JPH04163510A - Object lens for optical disk - Google Patents
Object lens for optical diskInfo
- Publication number
- JPH04163510A JPH04163510A JP28854290A JP28854290A JPH04163510A JP H04163510 A JPH04163510 A JP H04163510A JP 28854290 A JP28854290 A JP 28854290A JP 28854290 A JP28854290 A JP 28854290A JP H04163510 A JPH04163510 A JP H04163510A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- aspherical
- light source
- optical disk
- single lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光学的情報記録再生装置に好適な対物レンズ
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an objective lens suitable for an optical information recording/reproducing device.
(従来技術)
光源光として半導体レーザー(通常波長780nm程度
)を使用する場合、光情報記録媒体の再生光学系に用い
られる対物レンズは、開口数(NA)がコンパクトディ
スクでは0.45〜0.47、ビデオディスクでは0.
5〜0.53で回折限界性能を有する必要がある。一方
、記録用光学系やDRAW用光学系、光磁気記録光学系
ではNAo、5〜0.6が必要とされている。(Prior Art) When using a semiconductor laser (usually wavelength of about 780 nm) as a light source, the objective lens used in the reproduction optical system of the optical information recording medium has a numerical aperture (NA) of 0.45 to 0.00 for a compact disc. 47, 0 for video discs.
It is necessary to have diffraction limited performance between 5 and 0.53. On the other hand, NAo of 5 to 0.6 is required for recording optical systems, DRAW optical systems, and magneto-optical recording optical systems.
しかし、光情報記録媒体上に記録する情報量をさらに上
げるためには、■、光源光の波長を短くする、あるいは
、■、レンズの開口数を大きくする、ことにより高密度
化を図らなければならない。However, in order to further increase the amount of information recorded on the optical information recording medium, it is necessary to increase the density by (1) shortening the wavelength of the light source light, or (2) increasing the numerical aperture of the lens. No.
単レンズで構成されている光ディスク用対物レンズのう
ち開口数が比較的大きいものとして、例えば、特開昭6
1−200518号公報に記載されているものがあるが
、NAo、6程度である。Among objective lenses for optical discs composed of a single lens, examples of objective lenses with relatively large numerical apertures include the Japanese Patent Laid-Open No. 6
There is one described in Japanese Patent No. 1-200518, but the NAo is about 6.
要求される光学的性能を維持しつつ、開口数をO06よ
り大きくするためには、レンズ構成枚数は2枚以上が必
要であった。In order to increase the numerical aperture to greater than O06 while maintaining the required optical performance, two or more lenses were required.
(この発明が解決しようとする問題点)この発明は、開
口数が0.6〜0.8程度の光ディスク用対物レンズを
、高次の非球面項を使わずに、高い光学性能をもつ非球
面単レンズで実現しようとするものである。(Problems to be Solved by this Invention) This invention provides an objective lens for optical discs with a numerical aperture of about 0.6 to 0.8, which has high optical performance without using a high-order aspherical term. This is what we are trying to achieve with a single spherical lens.
(問題を解決するための手段)
この発明においては、対物レンズの構成を、光源側及び
光ディスク側の少なくとも一方が非球面形状を有する単
レンズとし、以下の条件を満足するものとしている。(Means for Solving the Problem) In the present invention, the objective lens is configured as a single lens having an aspherical shape on at least one of the light source side and the optical disk side, and satisfies the following conditions.
1.5<n (1)0.8
3<d/f<1.2 (2)l r、/
r21 <0.7 (3)但し
、rエ :光源側レンズ面の頂点における曲率半径
r2:光ディスク側レンズ面の頂点における曲率半径
n:使用波長におけるレンズの屈折率
d:単レンズの芯厚
f:単レンズの焦点距離
非球面の形状はさまざまな表現方法があるが、回転2次
曲面の項に光軸からの高さの偶数へき級数で表される補
正項を加えて表現する方法が最も一般的である。この表
現法においては、面の頂点を原点とし、光軸方向をX軸
とした直交座標系において、にを円錐定数、A□を非球
面係数、Plを非球面のべき数とするとき、非球面形状
はr= f1℃T
で表される。この表現方法において、高次の項を使用し
ないように、Poとしてはせいぜい8までに止める。そ
して
−0,6<Δ2/f<O,O(4)
但し、
△2 :像側の面の有効径最周辺(最大NAの光線が入
射する位置)における非球面と頂点曲率半径r2 を有
する基準球面との光軸方向の差で、光軸から遠ざかるほ
ど前記非球面が光源側へ変位している場合を正とする。1.5<n (1)0.8
3<d/f<1.2 (2) l r, /
r21 <0.7 (3) However, rd: Radius of curvature at the apex of the lens surface on the light source side r2: Radius of curvature at the apex of the lens surface on the optical disk side n: Refractive index of the lens at the wavelength used d: Core thickness of the single lens f : Focal length of a single lens There are various ways to express the shape of an aspheric surface, but the best method is to express it by adding a correction term expressed by an even hexadecimal series of heights from the optical axis to a term of a rotational quadratic surface. Common. In this expression method, in an orthogonal coordinate system with the origin at the vertex of the surface and the optical axis direction as the The spherical shape is expressed as r=f1℃T. In this expression method, Po is limited to 8 at most so as not to use high-order terms. -0,6<Δ2/f<O,O (4) However, Δ2: has an aspheric surface at the most peripheral effective diameter of the image side surface (position where the maximum NA ray enters) and apex radius of curvature r2 The difference in the optical axis direction from the reference spherical surface is defined as positive if the aspherical surface is displaced toward the light source as the distance from the optical axis increases.
また、
0.5<r、/f<0.9 (5)とすること
が望ましい。Further, it is desirable that 0.5<r, /f<0.9 (5).
(作用)
条件(1)は、レンズの屈折率に関し、この条件を満た
さないと、短波長の光源光に対して必要とされる性能を
保ったまま、開口数を大きくすることが不可能になる。(Function) Condition (1) relates to the refractive index of the lens. If this condition is not met, it will be impossible to increase the numerical aperture while maintaining the required performance for short wavelength light source light. Become.
条件(2)はレンズの芯厚に関し、上限を超えるとレン
ズの芯厚が増し、大型化してしまう。また、作動距離(
WD)を大きくとることが困難になる。下限を満たさな
いと、小型化には有利であるが、メリジオナル像面湾曲
がアンダ一方向に強く発生してしまい、光軸がずれて光
束の集束点が光軸上を外れて像高を持ってしまったとき
、波面収差の劣化が著しくなる。Condition (2) relates to the core thickness of the lens; if the upper limit is exceeded, the core thickness of the lens will increase and the lens will become larger. Also, the working distance (
It becomes difficult to increase the WD). If the lower limit is not met, it is advantageous for miniaturization, but the meridional field curvature will occur strongly in one direction, the optical axis will shift, the focal point of the light beam will be off the optical axis, and the image height will increase. When this occurs, the deterioration of wavefront aberration becomes significant.
条件(3)は、主に球面収差を良好に補正するためのも
のである。この条件を外れると高次の球面収差が発生し
、収差バランスをとっても球面収差曲線が大きく蛇行し
た形になり、波面収差が悪くなる。これらの高次の球面
収差を補正するためには、高次の非球面項を使わなけれ
ばならず、加工上望ましくない。Condition (3) is mainly intended to satisfactorily correct spherical aberration. If this condition is exceeded, high-order spherical aberration occurs, and even if the aberrations are balanced, the spherical aberration curve will become largely meandering, and the wavefront aberration will worsen. In order to correct these higher-order spherical aberrations, higher-order aspherical terms must be used, which is undesirable in terms of processing.
特に、短波長の光源光に対して大きな開口数を得るため
には、
0.4<l r、/r、I<0.55
を満たすことが最適である。この範囲外では、球面収差
を補正しても、メリジオナル像面湾曲が補正しきれなく
なる。短波長の光源光を用いる場合には難しくなるが、
通常の半導体レーザーの波長(780nm程度)の光源
光に対しては、この範囲において0.7以上の開口数を
確保することができる。In particular, in order to obtain a large numerical aperture for short-wavelength source light, it is optimal to satisfy 0.4<l r,/r, I<0.55. Outside this range, even if the spherical aberration is corrected, the meridional curvature of field cannot be completely corrected. This becomes difficult when using short wavelength light source light, but
For light source light having the wavelength of a normal semiconductor laser (about 780 nm), a numerical aperture of 0.7 or more can be secured in this range.
条件(4)は、像側の非球面変位量に関し、上限を超え
ると、球面収差が補正過剰となり、逆に、下限値を下回
ると、球面収差が補正不足となる6条件(5)は、光源
側の面の頂点における曲率半径に関する。球面収差は、
非球面によって補正可能であるが、正弦条件が悪化しな
いように決める必要がある。上限を超えると、正弦条件
がオーバーとなり、逆に、下限値を下回ると、正弦条件
がアンダーとなる。Condition (4) relates to the amount of aspherical displacement on the image side; if it exceeds the upper limit, the spherical aberration will be over-corrected; conversely, if it falls below the lower limit, the spherical aberration will be under-corrected.Condition (5) is as follows: Regarding the radius of curvature at the apex of the surface on the light source side. The spherical aberration is
Although it can be corrected using an aspheric surface, it must be determined so as not to worsen the sine condition. When the upper limit is exceeded, the sine condition becomes over, and conversely, when it falls below the lower limit, the sine condition becomes under.
(実施例) 以下この発明の対物レンズの実施例を示す。(Example) Examples of the objective lens of this invention will be shown below.
表中、fは単レンズの焦点距離、λは光源の波長、mは
単レンズの結像倍率、rlは光源側レンズ面の頂点にお
ける曲率半径、r2は光ディスク側レンズ面の頂点にお
ける曲率半径、nはレンズの屈折率、dは単レンズの芯
厚、シイは単レンズのd線に対するアツベ数を表す。In the table, f is the focal length of the single lens, λ is the wavelength of the light source, m is the imaging magnification of the single lens, rl is the radius of curvature at the apex of the lens surface on the light source side, r2 is the radius of curvature at the apex of the lens surface on the optical disk side, n represents the refractive index of the lens, d represents the core thickness of the single lens, and C represents the Abbe number for the d-line of the single lens.
また、非球面形状は前述の式により表現するものとし、
には円錐定数、A1は非球面係数、Plは非球面である
。In addition, the aspherical shape is expressed by the above formula,
is a conic constant, A1 is an aspherical coefficient, and Pl is an aspherical surface.
尚、対物レンズをし、対物レンズと結像点の間に配置さ
れた光ディスクの保護層に対応する平行平面板をCと表
示する。Note that C represents a plane-parallel plate corresponding to the protective layer of the optical disc, which is arranged between the objective lens and the imaging point.
実施例1は、λ=532nmの光源光に対して、NAo
、7である。波面収差の最小2乗平均値(RMS値)が
0.07λ(マレシャルの許容値)以内となる最大像高
は0.085mm程度であり、開口数が大きく光源光波
長が短いのにもかかわらず十分広い視野を有する。In Example 1, for light source light of λ=532 nm, NAo
, 7. The maximum image height at which the least root mean square value (RMS value) of wavefront aberration is within 0.07λ (Marechal's tolerance) is approximately 0.085 mm, despite the large numerical aperture and short source light wavelength. It has a sufficiently wide field of view.
実施例2は、λ=532nmの光源光に対して。Example 2 is for light source light of λ=532 nm.
NAo、8である。波面収差のRMS値が0.07λ以
内となる最大像高は0.086mm程度である。NAo is 8. The maximum image height at which the RMS value of wavefront aberration is within 0.07λ is about 0.086 mm.
実施例3は、λ=532nmの光源光に対して、NAo
、6である。また、硝材として温度特性の比較的良いプ
ラスチックを使っている。波面収差のRMS値が0.0
7λ以内となる最大像高は0゜075mmである。In Example 3, for light source light of λ=532 nm, NAo
, 6. In addition, plastic, which has relatively good temperature characteristics, is used as the glass material. RMS value of wavefront aberration is 0.0
The maximum image height within 7λ is 0°075 mm.
実施例4は、λ=780nmの光源光に対して、NAo
、7である。波面収差のRMS値が0.07λ以内とな
る最大像高は0.083mmである。In Example 4, for light source light of λ=780 nm, NAo
, 7. The maximum image height at which the RMS value of wavefront aberration is within 0.07λ is 0.083 mm.
実施例5は、λ=780nmの光源光に対して。Example 5 is for light source light of λ=780 nm.
NAo、65である。波面収差のRMS値が0゜07λ
以内となる最大像高は0.1mm以上である。NAo is 65. RMS value of wavefront aberration is 0°07λ
The maximum image height within this range is 0.1 mm or more.
さらに、アツベ数が大きく色分散が小さい硝材を使えば
、光磁気ディスクのように書き込みと消去の度に波長が
換わる場合にも使用可能な、色収差を低く押さえた開口
数の大きい対物レンズが可能である。実施例6は、この
ような場合の一例である。この実施例では、波長780
nmと760nmおよび800nmについて軸上の色収
差が、±0.002mm程度であり、軸上の色収差/波
長差=±0.0001mm/nmを達成している。Furthermore, by using a glass material with a large Abbe number and low chromatic dispersion, it is possible to create an objective lens with a large numerical aperture and low chromatic aberration, which can be used even when the wavelength changes each time writing and erasing, such as with magneto-optical disks. It is. Example 6 is an example of such a case. In this example, wavelength 780
The axial chromatic aberration is approximately ±0.002 mm for wavelengths of 760 nm, 760 nm, and 800 nm, achieving an axial chromatic aberration/wavelength difference of ±0.0001 mm/nm.
波面収差のRMS値が0.07λ以内となる最大像高は
0.1mm以上であり、十分広い視野を有する。The maximum image height at which the RMS value of wavefront aberration is within 0.07λ is 0.1 mm or more, and has a sufficiently wide field of view.
実施例1
f =3.89mn λ=532nm m=o
NA O,70r d n
非球面係数・へき数
第1面
に= −1,28392
A1= 6.23360X10−3P、= 4.0
000A、= 9.07906xlO−SP2=
6.0000A、= 8.05098X10−’
P3= 8.000OA4=6.56022×1O−
7P4=10.ooo。Example 1 f = 3.89 mn λ = 532 nm m = o
NA O,70r d n Aspheric coefficient/heavy number on the first surface = -1,28392 A1 = 6.23360X10-3P, = 4.0
000A, = 9.07906xlO-SP2=
6.0000A, = 8.05098X10-'
P3=8.000OA4=6.56022×1O-
7P4=10. ooooo.
第2面
に= −2,34275x 10
A□= 5.10396X10−3P、= 4.0
000A2= −4,97446X10−’ P2=
6.0000A、= 9.48216X10−’
P、= 8.0000A4= 1.33818
x10−’ P4= 10.0000d / f =
0.925 1 rzl rzl = 0.473△2
=−0,1933r、/ f =0.648実施例2
f =3.89mm λ=532nm m=ONA
O,80r d n νd
1]L2・5183・601・52141 64・52
」−5,3351,20
31C001,201,5190064,14」
ω
非球面係数・べき数
第1面
に= −1,31094
A□= 6.47833X10−’ P□=
4.0000A2= 9.65323XIP’
P2= 6.0000A、= 2.17873X1
0−” P、= 8.0000A4= 1.2
6328xlO−” p4= 10.0000第2
面
に= −2,51481X 10
A1= 4.44446X10−” P、= 4
.0000A2= −3,67271X10−’ P
2= 6.0000A3= 109482 X 1
O−sP3= 111.000OA4= 7.86
137X10−” P4= 10.0000d /
f =9.25 1 r□/ rzl=0.472△2
=−0,5606r、/f=0.647実施例3
f =3.6(Jwn λ=532r+m m
’=o NA O,60r d n
ト L 2.307 3.10 1.50
249 56.4□
2n −4,6161,19
31(: oo 1.20 1.51900
64.14」 ψ
非球面係数・べき数
第1面
に= −7,66450X 1O−1
A 、 = 2.88930 x 1O−3P 、
= 4.0000A2= −9,(16490xlO
−’ P2= 6.0000A、= 1.376
20X10−SP、= 8.0000A4= −3,
11170X10−’ P4= 10.0000第2
面
に= −2,44450X 10
A、= −1,49330X10−’ P1= 4
.0000A2= −1,18330X10−’ P
2= 6.0000A、= 1.05520X10
−’ P、= 8,0000A、= 6.782
00XIO−7P4= 10.0000d / f =
0.861 1 r、/ rl= 0.500△2=
−0,2504r、/ f =0.641実施例4
f =3.69+m λ=780nm m =O
NA O,70r d n
I L 2.575 3.12 1.60910
36.32] −9,4711,20
非球面係数・べき数
第1面
に= −1,29744
A1= 6.28096X10−” p、:=
4.0000A、= 1.05771X10−’
P2= 6.000OA、= 9.39405X1
0−’ P、= 8.000OA4= 6.50
502X10−7P、= 10.0000第2面
に= −6,72012X10
A、= 4.96720X10−3P、= 4.0
000A、:=−4,89956XIO−4P2=
6.0000A、= 9.97738XIO−6P、
= 8.0000A、、= 1.35357xlO
−’ P、= 10.0000d / f =0
.846 l r1/ rzl=0.272△2=−
0,1186r、/ f =0.698実施例5
f =3.84wn λ==780nm m =
ONA 0.65r d y)
L L 3,072 3.90 1.60910
36.321 −5.0861.20
非球面係数・べき数
第1面
に= −2,83817X 10”1
A1= −1,41538X10−’ P、= 4
.0000A2= −2,73623X10−’ P
2= 6.0000A、= 1.05674xlo
−sP、= 8.0000A、 = −5,7875
1X10−’ P4= 10.0000第2面
に= −2,05642X 10
八〇=−4,17364xlO−3P□= 4.00
00A2=−4,64061X10−4P2= 6.
0000A 3= 7.52342 x 10−’
P 、 = 8.000OA4= −2,7691
2xlO−’ P、= 10.0000cl / f
=1.016 1 r1/ r21=0.604△2
=−0,0631r、/ f =0.800実施例6
f =3.80m+ λ=780nm m=o
NAo、70r d n
I L 2.451 3.60 1.51314
64.5]
2J −4,7921,15
非球面係数・へき数
第1面
K = −1,27020
A□= 6,59776 X 1O−3P 1=
4.0000A2= 1.27463X10−4
PJ= 6.0000A、= 2.71143xl
O−’ P、= 8.0000A4= 1.0
1747xlO−’ P4= 10.0000第
2面
に= −2,25124X 10
Aよ= 4.66178xlO−’ P工= 4
.0000A2= −4,82678xlO−’ P
2= 6.000OA、= 1.21529X10
”5P3= 8.0000A4= 1.49282
X10−’ P、= 10.0000d / f =
0.947 l r、/ r、l=0.511△、=
−0,230Or、/ f =0.645(発明の効果
)
この発明により、各実施例及び収差図に見るように、波
長の短い光源光に対してのものも含め、開口数が0.6
〜0.8程度の光ディスク用対物レンズを、高次の非球
面項を使わずに、実用上十分な光学性能をもつ非球面単
レンズで実現することが可能となった。On the second side = -2,34275x 10 A□ = 5.10396X10-3P, = 4.0
000A2= -4,97446X10-' P2=
6.0000A, = 9.48216X10-'
P, = 8.0000A4 = 1.33818
x10-' P4= 10.0000d/f=
0.925 1 rzl rzl = 0.473△2
=-0,1933r, / f =0.648 Example 2 f =3.89mm λ=532nm m=ONA
O, 80r d n νd 1] L2・5183・601・52141 64・52
”-5,3351,20 31C001,201,5190064,14”
ω Aspheric coefficient/power on the first surface = -1,31094 A□= 6.47833X10-' P□=
4.0000A2=9.65323XIP'
P2 = 6.0000A, = 2.17873X1
0-”P,=8.0000A4=1.2
6328xlO-” p4= 10.0000 2nd
On the surface = -2,51481X 10 A1 = 4.44446X10-” P, = 4
.. 0000A2=-3,67271X10-'P
2= 6.0000A3= 109482 X 1
O-sP3= 111.000OA4= 7.86
137X10-” P4= 10.0000d/
f =9.25 1 r□/ rzl=0.472△2
=-0,5606r, /f=0.647Example 3 f=3.6(Jwn λ=532r+m m
'=o NA O,60r d n to L 2.307 3.10 1.50
249 56.4□ 2n -4,6161,19 31(: oo 1.20 1.51900
64.14" ψ Aspheric coefficient/power on the first surface = -7,66450X 1O-1 A, = 2.88930 x 1O-3P,
= 4.0000A2= -9, (16490xlO
-' P2 = 6.0000A, = 1.376
20X10-SP, = 8.0000A4 = -3,
11170X10-' P4= 10.0000 2nd
On the surface = -2,44450X 10 A, = -1,49330X10-' P1 = 4
.. 0000A2=-1,18330X10-'P
2 = 6.0000A, = 1.05520X10
-' P, = 8,0000A, = 6.782
00XIO-7P4=10.0000d/f=
0.861 1 r, / rl= 0.500△2=
-0,2504r, / f = 0.641 Example 4 f = 3.69 + m λ = 780 nm m = O
NA O,70rd n I L 2.575 3.12 1.60910
36.32] -9,4711,20 Aspherical coefficient/power on the first surface = -1,29744 A1= 6.28096X10-" p, :=
4.0000A, = 1.05771X10-'
P2 = 6.000OA, = 9.39405X1
0-'P, = 8.000OA4 = 6.50
502X10-7P, = 10.0000 on the second side = -6,72012X10 A, = 4.96720X10-3P, = 4.0
000A, :=-4,89956XIO-4P2=
6.0000A, = 9.97738XIO-6P,
= 8.0000A,, = 1.35357xlO
-' P, = 10.0000d/f = 0
.. 846 l r1/ rzl=0.272△2=-
0,1186r, / f = 0.698 Example 5 f = 3.84wn λ = = 780nm m =
ONA 0.65r dy) L L 3,072 3.90 1.60910
36.321 -5.0861.20 Aspheric coefficient/power on the first surface = -2,83817X 10"1 A1 = -1,41538X10-' P, = 4
.. 0000A2=-2,73623X10-'P
2 = 6.0000A, = 1.05674xlo
-sP, = 8.0000A, = -5,7875
1X10-' P4 = 10.0000 on the second side = -2,05642X 10 80 = -4,17364xlO-3P□ = 4.00
00A2=-4,64061X10-4P2=6.
0000A 3= 7.52342 x 10-'
P, = 8.000OA4 = -2,7691
2xlO-'P, = 10.0000cl/f
=1.016 1 r1/ r21=0.604△2
=-0,0631r, / f =0.800 Example 6 f =3.80m+ λ=780nm m=o
NAo, 70rd n I L 2.451 3.60 1.51314
64.5] 2J -4,7921,15 Aspheric coefficient/heavy number 1st surface K = -1,27020 A□= 6,59776 X 1O-3P 1=
4.0000A2=1.27463X10-4
PJ = 6.0000A, = 2.71143xl
O-'P, = 8.0000A4 = 1.0
1747xlO-' P4 = 10.0000 on the second side = -2,25124X 10 A = 4.66178xlO-' P engineering = 4
.. 0000A2=-4,82678xlO-'P
2 = 6.000OA, = 1.21529X10
”5P3= 8.0000A4= 1.49282
X10-'P, = 10.0000d/f =
0.947 l r, / r, l=0.511△,=
-0,230 Or, / f = 0.645 (Effect of the invention) With this invention, as seen in each example and the aberration diagram, the numerical aperture is 0.6, including for light source light with a short wavelength.
It has become possible to realize an objective lens for an optical disk of about 0.8 with a single aspherical lens having practically sufficient optical performance without using a high-order aspherical term.
第1図は、この発明の対物レンズの平行平面板を含む断
面図、第2〜7図は、それぞれ、第1〜6実施例の収差
曲線図、第8〜13図は、それぞれ波面収差のRMS値
の像高特性図である。FIG. 1 is a cross-sectional view including the parallel plane plate of the objective lens of the present invention, FIGS. 2 to 7 are aberration curve diagrams of the first to sixth embodiments, respectively, and FIGS. 8 to 13 are diagrams of wavefront aberrations, respectively. It is an image height characteristic diagram of RMS value.
Claims (1)
を有する単レンズであって、以下の条件を満足すること
を特徴とする光ディスク用対物レンズ 1.5<n 0.83<d/f<1.2 |r_1/r_2|<0.7 但し、r_1:光源側レンズ面の頂点における曲率半径 r_2:光ディスク側レンズ面の頂点における曲率半径 n:使用波長におけるレンズの屈折率 d:単レンズの芯厚 f:単レンズの焦点距離[Claims] An objective lens for an optical disc, characterized in that it is a single lens having an aspherical shape on at least one of the light source side and the optical disc side, and satisfies the following conditions: 1.5<n 0.83<d/f<1.2|r_1/r_2|<0.7 However, r_1: radius of curvature at the apex of the lens surface on the light source side r_2: radius of curvature at the apex of the lens surface on the optical disk side n: refractive index of the lens at the wavelength used d : Core thickness of single lens f: Focal length of single lens
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28854290A JPH04163510A (en) | 1990-10-29 | 1990-10-29 | Object lens for optical disk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28854290A JPH04163510A (en) | 1990-10-29 | 1990-10-29 | Object lens for optical disk |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04163510A true JPH04163510A (en) | 1992-06-09 |
Family
ID=17731589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28854290A Pending JPH04163510A (en) | 1990-10-29 | 1990-10-29 | Object lens for optical disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04163510A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6636366B1 (en) | 2001-09-21 | 2003-10-21 | Victor Company Of Japan, Limited | Objective for optical disk, optical pickup, optical disk writer-reader, and optical disk reader |
KR100506565B1 (en) * | 2000-11-16 | 2005-08-10 | 닛뽕빅터 가부시키가이샤 | Objective lens for an optical disk |
EP1986189A3 (en) * | 1999-09-01 | 2008-11-19 | Konica Corporation | Objective lens for pickup and light pickup apparatus |
JP2013246255A (en) * | 2012-05-24 | 2013-12-09 | Olympus Corp | Collimator lens, illuminating device and microscope |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5776512A (en) * | 1980-10-31 | 1982-05-13 | Konishiroku Photo Ind Co Ltd | Large-aperture aspheric single lens |
JPS61200518A (en) * | 1985-02-28 | 1986-09-05 | Konishiroku Photo Ind Co Ltd | Objective for recording and reproduction of optical information recording medium |
JPH02223907A (en) * | 1989-02-24 | 1990-09-06 | Hoya Corp | Large-diameter aspherical lens |
-
1990
- 1990-10-29 JP JP28854290A patent/JPH04163510A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5776512A (en) * | 1980-10-31 | 1982-05-13 | Konishiroku Photo Ind Co Ltd | Large-aperture aspheric single lens |
JPS61200518A (en) * | 1985-02-28 | 1986-09-05 | Konishiroku Photo Ind Co Ltd | Objective for recording and reproduction of optical information recording medium |
JPH02223907A (en) * | 1989-02-24 | 1990-09-06 | Hoya Corp | Large-diameter aspherical lens |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1986189A3 (en) * | 1999-09-01 | 2008-11-19 | Konica Corporation | Objective lens for pickup and light pickup apparatus |
EP1081692B1 (en) * | 1999-09-01 | 2009-04-29 | Konica Corporation | Objective lens for pickup and light pickup apparatus |
JP2009163870A (en) * | 1999-09-01 | 2009-07-23 | Konica Minolta Holdings Inc | Objective lens and optical pickup apparatus |
KR100506565B1 (en) * | 2000-11-16 | 2005-08-10 | 닛뽕빅터 가부시키가이샤 | Objective lens for an optical disk |
US6636366B1 (en) | 2001-09-21 | 2003-10-21 | Victor Company Of Japan, Limited | Objective for optical disk, optical pickup, optical disk writer-reader, and optical disk reader |
JP2013246255A (en) * | 2012-05-24 | 2013-12-09 | Olympus Corp | Collimator lens, illuminating device and microscope |
US9268150B2 (en) | 2012-05-24 | 2016-02-23 | Olympus Corporation | Double convex collimator lens, illumination device, and microscope |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0442650B2 (en) | ||
JP2641514B2 (en) | Single group objective lens | |
JPH0314324B2 (en) | ||
US4701032A (en) | Graded refractive index lens system | |
US4684221A (en) | Graded refractive index single lens system | |
US4595264A (en) | Lens system for optical recording type disks | |
JPS59174810A (en) | Objective lens | |
JPH04163510A (en) | Object lens for optical disk | |
JPH0453285B2 (en) | ||
JP2567047B2 (en) | Aspheric single lens | |
JPH0462564B2 (en) | ||
JPH01214811A (en) | Aspherical single lens | |
JPH02195317A (en) | Objective lens for optical disk | |
JPH0567206B2 (en) | ||
JPS6254212A (en) | Aspheric surface single lens | |
JP2622155B2 (en) | Aspheric single lens | |
JPS6254211A (en) | Aspheric surface single lens | |
JPH0829682A (en) | Objective lens for recording and reproducing optical information recording medium | |
JPS62116915A (en) | Condenser lens for optical memory | |
JPH04143714A (en) | Objective lens for optical disk | |
JPS6091317A (en) | Objective lens for optical disk | |
JP2622160B2 (en) | Aspheric single lens | |
JPH07119889B2 (en) | Condensing optical system for recording / reproducing optical system of optical information recording medium | |
JPS61163312A (en) | Refractive index distributed single lens | |
JPS61163311A (en) | Refractive index distributed single lens |