[go: up one dir, main page]

JPH04167602A - Wave absorber - Google Patents

Wave absorber

Info

Publication number
JPH04167602A
JPH04167602A JP28839890A JP28839890A JPH04167602A JP H04167602 A JPH04167602 A JP H04167602A JP 28839890 A JP28839890 A JP 28839890A JP 28839890 A JP28839890 A JP 28839890A JP H04167602 A JPH04167602 A JP H04167602A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
loss
loss material
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28839890A
Other languages
Japanese (ja)
Other versions
JP2666560B2 (en
Inventor
Takeshi Ishino
石野 健
Yasuo Hashimoto
康雄 橋本
Hiroshi Kurihara
弘 栗原
Yoshito Hirai
義人 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2288398A priority Critical patent/JP2666560B2/en
Publication of JPH04167602A publication Critical patent/JPH04167602A/en
Application granted granted Critical
Publication of JP2666560B2 publication Critical patent/JP2666560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Reversible Transmitting Devices (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To provide a thin radio wave absorber superior in radio wave absorptive characteristic over a broad band by arranging a resistance film at the front of a loss material whose magnetic loss tandelta is mu<2 and thickness is 1/4 of the in-medium wavelength whose lambdag, and furthermore, arranging the loss material at the front. CONSTITUTION:The wave absorptive characteristic which compensates a resistance component and that is thin and superior in a low frequency area can be obtained by arranging the resistance film 11 at the front of the loss material 12 with magnetic loss tandeltamu<2, and furthermore, and the making of it into the broad band can be attained by providing a loss material layer with thickness thinner than that of the loss material 12 at the front. The resistance R component of impedance can be mainly adjusted by attaching the resistance film 11 on the loss material 12, and matching in the neighborhood of 1/4(lambda0/Re(mugamma.epsilongamma)) that is 1/4 the in-medium wavelength lambdag can be obtained. Where, wavelength in free space is assumed as lambda0, the complex relative permeability of the loss material as mugamma, the relative complex dielectric constant of the loss material as epsilongamma, and the (mugamma, epsilongamma)<1/2> real number part of complex number as Re(mugamma.epsilongamma)<1/2>. In such a way, superior wave absorptive characteristic can be obtained by widely adjusting sheet resistivity (impedance).

Description

【発明の詳細な説明】 (産業上の利用) テレビゴースト防止用に用いる電波吸収体および列車無
線関係・空港船舶通信関係に用いる電波吸収体に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application) The present invention relates to a radio wave absorber used for preventing television ghosts and a radio wave absorber used for train radio/airport/ship communication.

(従来の技術) テレビゴースト障害対策用や電波暗室用に、数MHzか
ら数千MHzの周波数帯における電波吸収体としてフェ
ライト焼結体が用いられている。
(Prior Art) A ferrite sintered body is used as a radio wave absorber in a frequency band of several MHz to several thousand MHz for TV ghost interference countermeasures and radio anechoic chambers.

これは、磁気損失tanδμが3より大きく非常に薄型
である特徴を有していると共に極めて広帯域な特性を有
している。しかし、大きさが100 mmX100 m
+a程度のタイル状でありその施工に際して貼りつけて
いく手間や割れやすい問題点がある。それに対して、フ
ェライト粉末やカーボン粉末をゴムや樹脂に混合した複
合材料が数千MHz以上の周波数帯で用いられている。
This has a magnetic loss tan δμ of more than 3 and is very thin, and also has an extremely wide band characteristic. However, the size is 100 mm x 100 m
It is in the form of a tile with a size of +A, and there are problems with the installation process, such as the hassle of pasting it up and the fact that it is easily broken. On the other hand, composite materials in which ferrite powder or carbon powder is mixed with rubber or resin are used in frequency bands of several thousand MHz or more.

この電波吸収体(従来例)の構造の一例を第10図に示
す。
An example of the structure of this radio wave absorber (conventional example) is shown in FIG.

これは磁気損失tanδμが2以下であり高周波領域で
有効である。しかし、低周波数で用いる場合、非常に厚
くなるという問題点がある。また、比較的有効な周波数
帯域が狭いという欠点がある。一方、反射体から自由空
間の波長の174の位置に抵抗膜を形成したλ/4型電
波吸収体があるが、低周波の波長の長い領域では厚いと
いう問題点がある。
This has a magnetic loss tan δμ of 2 or less and is effective in a high frequency region. However, when used at low frequencies, there is a problem in that it becomes very thick. Another disadvantage is that the effective frequency band is relatively narrow. On the other hand, there is a λ/4 type radio wave absorber in which a resistive film is formed at a wavelength of 174 in free space from the reflector, but it has the problem that it is thick in the long wavelength region of low frequencies.

(発明が解決しようとする課題) フェライト焼結体の貼りつけていく手間や割れやすい問
題点を解決するフェライト粉体をゴムに混合した複合磁
性材料はそのtanδμが2以下と小さいので低周波領
域で有効な電波吸収特性をもつには厚さが厚くなってし
まい薄型とすることが望まれている。また、λ/4型電
波吸収体の低周波において電波吸収特性を得るには厚さ
が厚いという問題点を解決し薄型化することが望まれて
いる。いずれの場合にも低周波領域で薄型化すると共に
広帯域な周波数範囲で有効な電波吸収特性をもたせるこ
とが望まれている。
(Problem to be solved by the invention) A composite magnetic material made by mixing ferrite powder with rubber, which solves the problem of the trouble of attaching ferrite sintered bodies and the tendency to break, has a small tan δμ of 2 or less, so it can be used in low frequency regions. In order to have effective radio wave absorption characteristics, the thickness must be thick, so it is desired to make it thinner. Furthermore, it is desired to solve the problem of the thick thickness of the λ/4 type radio wave absorber in order to obtain radio wave absorption characteristics at low frequencies, and to reduce the thickness of the λ/4 type radio wave absorber. In either case, it is desired to reduce the thickness in the low frequency region and to provide effective radio wave absorption characteristics in a wide frequency range.

本発明は、これらの問題を解決するためのもので損失が
小さい材料を用いて低周波領域においても薄型で広帯域
な特性を有する電波吸収体を提供することを目的とする
The present invention is intended to solve these problems, and an object of the present invention is to provide a radio wave absorber that is thin and has broadband characteristics even in a low frequency region, using a material with low loss.

(課題を解決するための手段) 本発明は前記問題点を解決するために磁気損失tanδ
μが2以下の損失材料の前面に抵抗膜を配置することに
よりレジスタンス成分を補ない薄型で低周波領域におい
て優れた電波吸収特性を得ると共にさらにその前面に前
記損失材料の厚さより薄い損失材料層を設けることによ
り広帯域化をはかるように工夫したものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides magnetic loss tan δ
By arranging a resistive film on the front surface of a lossy material with μ of 2 or less, it is thin and has excellent radio wave absorption characteristics in the low frequency region without compensating for the resistance component, and in addition, a lossy material layer thinner than the thickness of the lossy material is provided in front of it. It was devised to provide a wide band by providing the following.

(作用) 損失係数tanδμ(μr゛/μr’)が2以下である
損失材料は、その厚さが比較的薄い場合インピーダンス
のレジスタンスR成分が大きく整合が得られにくい。そ
のため、整合を得るためには3/4λ(媒質的波長)付
近の厚さとなり一例として100MH2では厚さが約3
0c+a以上となる。但し、tanδμが0.1より小
さい場合損失が得られないため有効な電波吸収特性を得
ることができない。
(Function) When a loss material having a loss coefficient tan δμ (μr゛/μr') of 2 or less has a relatively thin thickness, the resistance R component of impedance is large and matching is difficult to obtain. Therefore, in order to obtain matching, the thickness must be around 3/4λ (medium wavelength), and for example, for 100MH2, the thickness is approximately 3
It becomes 0c+a or more. However, if tan δμ is smaller than 0.1, no loss can be obtained and effective radio wave absorption characteristics cannot be obtained.

上記損失材料に抵抗体(膜)を付加させることにより主
としてインピーダンスのレジスタンスR成分を調整し、
厚さがその媒質的波長λgの174である1/4(λo
 / Re (々T]−71−) )付近で整合させる
ことができる。ここでλ。は自由空間中の波長、prは
損失材料の複素比透磁率、εrは損失材料の複素比誘電
率、Re(m )は複素数2の実数部である。この考え
方の概念は金属板から見たインピーダンス(377Ω)
に等しい抵抗体(111)を置く構造であるλ/4型電
波吸収体の原理を応用しており、この反射体と抵抗膜の
間に上記損失材料を配置し、面抵抗値は377Ωより大
きく面抵抗値(インピーダンス)を調整して優れた電波
吸収特性を得るものである。
By adding a resistor (film) to the lossy material, the resistance R component of impedance is mainly adjusted,
1/4 (λo
/ Re (T]-71-) ) can be matched. Here λ. is the wavelength in free space, pr is the complex relative permeability of the lossy material, εr is the complex relative dielectric constant of the lossy material, and Re(m 2 ) is the real part of the complex number 2. The concept of this idea is the impedance (377Ω) seen from the metal plate.
It applies the principle of a λ/4 type radio wave absorber, which has a structure in which a resistor (111) equal to Excellent radio wave absorption characteristics are obtained by adjusting the sheet resistance value (impedance).

上記のことをインピーダンスのスミスチャート上で説明
する。損失係数が小さい材料を反射体に取付けた構造の
場合前面から見た入力インピーダンスは第5図のaのよ
うに高いインピーダンスの領域を変化する。抵抗膜を取
り付けることによりレジスタンスR成分が小さくなり矢
印のようなインピーダンス変化をするため整合条件であ
るZ=1を通過する条件が得られる。また、ここで複素
比透磁率、複素比誘電率の周波数特性を考慮し、厚さお
よび面抵抗値の最適化を行うものである。
The above will be explained using an impedance Smith chart. In the case of a structure in which a material with a small loss coefficient is attached to the reflector, the input impedance seen from the front changes to a high impedance region as shown in a of FIG. By attaching the resistive film, the resistance R component becomes smaller and the impedance changes as shown by the arrow, so that a condition for passing Z=1, which is a matching condition, is obtained. Also, the frequency characteristics of complex relative magnetic permeability and complex relative permittivity are taken into consideration to optimize the thickness and sheet resistance value.

さらに上記薄型化電波吸収体を広帯域化させるために、
抵抗膜として上記の場合より低い面抵抗値のものを用い
前面から見た入力インピーダンスをZ=1より低いイン
ピーダンスにし、その前面に損失材料を配置して2層構
造とすることによりインピーダンスをシ=1とすると共
に第6図に示すように周波数変化に対するインピーダン
スの動きを小さくして、広帯域特性を実現する。
Furthermore, in order to widen the band of the thinned radio wave absorber,
The impedance can be reduced by using a resistive film with a lower sheet resistance value than in the above case, making the input impedance seen from the front lower than Z = 1, and by placing a lossy material on the front side to create a two-layer structure. 1, and the movement of impedance with respect to frequency changes is made small as shown in FIG. 6, thereby realizing broadband characteristics.

なお、用いる面抵抗値は、50Ω口より小さくなると金
属反射近くなり十分な電波吸収特性が得られなく、30
000口より大きくなるとほとんど効果が得られなくな
る。
Note that when the sheet resistance value used is smaller than 50Ω, it becomes close to metallic reflection and sufficient radio wave absorption characteristics cannot be obtained;
If it is larger than 000 mouths, almost no effect will be obtained.

また、フェライト粒子をコンクリートに混合した磁気損
失材料にカーボン、金属繊維等を混合することにより高
い誘電率を得ることができ、さらに薄型化がはかれる。
In addition, by mixing carbon, metal fibers, etc. with a magnetic loss material made by mixing ferrite particles with concrete, a high dielectric constant can be obtained, and further thinning can be achieved.

磁気損失材料のかわりにカーボン、金属繊維等を混合し
たコンクリートによりそのオーム損失を利用することで
前記電波吸収体を構成することが可能である。
It is possible to construct the radio wave absorber by using concrete mixed with carbon, metal fibers, etc. instead of the magnetic loss material and utilizing the ohmic loss thereof.

一方、損失材料と抵抗膜の組合せを多層に構成すること
により、さらに広帯域な周波数範囲にわたり優れた電波
吸収特性を得ることかできる。その構成の例を第4図に
示す。
On the other hand, by forming a multilayer combination of lossy material and resistive film, it is possible to obtain excellent radio wave absorption characteristics over a wider frequency range. An example of its configuration is shown in FIG.

実施例(1) 第1図は本発明の一実施例の電波吸収壁の構造図である
。コンクリートにフェライト粒子径的31111を約4
0vo1%混合した磁性材料を作製した。
Embodiment (1) FIG. 1 is a structural diagram of a radio wave absorption wall according to an embodiment of the present invention. Approximately 4 ferrite particles of 31111 in diameter are added to concrete.
A magnetic material mixed with 0vol.1% was prepared.

材料定数の測定の結果を第7図に示す。130MHzの
材料定数はμr’=8 μr” =3 tr’=8 t
r”=0.1であり、tanδμは2以下の材料である
The results of the measurement of material constants are shown in FIG. The material constants at 130MHz are μr'=8 μr” =3 tr’=8 t
r''=0.1, and tan δμ is 2 or less.

また、その媒質内波長λgは約300■である。そのλ
g/4の厚さ70mmのものを製作した。その前面に線
抵抗値35に07mの抵抗線を間隔11.17.23■
に格子状に編んだ面抵抗値400,600,800Ω口
の3種類の抵抗布を用意し各々を磁性材料の前面に取り
付は電波吸収特性を測定した結果を第8図に示す。尚、
抵抗布を取り付けない場合を実線で示した。これらの結
果から面抵抗値600Ω口で130M)Izの反射係数
は一30dB以下となり優れた特性が得られた。抵抗布
を取り付けない場合的300Hの厚さで一20dB以下
の反射係数であり、抵抗布を取り付けることにより約7
0■で同等以上の特性が得られることから本発明による
電波吸収体は従来の約1/4の厚さに薄くなっている。
Further, the wavelength λg in the medium is approximately 300 . that λ
A material with a thickness of 70 mm and a weight of 70 mm was manufactured. In front of it, wire resistance value 35 and 07m resistance wire with interval 11.17.23■
Three types of resistance cloths with sheet resistance values of 400, 600, and 800 Ω were prepared in a lattice pattern, each was attached to the front of a magnetic material, and the radio wave absorption characteristics were measured. The results are shown in FIG. still,
The solid line indicates the case where no resistance cloth is attached. From these results, the reflection coefficient of 130 M) Iz was less than -30 dB with a sheet resistance of 600 Ω, and excellent characteristics were obtained. When the resistance cloth is not attached, the reflection coefficient is less than -20dB at a thickness of 300H, and when the resistance cloth is attached, the reflection coefficient is about 7.
Since the same or better characteristics can be obtained at 0.0 cm, the radio wave absorber according to the present invention is thinner to about 1/4 of the thickness of the conventional one.

実施例(2) 実施例(1)で作製した磁性材料の前面に前記抵抗線を
14mm間隔に格子状に編んだ面抵抗値約500Ω口を
取り付け、さらにその前面にコンクリートにフェライト
を混合した複合材料を取付けた2層型の電波吸収体の一
実施例を第2図に示す。
Example (2) On the front surface of the magnetic material produced in Example (1), a sheet resistance wire of about 500 Ω made of the resistance wires woven in a lattice shape at 14 mm intervals was attached, and a composite made of concrete mixed with ferrite was attached to the front surface. An example of a two-layer radio wave absorber with attached materials is shown in FIG.

その結果、前面にコンクリートにフェライトを混合した
複合材料の厚さを20m1iとした場合の特性を測定し
た結果、電波吸収特性は第9図のように得られた。この
ことから100MHz〜450MHzで−15dB以下
の広帯域な特性が得られた。
As a result, we measured the characteristics when the thickness of the composite material made of concrete and ferrite mixed on the front surface was 20 m1i, and the radio wave absorption characteristics were obtained as shown in FIG. From this, a broadband characteristic of -15 dB or less was obtained from 100 MHz to 450 MHz.

また、この2層構造の電波吸収体の前面に厚さ8mmの
磁器タイルを取り付けて電波吸収特性を測定した結果、
高い周波数で2dB程度特性が悪くなるだけで優れた特
性を示しており、外観的にも優れる電波吸収体が得られ
た。第3図にその構造図を示す。
In addition, as a result of measuring the radio wave absorption characteristics by attaching an 8 mm thick porcelain tile to the front of this two-layered radio wave absorber,
A radio wave absorber was obtained which exhibited excellent characteristics with only a 2 dB deterioration in characteristics at high frequencies and was also excellent in appearance. Figure 3 shows its structural diagram.

(発明の効果) 以上説明したように、本発明はtanδμが2より小さ
い損失材料の厚さが媒質内波長λgの174の前面に抵
抗膜を配置することにより極めて薄型で優れた電波吸収
性能を発揮する効果を有すると共に、前記構成のさらに
前面に損失材料を配置することにより広帯域に優れた電
波吸収特性を有する効果。
(Effects of the Invention) As explained above, the present invention has an extremely thin structure and excellent radio wave absorption performance by arranging a resistive film in front of the 174-wavelength loss material having a thickness of tan δμ less than 2 and having an internal wavelength λg. In addition, by arranging a lossy material on the front side of the structure, it has an effect of having excellent radio wave absorption characteristics over a wide band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例(1)の電波吸収体を示す図
、 第2図は本発明の一実施例(2)の電波吸収体を示す図
、 第3図は本発明の一実施例(2)の別な構造の電波吸収
体を示す図、 第4図は本発明の多層型電波吸収体を示す図、第5図は
本発明の作用原理を示すスミスチャート図、 第6図は別な本発明の作用原理を示すスミスチャート図
、 第7図は損失材料の材料定数の一例を示す図、第8図は
本発明の一実施例(1)の電波吸収特性を示す図、 第9図は本発明の一実施例(2)の電波吸収特性を示す
図、 第10図は従来の電波吸収体を示す図である。 11.21,31.41 ・拳・ 抵抗膜12、22,
32.42.102 奉・・損失材料13、23.33
.43.103 ・・・電波反射体34・・・外装材 A・・・抵抗布を取付けない場合(厚さ70+u+)B
・・・損失体70■璽+面抵抗値Rs = 400Ω口
C* * *損失体70mm十面抵抗値Rs = 60
0Ω□D・・・損失体70+sm十面抵抗値Rs÷80
00口E 11 e @損失体70mm十面抵抗値Rs
 = 400Ω口+損失体20mm F・・・損失体70mm十面抵抗値Rs = 5000
口+損失体20iu G・・・損失体70■■十面抵抗値Rs = 600Ω
□十損失体20■鳳
FIG. 1 is a diagram showing a radio wave absorber according to an embodiment (1) of the present invention, FIG. 2 is a diagram showing a radio wave absorber according to an embodiment (2) of the present invention, and FIG. FIG. 4 is a diagram showing a radio wave absorber having a different structure in Example (2); FIG. 4 is a diagram showing a multilayer radio wave absorber of the present invention; FIG. 5 is a Smith chart diagram showing the principle of operation of the present invention; The figure is a Smith chart diagram showing another principle of operation of the present invention. Figure 7 is a diagram showing an example of the material constant of a lossy material. Figure 8 is a diagram showing the radio wave absorption characteristics of one embodiment (1) of the present invention. , FIG. 9 is a diagram showing the radio wave absorption characteristics of one embodiment (2) of the present invention, and FIG. 10 is a diagram showing a conventional radio wave absorber. 11.21, 31.41 ・Fist・ Resistive film 12, 22,
32.42.102 Hou... Loss material 13, 23.33
.. 43.103 ... Radio wave reflector 34 ... Exterior material A ... When resistance cloth is not attached (thickness 70+u+) B
・・・Loss body 70■  +plane resistance value Rs = 400Ω mouth C* * *Loss body 70mm ten-plane resistance value Rs = 60
0Ω□D...Loss body 70+sm Decaface resistance Rs÷80
00 mouth E 11 e @ loss body 70mm decahedral resistance value Rs
= 400 Ω port + loss body 20 mm F...loss body 70 mm Decaface resistance value Rs = 5000
Mouth + Loss body 20iu G...Loss body 70 ■■ Decaface resistance value Rs = 600Ω
□Ten loss bodies 20 ■Otori

Claims (8)

【特許請求の範囲】[Claims] (1)フェライト等の磁性材料粒子をコンクリート,モ
ルタル,樹脂等に混合した磁気損失複合材料、又はカー
ボン,金属繊維等の導電材料をコンクリート,モルタル
,樹脂等に混合した抵抗損失複合材料、又は磁気粒子と
導電材料の両方を含む複合材料と、実質的に抵抗膜とな
る層とを組合わせたことを特徴とする電波吸収体。
(1) Magnetic loss composite material in which magnetic material particles such as ferrite are mixed with concrete, mortar, resin, etc., or resistance loss composite material in which conductive material such as carbon or metal fiber is mixed in concrete, mortar, resin, etc., or magnetic A radio wave absorber characterized by a combination of a composite material containing both particles and a conductive material and a layer that essentially serves as a resistive film.
(2)前記磁気損失複合材料は、その磁気損失係数ta
nδμ(=μr’’/μr’)が0.1以上2以下であ
ることを特徴とする請求項1記載の電波吸収体。
(2) The magnetic loss composite material has a magnetic loss coefficient ta
The radio wave absorber according to claim 1, characterized in that nδμ (=μr''/μr') is 0.1 or more and 2 or less.
(3)前記実質的に抵抗膜となる層は、その面抵抗値が
50Ω□以上3000Ω□以下であることを特徴とする
請求項1又は2のいずれかに記載の電波吸収体。
(3) The radio wave absorber according to claim 1 or 2, wherein the layer that substantially becomes a resistive film has a sheet resistance value of 50 Ω□ or more and 3000 Ω□ or less.
(4)前記抵抗膜の上に誘電体層を付着させて2層構造
としたことを特徴とする請求項1〜3のいずれかに記載
の電波吸収体。
(4) The radio wave absorber according to any one of claims 1 to 3, characterized in that a dielectric layer is attached on the resistive film to form a two-layer structure.
(5)前記誘電体層が前記磁気損失複合材料あるいは抵
抗損失複合材料ないしはこれらを含む複合材料であるこ
とを特徴とする電波吸収体。
(5) A radio wave absorber, wherein the dielectric layer is the magnetic loss composite material, the resistive loss composite material, or a composite material containing these.
(6)請求項5記載の電波吸収体の各層構造の少なくと
も一つの層構造が、実質的に抵抗膜となる層と前記複合
材料との組合せ多層構造としたことを特徴とする電波吸
収体。
(6) A radio wave absorber according to claim 5, wherein at least one of the layer structures of the radio wave absorber has a multilayer structure in which a layer substantially serving as a resistive film and the composite material are combined.
(7)請求項1〜6のいずれかに記載の電波吸収体の前
面にさらにゴム,樹脂,コンクリート,磁器タイル,石
材等の表面層を設けたことを特徴とする電波吸収体。
(7) A radio wave absorber characterized in that a surface layer of rubber, resin, concrete, porcelain tile, stone, etc. is further provided on the front surface of the radio wave absorber according to any one of claims 1 to 6.
(8)金属板,金網,鉄筋などの電波反射材料の上に抵
抗膜を含む損失材料を設けることを特徴とする請求項1
〜7のいずれかに記載の電波吸収体。
(8) Claim 1 characterized in that a lossy material including a resistive film is provided on a radio wave reflecting material such as a metal plate, wire mesh, or reinforcing bar.
8. The radio wave absorber according to any one of .
JP2288398A 1990-10-29 1990-10-29 Radio wave absorber Expired - Fee Related JP2666560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288398A JP2666560B2 (en) 1990-10-29 1990-10-29 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288398A JP2666560B2 (en) 1990-10-29 1990-10-29 Radio wave absorber

Publications (2)

Publication Number Publication Date
JPH04167602A true JPH04167602A (en) 1992-06-15
JP2666560B2 JP2666560B2 (en) 1997-10-22

Family

ID=17729694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288398A Expired - Fee Related JP2666560B2 (en) 1990-10-29 1990-10-29 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP2666560B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156487A (en) * 1999-11-26 2001-06-08 Kyocera Corp Radio wave absorber and method of manufacturing the same
JP2002294900A (en) * 2001-03-29 2002-10-09 Taisei Corp Radio wave absorber, precast concrete plate
JP2003011266A (en) * 2001-07-04 2003-01-15 Hoshino Sansho:Kk Laminated plate
WO2004091049A1 (en) * 2003-04-11 2004-10-21 Chang Sung Corporation Microwave absorber with improved microwave absorption rate
JP2007095830A (en) * 2005-09-27 2007-04-12 Nitta Ind Corp Electromagnetic wave absorber
WO2011104810A1 (en) * 2010-02-23 2011-09-01 東急建設株式会社 Reinforced concrete partition body
JP2017041865A (en) * 2015-08-14 2017-02-23 ユニヴァーシテット ブロツワフUniwersytet Wroclawski Free space absorber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227355A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Diffusion layer formation method
JPS5635319A (en) * 1979-08-30 1981-04-08 Matsushita Electric Works Ltd Push switch
JPS5710299A (en) * 1980-06-23 1982-01-19 Kajima Corp Radio wave absorbing wall
JPS6057700A (en) * 1983-09-08 1985-04-03 ティーディーケイ株式会社 Electromagnetic shielding material
JPS62177998A (en) * 1986-01-31 1987-08-04 ティーディーケイ株式会社 Electromagnetic wave absorber
JPS6467997A (en) * 1987-09-08 1989-03-14 Yasutaka Shimizu Radio wave absorber containing ferrite
JPH02180096A (en) * 1989-01-05 1990-07-12 Tdk Corp Radio wave absorption panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227355A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Diffusion layer formation method
JPS5635319A (en) * 1979-08-30 1981-04-08 Matsushita Electric Works Ltd Push switch
JPS5710299A (en) * 1980-06-23 1982-01-19 Kajima Corp Radio wave absorbing wall
JPS6057700A (en) * 1983-09-08 1985-04-03 ティーディーケイ株式会社 Electromagnetic shielding material
JPS62177998A (en) * 1986-01-31 1987-08-04 ティーディーケイ株式会社 Electromagnetic wave absorber
JPS6467997A (en) * 1987-09-08 1989-03-14 Yasutaka Shimizu Radio wave absorber containing ferrite
JPH02180096A (en) * 1989-01-05 1990-07-12 Tdk Corp Radio wave absorption panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156487A (en) * 1999-11-26 2001-06-08 Kyocera Corp Radio wave absorber and method of manufacturing the same
JP2002294900A (en) * 2001-03-29 2002-10-09 Taisei Corp Radio wave absorber, precast concrete plate
JP2003011266A (en) * 2001-07-04 2003-01-15 Hoshino Sansho:Kk Laminated plate
WO2004091049A1 (en) * 2003-04-11 2004-10-21 Chang Sung Corporation Microwave absorber with improved microwave absorption rate
JP2007095830A (en) * 2005-09-27 2007-04-12 Nitta Ind Corp Electromagnetic wave absorber
WO2011104810A1 (en) * 2010-02-23 2011-09-01 東急建設株式会社 Reinforced concrete partition body
US8695294B2 (en) 2010-02-23 2014-04-15 Tokyu Construction Co., Ltd. Reinforced concrete partition body
JP2017041865A (en) * 2015-08-14 2017-02-23 ユニヴァーシテット ブロツワフUniwersytet Wroclawski Free space absorber

Also Published As

Publication number Publication date
JP2666560B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
CN108899656B (en) A Salisbury absorbing screen loaded with FSS
JP3047836B2 (en) Meander line antenna
CN104993249B (en) Single-pass band bilateral inhales ripple and is combined Meta Materials and its antenna house and antenna system
JP3319147B2 (en) Radio wave absorber
US3864690A (en) Multifrequency operating radome
JPH11354972A (en) Radio wave absorber
TW200813300A (en) Electromagnetic wave shielding material and electromagnetic wave absorber
KR930011548B1 (en) Stacked Wave Absorber
WO1998009490A1 (en) Windowpane having electromagnetic shielding ability
JPH04167602A (en) Wave absorber
KR100591909B1 (en) Conductive thin film absorber with improved impedance due to the formation of impedance resistance film
JPH04150098A (en) Radio wave absorptive material
JPH05114813A (en) Radio wave absorber
JP3852619B2 (en) Electromagnetic wave absorbing panel and its material
JPH0828591B2 (en) Radio wave absorption wall
JPH0783197B2 (en) Electromagnetic shield material
JPH04163999A (en) Radio wave absorber
JP4154942B2 (en) Film type electromagnetic wave absorber
JPH1154981A (en) Electromagnetic wave absorber
Violi et al. Design of Passive and Wideband Radar Absorbing Materials Comprising Resistive Frequency Selective Surfaces
KR101174412B1 (en) Ferrite sheet complex, fabricating method the same, antenna and fabricating method using the same
JPS62213101A (en) Composite magnetic material
JPH0222130A (en) Nickel-zinc ferrite material for radio wave absorbers
KR940005137B1 (en) Thin plate absorber
JP3556618B2 (en) Transmission type radio wave absorber and radio wave reflection prevention method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees