[go: up one dir, main page]

JPH04164202A - Positioning plate and scanning type tunnel microscope positioning and adjusting device - Google Patents

Positioning plate and scanning type tunnel microscope positioning and adjusting device

Info

Publication number
JPH04164202A
JPH04164202A JP29055390A JP29055390A JPH04164202A JP H04164202 A JPH04164202 A JP H04164202A JP 29055390 A JP29055390 A JP 29055390A JP 29055390 A JP29055390 A JP 29055390A JP H04164202 A JPH04164202 A JP H04164202A
Authority
JP
Japan
Prior art keywords
axis direction
probe
axis
center
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29055390A
Other languages
Japanese (ja)
Inventor
Hidehiro Katagiri
片桐 英博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP29055390A priority Critical patent/JPH04164202A/en
Publication of JPH04164202A publication Critical patent/JPH04164202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To curtail positioning adjusting time in replacing a probe by scanning the irregular pattern contour of a positioning plate in the X(Y) direction and determining the drift quantity of the plate in the X(Y) axis direction. CONSTITUTION:A specimen table 30 is arranged directly below an optical microscope 14, and the center of the visual field and the center O of the positioning plate 32 on the specimen table 30 are aligned using an X-X line and Y-Y line. In the next step, an X axis table 27 and Y axis table 28 are driven so that the plate 32 may be positioned to the location of a scanning type microscope 16. A line L1 is scanned by driving an X axis piezoelectric driving body. If the plate 32 is not inclined, the drift quantity of the positioning plate 32 from the center O of a probe 20 in the X direction becomes clear by comparing the surface contour of the irregular pattern of a measuring area 36 at this moment and the correlation between the irregular pattern having been stored in the CPU and the distance from the center O. In the same way, when the probe 20 is moved to an area 40, and a Y axis piezoelectric element driving body is driven to scan a line L2, the drift quantity from the center O in the Y direction becomes clear.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は顕微鏡等の位置決め調整装置に係り、特に表面
形状等を測定する走査型トンネル顕微鏡の位置決め調整
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a positioning and adjusting device for a microscope, etc., and more particularly to a positioning and adjusting device for a scanning tunneling microscope that measures surface shapes and the like.

〔従来の技術〕[Conventional technology]

走査型トンネル顕微鏡の原理は、先端の細い金属プロー
ブと圧電素子を用いてトンネル電流が一定となるように
測定面に垂直なZ方向の圧電素子を駆動すると、プロー
ブ先端と測定面との間隙を一定に保つことができる。こ
の状態でプローブをx−Y方向に駆動し、圧電素子に加
えた電圧変化から測定面の表面形状を知ることが出来る
The principle of a scanning tunneling microscope is that a metal probe with a thin tip and a piezoelectric element are used to drive the piezoelectric element in the Z direction perpendicular to the measurement surface so that the tunneling current remains constant. can be kept constant. In this state, the probe is driven in the x-y directions, and the surface shape of the measurement surface can be determined from changes in the voltage applied to the piezoelectric element.

一方、このような走査型トンネル顕微鏡は、例えば10
μ×10μという極めて微小範囲を観察するものであり
、予め光学顕微鏡で観察範囲を決定し、次に同じ観察位
置に走査型トンネル顕微鏡をセットし観察する。従って
走査型トンネル顕微鏡、と光学顕微鏡は、通常リボルバ
ー、支持梁等を介してセフ)て使用される場合が多い。
On the other hand, such a scanning tunneling microscope has, for example, 10
An extremely small area of μ x 10 μ is observed, and the observation area is determined in advance using an optical microscope, and then a scanning tunneling microscope is set at the same observation position and observed. Therefore, scanning tunneling microscopes and optical microscopes are often used with a revolver, support beam, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の走査型トンネル顕微鏡は、先ず光学顕微鏡で測定
エリアを観察し、次にリボルバー等を回転して(又は顕
微鏡の支持部を移動して)走査型トンネル顕微鏡をセン
トし、観察する。
In a conventional scanning tunneling microscope, a measurement area is first observed using an optical microscope, and then the scanning tunneling microscope is centered by rotating a revolver or the like (or by moving the supporting part of the microscope) and then observed.

しかしながら、前記従来の装置では、走査型トンネル顕
微鏡のプローブ等を交換する際、プローブ取付部のガタ
等によりプローブの傾き等が異なり、光学顕微鏡で設定
した測定エリアと異なる場合が生じる。この為、従来こ
のガタ分の調整等を位置決めプレート等を用いて行って
いるが、調整に時間がかかる欠点がある。
However, in the conventional apparatus, when replacing the probe of the scanning tunneling microscope, the inclination of the probe may vary due to play in the probe mounting portion, and the measurement area may differ from the measurement area set with the optical microscope. For this reason, adjustment for this play has conventionally been performed using a positioning plate or the like, but this has the disadvantage that adjustment takes time.

本発明はこのような事情に鑑みてなされたちので、プロ
ーブ等を交換する際、位置決め調整が短時間に出来る走
査型トンネル顕微鏡の位置決約調整装置を提案すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to propose a position adjustment device for a scanning tunneling microscope that can perform position adjustment in a short time when replacing a probe or the like.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は、前記目的を達成する為に、セット位置のプロ
ーブで位置決めプレートのX軸方向に直交するY軸方向
の不規則パターンを走査してパターン形状を測定し、こ
のパターン形状を予めCPUで記憶していた前記Y軸方
向の不規則パターンの形状と中心からのズレ量との相関
関係と比較してX軸方向のずれ量を決定し、前記プロー
ブで位置決めプレートのX軸方向の不規則パターンをY
方向に走査してパターン形状を測定し、このパターン形
状を予めCPUで記憶していた前記X軸方向の不規則パ
ターンの形状と中心からのズレ量との相関関係と比較し
てY軸方向のズレ量を決定することを特徴とする。
In order to achieve the above object, the present invention measures the pattern shape by scanning an irregular pattern in the Y-axis direction perpendicular to the X-axis direction of the positioning plate with a probe at a set position, and measures the pattern shape in advance by the CPU. The amount of deviation in the X-axis direction is determined by comparing the memorized correlation between the shape of the irregular pattern in the Y-axis direction and the amount of deviation from the center, and the probe detects the irregularity in the X-axis direction of the positioning plate. Pattern Y
The pattern shape is measured by scanning in the direction, and this pattern shape is compared with the correlation between the shape of the irregular pattern in the X-axis direction and the amount of deviation from the center, which is stored in advance in the CPU, and the pattern shape is It is characterized by determining the amount of deviation.

〔作用〕[Effect]

本発明によれば、位置決めプレートのY軸方向の不規則
パターン形状を走査し、X軸方向のズレ量を決定する。
According to the present invention, the irregular pattern shape of the positioning plate in the Y-axis direction is scanned to determine the amount of deviation in the X-axis direction.

次に、位置決約プレートのX軸方向の不規則パターン形
状を走査し、Y軸方向のズレ量を決定する。
Next, the irregular pattern shape of the positioning plate in the X-axis direction is scanned to determine the amount of deviation in the Y-axis direction.

〔実施例〕〔Example〕

以下、添付図面に従って本発明に係る顕微鏡等の位置決
め調整装置の好ましい実施例を詳説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a positioning and adjusting device for a microscope or the like according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図に示すベース10上には門型の支柱12が立設さ
れ、この支柱12には、光学顕微鏡14と走査型トンネ
ル顕微鏡16とが上下動自在に取付けられている。光学
顕微鏡14は、焦点調整の為に上下動され、また走査型
トンネル顕微鏡16は、ワークの測定位置の高さに合わ
せることが出来るように上下動される。
A gate-shaped support 12 is erected on a base 10 shown in FIG. 1, and an optical microscope 14 and a scanning tunneling microscope 16 are attached to the support 12 so as to be vertically movable. The optical microscope 14 is moved up and down to adjust the focus, and the scanning tunneling microscope 16 is moved up and down so that it can match the height of the measurement position of the workpiece.

走査型トンネル顕微鏡16の下部にはトライポット18
を介してプローブ20が取付けられる。
At the bottom of the scanning tunneling microscope 16 is a trypot 18.
The probe 20 is attached via.

トライボッド18は、プローブ20と測定面の距離を制
御するX軸方向の圧電素子駆動体22、測定面上でプロ
ーブ20をX軸方向に走査させるX軸圧型素子駆動体2
4、プローブ20をX軸方向に直交するY軸方向の圧電
素子駆動体26から構成される。Z軸圧型素子駆動体2
2の電圧変化はCPU50に送られ、表面形状が測定で
きる。
The tri-bod 18 includes an X-axis piezoelectric element driver 22 that controls the distance between the probe 20 and the measurement surface, and an X-axis piezoelectric element driver 2 that causes the probe 20 to scan in the X-axis direction on the measurement surface.
4. The probe 20 is composed of a piezoelectric element driver 26 in the Y-axis direction perpendicular to the X-axis direction. Z-axis pressure type element driver 2
The voltage change No. 2 is sent to the CPU 50, and the surface shape can be measured.

一方、ベース10上にはXテーブル27がX軸方向に移
動自在に配置され、Xテーブル27上にはYテーブル2
8がY軸方向に移動自在に配置される。Yテーブル28
の上には載物台30が設けられ、載物台30上には、位
置決めプレート32又はワークが載置される。
On the other hand, an X table 27 is disposed on the base 10 so as to be movable in the X-axis direction, and a Y table 2 is disposed on the X table 27.
8 is arranged movably in the Y-axis direction. Y table 28
A stage 30 is provided on the stage 30, and a positioning plate 32 or a workpiece is placed on the stage 30.

第4図では位置決めプレート32が示され、X−X線と
これに直交するY−Y線との交点Oはプレート32の中
心を示している。プレート32のx−X線とY−Y線は
光学顕微鏡14の中心位置合わせに用いられる。更にプ
レート32にはエリア34.36に縦方向(Y軸方向)
の不規則パターン形状から成る不規則パターンが形成さ
れ、この不規則パターンは例えば第5図(A)に示され
る。エリア34.36はプローブ20が中心0からX軸
方向にどの位離れているかの測定に利用される。更にプ
レート32にはエリア38.40に横方向(X軸方向)
の不規則パターン形状から成る不規則パターンが形成さ
れる。エリア38.40は中心○からY軸方向にどの位
離れているかの測定に利用される。また、このエリア3
4.36.38.40の不規則パターン形状は予めCP
Uに記憶され、特定のパターンが中心Oからどの位離れ
ているか相関関係が人力されている。
In FIG. 4, the positioning plate 32 is shown, and the intersection point O between the line XX and the line YY perpendicular thereto indicates the center of the plate 32. The x-x rays and y-y rays of the plate 32 are used to align the center of the optical microscope 14. Furthermore, the plate 32 has areas 34 and 36 in the vertical direction (Y-axis direction).
An irregular pattern consisting of irregular pattern shapes is formed, and this irregular pattern is shown, for example, in FIG. 5(A). Areas 34 and 36 are used to measure how far the probe 20 is from the center 0 in the X-axis direction. Furthermore, the plate 32 has areas 38 and 40 in the lateral direction (X-axis direction).
An irregular pattern consisting of irregular pattern shapes is formed. Areas 38 and 40 are used to measure how far away from the center ○ is in the Y-axis direction. Also, this area 3
4.36.38.40 irregular pattern shape is CP in advance
It is stored in U, and the correlation of how far a particular pattern is from the center O is manually calculated.

前記の如く構成された本発明に係る走査型トンネル顕微
鏡の位置決め調整装置の好ましい実施例を詳説する。
A preferred embodiment of the positioning and adjusting device for a scanning tunneling microscope according to the present invention constructed as described above will be described in detail.

走査型トンネル顕微鏡16のプローブ20を交換した後
、先ずXテーブル27、Yテーブル28を移動して載物
台30を光学顕微鏡14の真下に配置する。次にXテー
ブル27、Yテーブル28を微調移動して光学顕微鏡1
4の視野の中心と載物台30上のプレート32の中心と
をプレート32のx−X線、Y−Y線を使って位置合わ
せする。
After replacing the probe 20 of the scanning tunneling microscope 16, first, the X table 27 and Y table 28 are moved to place the stage 30 directly below the optical microscope 14. Next, finely move the X table 27 and Y table 28 to
The center of the field of view 4 and the center of the plate 32 on the stage 30 are aligned using the x-X line and the Y-Y line of the plate 32.

次に予め所定の位置にある走査型トンネル顕微鏡のとこ
ろまでプレート32が位置するようにX軸テーブル26
、Y軸テーブル28を駆動する。
Next, move the X-axis table 26 so that the plate 32 is positioned at the scanning tunneling microscope that has been set in advance.
, drives the Y-axis table 28.

この時プローブ20がズして測定エリア36上の一点に
あった場合、X軸圧型素子駆動体24を駆動してライン
L1 を走査する。この時の不規則パターンの表面形状
が第5図(B)であるとすると、前記したようにCPU
50には予め第5図(A)のパターンと中心○からの距
離との関係が記憶されており、例えば中心0から15μ
ズしていることがプレートの傾きが無い時は分かる。同
様にして測定エリア40にプローブ20を移し、Y軸圧
型素子駆動体26を駆動してラインL2を走査する。こ
れにより中心OからY軸方向のズレ量が判明する。以上
の操作によりプレートの傾きが無い場合は、プローブ2
0の中心○からのズレ量が分かる。
At this time, if the probe 20 has shifted and is located at one point on the measurement area 36, the X-axis pressure type element driver 24 is driven to scan the line L1. Assuming that the surface shape of the irregular pattern at this time is as shown in FIG. 5(B), the CPU
50 stores in advance the relationship between the pattern of FIG. 5(A) and the distance from the center ○, for example, 15 μ
You can tell that the plate is tilting when there is no tilting of the plate. Similarly, the probe 20 is moved to the measurement area 40, and the Y-axis pressure type element driver 26 is driven to scan the line L2. This makes it possible to determine the amount of deviation from the center O in the Y-axis direction. If the plate is not tilted by the above operation, probe 2
You can see the amount of deviation from the center of 0.

また、一般にはプレートが傾いているのでX軸圧型素子
駆動体24を駆動して測定エリア38上でラインL3 
を操作する。ラインL2 とラインL3 との比較によ
りプレートの傾きが無い場合は駆動部の傾きを知ること
が出来る。
In addition, since the plate is generally tilted, the X-axis pressure type element driver 24 is driven to move the line L3 on the measurement area 38.
operate. By comparing line L2 and line L3, if there is no inclination of the plate, it is possible to know the inclination of the drive unit.

前記実施例ではラインL+ 、L2 、L3 を使用し
たが、プレートの傾きが無視できる場合はラインLIS
L2の走査だけでもよい。
In the above embodiment, lines L+, L2, and L3 were used, but if the inclination of the plate can be ignored, line LIS
It is also possible to just scan L2.

前記実施例では、プローブ20を走査するのにZ軸方向
圧電素子駆動体22、X軸方向圧電素子駆動体24、Y
軸方向圧電素子駆動体26を用いたが、第6図に示すよ
うにX−Y方向に移動するのにX軸方向圧電素子駆動体
24、Y軸方向圧電素子駆動体26の代わりにX−Y移
動テーブル6′0で微少距離移動させてもよい。
In the embodiment, in order to scan the probe 20, the Z-axis piezoelectric element driver 22, the X-axis piezoelectric element driver 24, and the Y-axis piezoelectric element driver 22,
Although the axial piezoelectric element driver 26 is used, as shown in FIG. It may also be moved by a small distance using the Y moving table 6'0.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る位置決めプレート及び
走査型トンネル顕微鏡の位置決め調整装置によれば、2
回又は3回の走査で中心からのプローブのズレ量が分か
るので、調整時間が短縮する。
As explained above, according to the positioning plate and the positioning adjustment device for a scanning tunneling microscope according to the present invention, two
Since the amount of deviation of the probe from the center can be determined after one or three scans, the adjustment time is shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は走査型トンネル顕微鏡の概略図、第2図はトラ
イボッドの概略図、第3図は走査型トンネル顕微鏡の制
御ブロック図、第4図は位置決めプレート32の説明図
、第5図(A)は不規則パターンの波形図、第5図(B
)はラインL1  の波形図、第6図は本発明の他の実
施例を示す制御ブロック図である。 16・・走査型トンネル顕微鏡、 18・・・トライポット、   20・・・プローブ、
22・・・2軸圧型素子駆動体、 24・・・X軸圧電素子駆動体、 26・・・Y軸圧型素子駆動体、 32・・・位置決めプレート。
Fig. 1 is a schematic diagram of a scanning tunneling microscope, Fig. 2 is a schematic diagram of a tri-bod, Fig. 3 is a control block diagram of a scanning tunneling microscope, Fig. 4 is an explanatory diagram of the positioning plate 32, and Fig. 5 (A ) is a waveform diagram of an irregular pattern, Figure 5 (B
) is a waveform diagram of line L1, and FIG. 6 is a control block diagram showing another embodiment of the present invention. 16...Scanning tunneling microscope, 18...Tripot, 20...Probe,
22... Two-axis pressure type element drive body, 24... X-axis piezoelectric element drive body, 26... Y-axis pressure type element drive body, 32... Positioning plate.

Claims (3)

【特許請求の範囲】[Claims] (1)X軸と直交するY軸方向に不規則パターンが連続
して形成されたX軸方向位置決めエリアと、X軸方向に
不規則パターンが連続して形成されたY軸方向位置決め
エリアと、から成る位置決めプレート。
(1) An X-axis positioning area in which irregular patterns are continuously formed in the Y-axis direction perpendicular to the X-axis, and a Y-axis positioning area in which irregular patterns are continuously formed in the X-axis direction; A positioning plate consisting of.
(2)プローブが取付けられプローブと測定面間の距離
を制御するZ軸方向圧電素子駆動体と、Z軸方向圧電素
子駆動体に連接されたX軸方向圧電素子駆動体と、Z軸
方向圧電素子駆動体に連接されたY軸方向圧電素子駆動
体と、を有してなる走査型トンネル顕微鏡に於いて、 セット位置のプローブで位置決めプレートのX軸方向に
直交するY軸方向の不規則パターンを走査してパターン
形状を測定し、このパターン形状を予めCPUで記憶し
ていた前記Y軸方向の不規則パターンの形状と中心から
のズレ量との相関関係と比較してX軸方向のずれ量を決
定し、 前記プローブで位置決めプレートのX軸方向の不規則パ
ターンをY方向に走査してパターン形状を測定し、この
パターン形状を予めCPUで記憶していた前記X軸方向
の不規則パターンの形状と中心からのズレ量との相関関
係と比較してY軸方向のズレ量を決定することを特徴と
する走査型トンネル顕微鏡の位置決め調整装置。
(2) A Z-axis piezoelectric element driver to which the probe is attached and controls the distance between the probe and the measurement surface; an X-axis piezoelectric element driver connected to the Z-axis piezoelectric element driver; In a scanning tunneling microscope comprising a piezoelectric element driver in the Y-axis direction connected to an element driver, an irregular pattern is formed in the Y-axis direction perpendicular to the X-axis direction of the positioning plate with the probe at the set position. is scanned to measure the pattern shape, and this pattern shape is compared with the correlation between the shape of the irregular pattern in the Y-axis direction and the amount of deviation from the center, which is stored in advance in the CPU, and the deviation in the X-axis direction is calculated. The irregular pattern in the X-axis direction of the positioning plate is scanned in the Y direction with the probe to measure the pattern shape, and this pattern shape is stored in advance in the CPU as the irregular pattern in the X-axis direction. 1. A positioning adjustment device for a scanning tunneling microscope, characterized in that the amount of deviation in the Y-axis direction is determined by comparing the correlation between the shape and the amount of deviation from the center.
(3)プローブが取付けられプローブと測定面間の距離
を制御するZ軸方向圧電素子駆動体と、測定面をX−Y
方向に移動するX−Y移動機構と、を有してなる走査型
トンネル顕微鏡に於いて、 セット位置のプローブで位置決めプレートのX軸方向に
直交するY軸方向の不規則パターンを走査してパターン
形状を測定し、このパターン形状を予めCPUで記憶し
ていた前記Y軸方向の不規則パターンの形状と中心から
のズレ量との相関関係と比較してX軸方向のずれ量を決
定し、 前記プローブで位置決めプレートのX軸方向の不規則パ
ターンをY方向に走査してパターン形状を測定し、この
パターン形状を予めCPUで記憶していた前記X軸方向
の不規則パターンの形状と中心からのズレ量との相関関
係と比較してY軸方向のズレ量を決定することを特徴と
する走査型トンネル顕微鏡の位置決め調整装置。
(3) Z-axis piezoelectric element driver to which the probe is attached and controls the distance between the probe and the measurement surface, and the measurement surface is
In a scanning tunneling microscope having an X-Y moving mechanism that moves in the direction, a probe at a set position scans an irregular pattern in the Y-axis direction perpendicular to the X-axis direction of the positioning plate to form a pattern. measuring the shape, comparing this pattern shape with the correlation between the shape of the irregular pattern in the Y-axis direction and the amount of deviation from the center, which was previously stored in the CPU, and determining the amount of deviation in the X-axis direction; The probe scans the irregular pattern in the X-axis direction of the positioning plate in the Y direction to measure the pattern shape, and this pattern shape is determined from the shape and center of the irregular pattern in the X-axis direction that has been stored in advance in the CPU. 1. A positioning adjustment device for a scanning tunneling microscope, characterized in that the amount of displacement in the Y-axis direction is determined by comparing the correlation with the amount of displacement of .
JP29055390A 1990-10-26 1990-10-26 Positioning plate and scanning type tunnel microscope positioning and adjusting device Pending JPH04164202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29055390A JPH04164202A (en) 1990-10-26 1990-10-26 Positioning plate and scanning type tunnel microscope positioning and adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29055390A JPH04164202A (en) 1990-10-26 1990-10-26 Positioning plate and scanning type tunnel microscope positioning and adjusting device

Publications (1)

Publication Number Publication Date
JPH04164202A true JPH04164202A (en) 1992-06-09

Family

ID=17757522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29055390A Pending JPH04164202A (en) 1990-10-26 1990-10-26 Positioning plate and scanning type tunnel microscope positioning and adjusting device

Country Status (1)

Country Link
JP (1) JPH04164202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223450A2 (en) * 2001-01-05 2002-07-17 Leica Microsystems Heidelberg GmbH Microscope and method of using a microscope
CN105057727A (en) * 2015-09-08 2015-11-18 华中科技大学 Positioning method for turning reference of train axle forging blank and system of positioning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223450A2 (en) * 2001-01-05 2002-07-17 Leica Microsystems Heidelberg GmbH Microscope and method of using a microscope
CN105057727A (en) * 2015-09-08 2015-11-18 华中科技大学 Positioning method for turning reference of train axle forging blank and system of positioning method

Similar Documents

Publication Publication Date Title
EP1423677B1 (en) Apparatus for measuring a surface profile
US5081353A (en) Combined scanning electron and scanning tunnelling microscope apparatus and method
US6745616B1 (en) Surface texture measuring machine, leveling device for surface texture measuring machine and orientation-adjusting method of workpiece of surface texture measuring machine
JP3482362B2 (en) Surface texture measuring device, inclination adjusting device for surface texture measuring device, and method of adjusting posture of measurement object in surface texture measuring device
JP2007529734A (en) Object scanning
JPH04164202A (en) Positioning plate and scanning type tunnel microscope positioning and adjusting device
JP3602310B2 (en) Flatness measurement device
JPH04212001A (en) Scanning tunnel microscope
JP3064184B2 (en) Shape measuring instruments
JP3560095B2 (en) Scanning probe microscope
JPH08327332A (en) Apparatus for measuring film thickness of solder paste
JP3830662B2 (en) Optical axis adjustment mechanism of scanning probe microscope
JP2003014611A (en) Scanning type probe microscope
US20030020927A1 (en) Precision video gauging machine for vertically oriented workpieces
JP2003004620A (en) Scanning probe microscope
JPH07237004A (en) Cutting tool setting device and method thereof
JPH07139929A (en) Apparatus for positioning inclining angle
JPH08220109A (en) How to specify the probe tip position of a probe microscope
JP2002372488A (en) Method for bringing closer probe of scanning-type probe microscope
JPH02253108A (en) Noncontact shape measuring instrument
JPH0293304A (en) Microscopic device
JPH02181494A (en) Lithography device
JP3473937B2 (en) Scanning probe microscope and its scanning method
JP3597613B2 (en) Scanning probe microscope
JP2553352Y2 (en) Automatic dimension measuring device