductor laser device is an external cavity laser including a semiconductor laser device and a diffraction grating. The semiconductor laser element is mode-locked by modulating with a sinusoidal current of frequency C/2L (C: speed of light, L: external cavity length) to generate ultrashort optical pulses, and The oscillation wavelength of the external cavity laser is varied by controlling the angle, and the optical switch of the wavelength conversion element is switched by an electrical signal of an arbitrary frequency synchronized with the sine wave current, and the ultrashort optical pulse is A wavelength tunable ultrashort optical pulse generator, characterized in that an ultrashort optical pulse coupled to a three-dimensional optical waveguide of the wavelength conversion element is wavelength-converted by the three-dimensional optical waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29577890A JPH04168431A (en) | 1990-10-31 | 1990-10-31 | Wavelength converting element and ultra short optical pulse generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29577890A JPH04168431A (en) | 1990-10-31 | 1990-10-31 | Wavelength converting element and ultra short optical pulse generating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04168431A true JPH04168431A (en) | 1992-06-16 |
Family
ID=17825036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29577890A Pending JPH04168431A (en) | 1990-10-31 | 1990-10-31 | Wavelength converting element and ultra short optical pulse generating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04168431A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5481636A (en) * | 1991-05-02 | 1996-01-02 | Ricoh Company, Ltd. | Wavelength conversion element |
-
1990
- 1990-10-31 JP JP29577890A patent/JPH04168431A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5481636A (en) * | 1991-05-02 | 1996-01-02 | Ricoh Company, Ltd. | Wavelength conversion element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Harris | Tunable optical parametric oscillators | |
JP2003015175A (en) | Solid-state light source apparatus | |
US12212114B2 (en) | Method and system using optical phase modulation and optical phase demodulation and spectral filtering to generate an optical pulse train | |
Huang et al. | Generation of triangular pulses based on an optoelectronic oscillator | |
Kürz et al. | Bright squeezed light by second-harmonic generation in a monolithic resonator | |
Yu et al. | Femtosecond pulse generation via an integrated electro-optic time lens | |
Lassen et al. | Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier | |
Zayhowski | Microchip optical parametric oscillators | |
JP4017116B2 (en) | Terahertz light generator | |
JP3404528B2 (en) | Optical frequency converter using multiplication modulation | |
Siegman et al. | Proposed method for measuring picosecond pulsewidths and pulse shapes in cw mode-locked lasers | |
JPH04168431A (en) | Wavelength converting element and ultra short optical pulse generating device | |
JP2004020870A (en) | Wavelength conversion element and wavelength conversion apparatus | |
CN214176410U (en) | Microwave frequency comb generating device based on double-light injection semiconductor laser | |
Jiang et al. | Synchronously pumped femtosecond optical parametric oscillator based on an improved pumping concept | |
CN115133387A (en) | Apparatus and method for generating multi-frequency coherent laser light | |
Aytur et al. | Plane-wave theory of self-doubling optical parametric oscillators | |
Poulin et al. | Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using/sup 87/Rb D/sub 2/-line and second harmonic generation | |
CN112803239A (en) | Microwave frequency comb generating device based on double-light injection semiconductor laser | |
Ohya et al. | Generation of picosecond blue light pulse by frequency doubling of gain-switched GaAlAs laser diode having saturable absorber | |
Myers et al. | Progress in quasi-phase-matched optical parametric oscillators using periodically poled LiNbO3 | |
Zhang et al. | Optical Frequency Comb Generation Mechanism and Application | |
US5870416A (en) | Semi-monolithic ring cavity for second harmonic generation of laser frequency | |
Ababaike et al. | Mid-infrared 3.468 μm optical vortex parametric oscillator based on KTA | |
Fluck et al. | Cascaded lens waveguiding for efficient second-harmonic generation in KNbO/sub 3 |