[go: up one dir, main page]

JPH0416237A - Catalyst and method for preparing gamma-butylolactone - Google Patents

Catalyst and method for preparing gamma-butylolactone

Info

Publication number
JPH0416237A
JPH0416237A JP11881690A JP11881690A JPH0416237A JP H0416237 A JPH0416237 A JP H0416237A JP 11881690 A JP11881690 A JP 11881690A JP 11881690 A JP11881690 A JP 11881690A JP H0416237 A JPH0416237 A JP H0416237A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
cobalt
weight
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11881690A
Other languages
Japanese (ja)
Other versions
JP3092138B2 (en
Inventor
Shoichi Nishiyama
正一 西山
Sadakatsu Kumoi
雲井 貞勝
Norimasa Mizui
水井 規雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP02118816A priority Critical patent/JP3092138B2/en
Publication of JPH0416237A publication Critical patent/JPH0416237A/en
Application granted granted Critical
Publication of JP3092138B2 publication Critical patent/JP3092138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prepare a cyclic compound such as THF or the subject gamma-BL with high selectivity by using a solid catalyst prepared by supporting palladium and cobalt on a crystalline aluminosilicate carrier. CONSTITUTION:As a catalyst for preparing gamma-butylolactone by hydrogenating maleic or succinic anhydride, crystalline aluminosilicate such as zeolite or stabilized Y-type zeolite is used. Palladium and cobalt are supported on this crystalline aluminosilicate by ion exchange or dipping. The catalyst thus obtained prepares a cyclic compound such as THF or gamma-BL with high selectivity and high hydrogenating activity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マレイン酸又はコノ\り酸無水物(以下、両
者を合わせてC4無水物と略す。)を水素化してγ−ブ
チロラクトンを製造するための改良触媒及びそれを用い
たγ−ブチロラクトンの製造法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to the production of γ-butyrolactone by hydrogenating maleic acid or cono-conic acid anhydride (hereinafter, both are collectively abbreviated as C4 anhydride). The present invention relates to an improved catalyst for producing γ-butyrolactone and a method for producing γ-butyrolactone using the same.

〔従来の技術〕[Conventional technology]

従来、C4無水物を液相で水素化してγ−ブチロラクト
ン(以下、γ−BLと略す。)を製造するための触媒に
関し多くの提案がなされているが、これらは二つに大別
できる。例えば、Ni−Re系(特公昭43−6947
号公報) 、Ni−No系(特公昭49−5337号公
報) 、Ni−Re−Mo系(特公昭48−37673
号公報)等Niを主金属とするもの或いはCo−Pd系
(特公昭5g−29142号公報)等Coを主金属とす
るものとに分けられる。しかし、Ni系はテトラヒドロ
フラン(以下、THFと略す。)を多く生成し、又酪酸
やプロピオン酸等の副生物を伴い易いため、目的とする
γ−BLを選択的に製造できないという欠点がある。
Conventionally, many proposals have been made regarding catalysts for producing γ-butyrolactone (hereinafter abbreviated as γ-BL) by hydrogenating C4 anhydride in a liquid phase, but these can be broadly classified into two types. For example, Ni-Re system (Special Publication No. 43-6947
Publication No.), Ni-No system (Japanese Patent Publication No. 49-5337), Ni-Re-Mo system (Japanese Patent Publication No. 48-37673)
There are two types of materials: those containing Ni as the main metal, such as in Japanese Patent Publication No. 5G-29142, and those containing Co as the main metal, such as Co--Pd (Japanese Patent Publication No. 5G-29142). However, Ni-based methods produce a large amount of tetrahydrofuran (hereinafter abbreviated as THF) and are likely to be accompanied by by-products such as butyric acid and propionic acid, so they have the disadvantage that they cannot selectively produce the desired γ-BL.

しかも、耐酸性が乏しいため反応系中にNiが溶出しや
すく、Reを添加して耐酸性を高めているが十分ではな
い。
Moreover, due to the poor acid resistance, Ni is easily eluted into the reaction system, and although Re is added to improve the acid resistance, it is not sufficient.

一方、後者のCoを主金属とするCo−Pd系触媒は、
前者のNi系と比較してγ−BL選択率は高く耐酸性の
性質も併せ持つが、水素化活性はやや劣ル。サラニ、γ
−BL選択率向上のためにクロム添加(特開昭61−1
15079号)或いは担体をケイソウ±(特開昭62−
111974号)に代えたもの或いはコバルトおよびパ
ラジウムの溶出を抑える目的で担体を酸化ニオブ(特開
昭62−111975号)にした改良触媒も出されてい
る。このように、Ni系及びCo系両者を比較した際、
Co系が副生物の生成量が少なくγ−BLの選択率が高
いという特徴を有している。
On the other hand, the latter Co-Pd catalyst with Co as the main metal is
Compared to the former Ni-based material, it has a higher γ-BL selectivity and also has acid resistance, but its hydrogenation activity is slightly inferior. Sarani, γ
- Addition of chromium to improve BL selectivity (JP-A-61-1
No. 15079) or the carrier is diatomaceous
111974) or improved catalysts using niobium oxide as a carrier (Japanese Patent Application Laid-Open No. 111975/1982) have been proposed in order to suppress the elution of cobalt and palladium. In this way, when comparing both Ni-based and Co-based,
Co-based materials are characterized by a small amount of by-products produced and a high selectivity for γ-BL.

しかし、これらCo系公知触媒においてもC4無水物の
水素化では、コハク酸、マレイン酸、プロピオン酸、酪
酸、1,4−ブタンジオール等の環の開裂を伴った副生
物が得られる。また、水素化活性も十分とは言い難い。
However, even in these Co-based known catalysts, by-products accompanied by ring cleavage such as succinic acid, maleic acid, propionic acid, butyric acid, and 1,4-butanediol are obtained in the hydrogenation of C4 anhydrides. Furthermore, the hydrogenation activity is also not sufficient.

[発明が解決しようとする課[ 従って、C4無水物を触媒の存在下に水素化してγ−B
Lを得る反応において、THF及びγ−BLのような環
状化合物の選択率が大きく、且つ水素化活性の高い触媒
の開発が強く望まれている。
[Problem to be solved by the invention] Therefore, by hydrogenating C4 anhydride in the presence of a catalyst, γ-B
In the reaction for obtaining L, there is a strong desire to develop a catalyst that has a high selectivity for cyclic compounds such as THF and γ-BL and has high hydrogenation activity.

[課題を解決するための手段] 本発明者らは、触媒用担体を検討していく過程で、結晶
性アルミノシリケートを担体として用いた場合、THF
もしくはγ−BLのような環状化合物を高選択率にて製
造できることを見出だした。
[Means for Solving the Problems] In the process of studying catalyst carriers, the present inventors found that when crystalline aluminosilicate was used as a carrier, THF
Alternatively, it has been found that cyclic compounds such as γ-BL can be produced with high selectivity.

中でも安定化Y型ゼオライトが特異的に非常に高い活性
を示し、且つ環状化合物の生成比率が高いという興味あ
る新規な事実を見出だし、本発明を完成するに至った。
Among them, the inventors discovered an interesting new fact that stabilized Y-type zeolite specifically exhibits extremely high activity and has a high production ratio of cyclic compounds, leading to the completion of the present invention.

即ち、本発明は、C4無水物を触媒の存在下、水素添加
しγ−BLを得る反応において、パラジウム及びコバル
トを結晶性アルミノシリケート担体に担持した固体触媒
を使用することを特徴とするγ−BLの製造法を提供す
るものである。
That is, the present invention is characterized in that a solid catalyst in which palladium and cobalt are supported on a crystalline aluminosilicate carrier is used in the reaction of hydrogenating C4 anhydride in the presence of a catalyst to obtain γ-BL. A method for manufacturing BL is provided.

以下その詳細について説明する。The details will be explained below.

本発明の触媒に用いられる担体は、結晶性アルミノシリ
ケートである。具体的にはY型、L型。
The support used in the catalyst of the present invention is a crystalline aluminosilicate. Specifically, Y type and L type.

モルデナイト及びフェリエライト等いわゆるゼオライト
と称するものである。それらの結晶性アルミノシリケー
トは、そのままでも、又は通常の焼成処理或いは水蒸気
焼成、酸処理等の各種の脱アルミニウム処理によりシリ
カ/アルミナのモル比を上げた安定化ゼオライトを用い
ても良い。
These are so-called zeolites such as mordenite and ferrierite. These crystalline aluminosilicates may be used as they are, or stabilized zeolites in which the molar ratio of silica/alumina is increased by ordinary calcination treatment or various dealumination treatments such as steam calcination and acid treatment may be used.

該水素化反応の触媒担体としてのゼオライトは、シリカ
/アルミナのモル比が5以上であることが望ましい。
The zeolite used as a catalyst carrier for the hydrogenation reaction preferably has a silica/alumina molar ratio of 5 or more.

中でもY型ゼオライトを酸処理して得られるシリカ/ア
ルミナのモル比が5,8以上の安定化Y型ゼオライトを
担体として使用することは、従来の触媒と比較して極め
て高い活性と、環状化合物取得の面で極めて有利である
Among them, the use of stabilized Y-type zeolite with a silica/alumina molar ratio of 5.8 or more obtained by acid treatment of Y-type zeolite as a carrier has extremely high activity compared to conventional catalysts, and it is possible to suppress the formation of cyclic compounds. It is extremely advantageous in terms of acquisition.

この結晶性アルミノシリケート類に、アルカリ金属もし
くはアルカリ土類金属塩類を担持し、焼成処理したもの
を使用しても良い。Y型、L型。
This crystalline aluminosilicate may be supported with an alkali metal or alkaline earth metal salt and subjected to a firing treatment. Y type, L type.

モルデナイト、フェリエライト及びそれらを脱アルミニ
ウム処理した安定化ゼオライト等はそれ自身アルカリ金
属もしくはアルカリ土類金属イオンを0〜数%含有して
いるのが一般的であるが、それらに新たにアルカリ金属
もしくはアルカリ土類金属イオン源を添加しても良い。
Mordenite, ferrierite, and stabilized zeolites obtained by dealuminizing them generally contain 0 to several percent of alkali metal or alkaline earth metal ions, but if a new alkali metal or alkaline earth metal ion is added to them, An alkaline earth metal ion source may also be added.

アルカリ金属としてはナトリウム、カリウム、セシウム
、アルカリ土類金属としてはカルシウム、マグネシウム
Alkali metals include sodium, potassium, and cesium; alkaline earth metals include calcium and magnesium.

ストロンチウムか挙げられ、触媒調製の際にはそれらの
ハロゲン化物、硝酸塩、硫酸塩、炭酸塩及び有機酸塩の
いずれがを原料にして用いることができる。担持方法は
、一般的なイオン交換或いは含浸法等いずれの方法を用
いても構わない。
For example, strontium can be used, and any of their halides, nitrates, sulfates, carbonates, and organic acid salts can be used as a raw material when preparing the catalyst. The supporting method may be any general ion exchange method or impregnation method.

これらアルカリ金属及びアルカリ土類金属の含有率を変
えることによって、目的とするγ−BLの生成−を増加
することができる。
By changing the content of these alkali metals and alkaline earth metals, the production of the desired γ-BL can be increased.

その含有量は、使用する金属及び安定化ゼオライトの種
類によって少し異なるが、コバルトに対する原子比が0
.05〜1.0の範囲内であればその効果を達成できる
。原子比0.1−0.4であれば、γ−BLの収率が最
も高くなる。
Its content varies slightly depending on the metal used and the type of stabilized zeolite, but the atomic ratio to cobalt is 0.
.. This effect can be achieved within the range of 0.05 to 1.0. If the atomic ratio is 0.1-0.4, the yield of γ-BL will be the highest.

本発明に使用する触媒の製造法としては、特に限定はさ
れない。例示すると、 1)加熱分解可能なコバルト、パラジウムの各化合物を
ゼオライトに逐次及び同時含浸し、通常の乾燥、焼成、
還元を施す方法、 2)パラジウムをゼオライトにイオン交換し、その後コ
バルト化合物を含浸し、焼成・還元する方法、 3)コバルト、パラジウム各化合物とゼオライトとを物
理的な混合の後、焼成、還元する方法等があるが、どの
方法を用いてもさしつかえない。
There are no particular limitations on the method for producing the catalyst used in the present invention. For example, 1) zeolite is sequentially and simultaneously impregnated with thermally decomposable cobalt and palladium compounds, followed by normal drying, calcination,
2) A method of ion-exchanging palladium with zeolite, then impregnating it with a cobalt compound, and then firing and reducing it. 3) A method of physically mixing cobalt and palladium compounds with zeolite, then firing and reducing it. There are many methods, but any method can be used.

使用するコバルト化合物、パラジウム化合物としては、
加熱分解可能なものであれば、特に制限はない。コバル
ト化合物としては、塩化コバルト。
The cobalt compounds and palladium compounds used are:
There is no particular restriction as long as it can be thermally decomposed. Cobalt chloride is a cobalt compound.

硝酸コバルト、−硫酸コバルトあるいはコバルト有機錯
体等が挙げられるが、好ましくは硝酸コバルトが良い。
Examples include cobalt nitrate, cobalt sulfate, and cobalt organic complexes, with cobalt nitrate being preferred.

一方、パラジウム化合物としては、酢酸パラジウム、塩
化パラジウムアンモニウム、塩化パラジウム、硝酸パラ
ジウム、硫酸パラジウム、テトラアンミンパラジウムク
ロリド等が挙げられる。
On the other hand, examples of palladium compounds include palladium acetate, palladium ammonium chloride, palladium chloride, palladium nitrate, palladium sulfate, and tetraammine palladium chloride.

上記コバルト、パラジウム化合物の割合は、γ−BLの
選択性に対して、重要な因子である。即ち、触媒総重量
に対してコバルトを5〜50重量%、パラジウムを0.
5〜6重量%含有するのが良い。それ未満の含有率では
水添活性が乏しく、且っγ−BLの選択率は低い。コバ
ルトとパラジウムを上記の範囲内で含んでいれば活性9
選択率共に良好な結果をもたらすことは可能であるが、
高価なパラジウムを使用するということから、好ましく
はパラジウム含量は0.2〜2重量%、コバルト含量は
5〜30重量%である方が良い。
The ratio of the above-mentioned cobalt and palladium compounds is an important factor for the selectivity of γ-BL. That is, cobalt is 5 to 50% by weight and palladium is 0.5% by weight based on the total weight of the catalyst.
The content is preferably 5 to 6% by weight. If the content is less than that, the hydrogenation activity is poor and the selectivity of γ-BL is low. If cobalt and palladium are contained within the above range, activity 9
Although it is possible to achieve good results in terms of selectivity,
Since expensive palladium is used, the palladium content is preferably 0.2 to 2% by weight, and the cobalt content is preferably 5 to 30% by weight.

本発明においては、触媒の形状に制限はなく、反応形式
に準じて粉末のまま若もしくは成型して用いられてもよ
い。懸濁床では粉末或いは顆粒を、固定床ではタブレッ
トの打錠成型品2球状或いは棒柱状の押し出し成型品等
が用いられる。
In the present invention, there are no restrictions on the shape of the catalyst, and it may be used as a powder or in the form of a mold, depending on the type of reaction. In the suspended bed, powder or granules are used, and in the fixed bed, tablet molded products, spherical or rod-shaped extrusion molded products, etc. are used.

本発明における触媒の活性化処理としては、通常の焼成
、還元を行った後、反応に供される。
In the present invention, the catalyst is activated by ordinary calcination and reduction, and then subjected to reaction.

焼成、還元温度は、それぞれ300〜600℃の範囲で
空気、窒素もしくは水素気流中で行えば良く特に制限は
ない。
The firing and reduction temperatures are not particularly limited as long as they are carried out in a stream of air, nitrogen or hydrogen within the range of 300 to 600°C.

本発明の方法において、マレイン酸又はコハク酸の無水
物は溶媒に溶解させたのち反応に供する。
In the method of the present invention, maleic acid or succinic anhydride is dissolved in a solvent and then subjected to the reaction.

溶媒としては、水素化が進行せず且つ生成物と反応しな
いジオキサン等、もしくは溶媒回収を必要としない水素
化生成物であるγ−BLを用いるのかよい。
As the solvent, dioxane or the like, which does not proceed with hydrogenation and does not react with the product, or γ-BL, which is a hydrogenation product that does not require solvent recovery, may be used.

使用する触媒量は、適度な反応速度で水素化が進行する
必要量以上であれば良い。しかし、反応型式により使用
量が異なるため一概に限定するのは困難であるが、懸濁
床の場合であればC4無水物に対し重量ベースで1〜3
0%で、好ましくは2〜15%が良い。
The amount of catalyst to be used may be at least the amount necessary for hydrogenation to proceed at an appropriate reaction rate. However, since the amount used varies depending on the reaction type, it is difficult to limit it unconditionally, but in the case of a suspended bed, it is 1 to 3 by weight based on the C4 anhydride.
0%, preferably 2 to 15%.

本発明においては、反応は水素前圧下通常150〜30
0℃、好ましくは180〜260℃の範囲で実施され、
反応圧力は50〜300kg/cd G 、好ましくは
50〜200kg/cJGの圧力範囲が選ばれる。それ
ら未満の温度、圧力では反応速度が著しく遅く、またそ
れ以上では生成物であるγ−BLの分解、ポリマー化が
起こり実用的ではない。
In the present invention, the reaction is usually carried out under a hydrogen pressure of 150 to 30
carried out at 0°C, preferably in the range of 180 to 260°C,
The reaction pressure is selected to be in the range of 50 to 300 kg/cd G, preferably 50 to 200 kg/cJG. At temperatures and pressures lower than these, the reaction rate is extremely slow, and at temperatures and pressures higher than these, the product γ-BL decomposes and polymerizes, making it impractical.

本発明においては、反応は懸濁床による回分、半回分、
連続式でも、又固定床流通式でも実施できる。更に、γ
−BLの収率を向上させる意味で反応帯域から生成する
水を除去しても構わない。
In the present invention, the reaction can be carried out batchwise, semi-batchwise, in a suspended bed,
It can be carried out either in a continuous system or in a fixed bed flow system. Furthermore, γ
- Water generated from the reaction zone may be removed in order to improve the yield of BL.

[発明の効果〕 本発明は、マレイン酸又はコハク酸の無水物を触媒の存
在下水素ガス雰囲気で水素化してγ−BLを得る反応に
おいて、結晶性アルミノシリケート担体に主としてコバ
ルト及びパラジウムを担持させた触媒を用いることによ
り従来の触媒と比較してTHFやγ−BLのような環状
生成物を高収率に製造できる特徴を与えるものである。
[Effects of the Invention] The present invention provides a method in which cobalt and palladium are mainly supported on a crystalline aluminosilicate support in a reaction to obtain γ-BL by hydrogenating anhydride of maleic acid or succinic acid in a hydrogen gas atmosphere in the presence of a catalyst. By using this catalyst, cyclic products such as THF and γ-BL can be produced in higher yields than conventional catalysts.

中でも安定化Y型ゼオライト担体を用いると反応時間が
半減できる程高活性で、しかもアルカリ金属或いはアル
カリ土類金属の添加で随時目的生成物を高選択的に得る
ことができる。本発明の改良触媒は、即ちこれまで種々
提案された触媒系より、選択率及び活性において、より
優れた工業的に極めて有用なγ−BL製造触媒である。
Among them, when a stabilized Y-type zeolite carrier is used, the activity is so high that the reaction time can be halved, and furthermore, the desired product can be obtained with high selectivity at any time by adding an alkali metal or alkaline earth metal. The improved catalyst of the present invention is an industrially extremely useful catalyst for producing γ-BL which is superior in selectivity and activity to the various catalyst systems proposed so far.

[実施例] 以下、本発明を具体的に実施例にて説明するが本発明は
これらの実施例にのみ限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically explained using Examples, but the present invention is not limited only to these Examples.

(触媒の調整) 比較触媒 硝酸コバルト六水和物197gを水250 mlに溶か
した水溶液を調製し、市販のシリカゲル200gと接触
させ含浸させた後、減圧下にて水を留去した。その後、
塩化パラジウム4,2gを水200 mlに溶かした水
溶液を加え充分に混合し110℃、減圧下で10時間乾
燥させ、同物質を微細に粉砕した。引続き、窒素気流下
(流速25II/h)で450℃、3時間加熱し、さら
に同温度下水素気流下(流速21 /h)で3時間活性
化させた。得られた触媒中のコバルト、パラジウムの含
量はそれぞれ17重量%、1重量%であった。
(Preparation of Catalyst) An aqueous solution was prepared by dissolving 197 g of cobalt nitrate hexahydrate as a comparison catalyst in 250 ml of water, and after contacting and impregnating 200 g of commercially available silica gel, water was distilled off under reduced pressure. after that,
An aqueous solution of 4.2 g of palladium chloride dissolved in 200 ml of water was added, thoroughly mixed, and dried at 110° C. under reduced pressure for 10 hours to finely pulverize the material. Subsequently, the mixture was heated at 450° C. for 3 hours under a nitrogen stream (flow rate 25 II/h), and further activated for 3 hours under a hydrogen stream (flow rate 21/h) at the same temperature. The contents of cobalt and palladium in the obtained catalyst were 17% by weight and 1% by weight, respectively.

結晶性アルミノシリケートを担体とする触媒調製NaY
 (シリカ/アルミナモル比5.6、東ソー社製TSZ
−32ONAA) 、  L型Cシ’) f)/フルミ
fモル比6.1、東ソー社製TSZ−500KOA) 
、 %ルデナィト(シリカ/アルミナモル比10.5.
東ソ社製TSZ60ONAA) 、  7 x ’J 
:r−ライト(シリカ/アルミナモル比16.8、東ソ
ー社製TSZ−720KOA >各々600℃空気焼成
品20gに、以下のように金属を担持させた。硝酸コバ
ルト六水和物2o、ggを水40m1に溶かした溶液と
、硝酸)くラジウム0.54gを水25m1に溶かした
混合溶液にゼオライトを加え含浸し、真空中で水を留去
した。その後110℃で10時間乾燥させ上記条件下触
媒を窒素及び水素で活性化させた。得られた触媒(Ca
t、No、1.2,3.4)中のコノ(ルト、1<ラジ
ウムの含量はそれぞれ17重量%、1重量%であった。
Catalyst preparation NaY using crystalline aluminosilicate as a carrier
(Silica/alumina molar ratio 5.6, TSZ manufactured by Tosoh Corporation)
-32ONAA), L-type C') f)/Fulmi f molar ratio 6.1, Tosoh TSZ-500KOA)
, %rudenite (silica/alumina molar ratio 10.5.
Toso Corporation TSZ60ONAA), 7 x 'J
:r-lite (silica/alumina molar ratio 16.8, Tosoh Corporation TSZ-720KOA) 20g of each 600°C air-fired product was loaded with metal as follows. Cobalt nitrate hexahydrate 2O, gg was Zeolite was added to a mixed solution of 0.54 g of radium nitrate dissolved in 25 ml of water to impregnate it, and water was distilled off in vacuo. Thereafter, it was dried at 110° C. for 10 hours and the catalyst was activated with nitrogen and hydrogen under the above conditions. The obtained catalyst (Ca
The contents of radium (radium, radium, and radium) in t, no., 1.2, and 3.4) were 17% by weight and 1% by weight, respectively.

安定化ゼオライトを担体とする触媒調製(1)シリカ/
アルミナモル比14及び40の安定化Y型ゼオライト(
東ソー製、H8Z−370HtlA。
Catalyst preparation using stabilized zeolite as a carrier (1) Silica/
Stabilized Y-type zeolite with alumina molar ratio of 14 and 40 (
Manufactured by Tosoh, H8Z-370HtlA.

600℃空気焼成)各20gに以下のように金属を担持
させた。硝酸コバルト六水和物20.8gを水40m1
に溶かした溶液と、硝酸パラジウム0.54gを水25
m1に溶かした混合溶液にゼオライトを加え含浸し、減
圧下で水を留去した。その後110℃で10時間乾燥さ
せ上記条件下触媒を窒素及び水素で活性化させた。得ら
れた触媒(Cat、No、5.6)中のコバルト、パラ
ジウムの含量はそれぞれ17重量%、1重量%であった
600° C. air firing) Each 20 g was loaded with metal as follows. 20.8g of cobalt nitrate hexahydrate in 40ml of water
and 0.54 g of palladium nitrate in 25 g of water.
Zeolite was added to the mixed solution dissolved in m1 to impregnate it, and water was distilled off under reduced pressure. Thereafter, it was dried at 110° C. for 10 hours and the catalyst was activated with nitrogen and hydrogen under the above conditions. The contents of cobalt and palladium in the obtained catalyst (Cat, No. 5.6) were 17% by weight and 1% by weight, respectively.

(2)20gの安定化Y型ゼオライト(シリカ/アルミ
ナ比40.600℃空気焼成)を200m1の水に懸濁
させ、0. 024sol#!のテトラアンミンパラジ
ウムクロリド水溶液を所定量加え70℃で3時間イオン
交換した。濾過、洗浄、乾燥、空気焼成の後パラジウム
を1%含有する安定化ゼオライトを得た。これを2つに
分は各10gについてコバルトの担持量が異なる触媒を
調製した。硝酸コバルト六水和物8.7g、12.3g
を各々水50m1に溶した水溶液に、1%パラジウム担
持安定化ゼオライトを加え含浸させた。真空中で水を留
去し、乾燥、引続き上記条件下触媒を窒素及び水素で活
性化させた。得られた触媒のコバルト及びパラジウムの
含量は以下のようになった。
(2) 20g of stabilized Y-type zeolite (silica/alumina ratio 40.600℃ air calcined) was suspended in 200ml of water, 024sol#! A predetermined amount of an aqueous solution of tetraamine palladium chloride was added and ion exchanged at 70°C for 3 hours. After filtration, washing, drying and air calcination, a stabilized zeolite containing 1% palladium was obtained. This was divided into two, and catalysts having different amounts of cobalt supported were prepared for each 10 g. Cobalt nitrate hexahydrate 8.7g, 12.3g
A 1% palladium-supported stabilized zeolite was added to an aqueous solution in which each of the above was dissolved in 50 ml of water to impregnate it. After distilling off the water in vacuo and drying, the catalyst was subsequently activated with nitrogen and hydrogen under the conditions described above. The cobalt and palladium contents of the obtained catalyst were as follows.

Cat、No、  Co (重量%)   Pd(tI
ffi%)7   14.8   0.80 8   20     0.85 (3)28.8gの硝酸コバルト穴水和物を水40m1
に溶かした溶液、0.58gの硝酸パラジウムを20m
1に溶かした溶液及び1.Ogの塩化カリウムを10m
1の水に溶かした水溶液を混合した溶液に、シリカ/ア
ルミナモル比40の安定化Y型ゼオライト20g(各6
00℃空気焼成)を加え含浸し、真空中で水を留去した
。同様に乾燥、活性化処理を行い、得られた触媒(Ca
t、No、9)中のコバルト、パラジウム、カリウムの
含量はそれぞれ21重量%、1重量%、2重量%であっ
た。
Cat, No, Co (wt%) Pd(tI
ffi%) 7 14.8 0.80 8 20 0.85 (3) 28.8g of cobalt nitrate hole hydrate in 40ml of water
A solution of 0.58 g of palladium nitrate in 20 m
A solution dissolved in 1 and 1. 10m of Og potassium chloride
20 g of stabilized Y-type zeolite with a silica/alumina molar ratio of 40 (6 each
00°C air firing) was added for impregnation, and water was distilled off in vacuo. The catalyst (Ca
The contents of cobalt, palladium, and potassium in No. t, No. 9) were 21% by weight, 1% by weight, and 2% by weight, respectively.

(4)28.9gの硝酸コバルト六水和物を水40m1
に溶かした溶液、0.58gの硝酸パラジウムを20m
1に溶かした溶液及び2.0gの塩化ナトリウムを10
m1の水に溶かした水溶液を混合した溶液に、シリカ/
アルミナモル比40の安定化Y型セオライト20g(各
600℃空気焼成)を加え含浸し、真空中で水を留去し
た。同様に乾燥、活性化処理を行い、得られた触媒(C
at、No、lO)中のコバルト、パラジウム、ナトリ
ウムの含量はそれぞれ21重量%、1重量%、3重量%
であった。
(4) 28.9g of cobalt nitrate hexahydrate in 40ml of water
A solution of 0.58 g of palladium nitrate in 20 m
A solution dissolved in 1 and 2.0 g of sodium chloride was added to 10
Silica/
20 g of stabilized Y-type ceolite (each fired in air at 600° C.) with an alumina molar ratio of 40 was added and impregnated, and water was distilled off in vacuo. The catalyst (C
The contents of cobalt, palladium, and sodium in at, No, IO) are 21% by weight, 1% by weight, and 3% by weight, respectively.
Met.

(5)安定化Y型ゼオライト20g(シリカ/アルミナ
モル比40.600℃空気焼成)を200 mlの水に
懸濁させ、アルミナに対するカリウムのモル比か10倍
量になるように1 、 5 ll1ol/i)及び3 
、 0 mol#)の塩化カリウム水溶液を加えて、7
5°C13時間イオン交換させ、濾過、洗浄、乾燥の後
、450℃で空気焼成した。カリウムの含量は各々1.
2重量%、1.4重量%であった。
(5) Suspend 20 g of stabilized Y-type zeolite (silica/alumina molar ratio 40, air calcined at 600°C) in 200 ml of water, and add 1.5 liters of zeolite to alumina so that the molar ratio of potassium to alumina is 10 times the amount. i) and 3
, 0 mol#) of potassium chloride aqueous solution,
After ion exchange at 5°C for 13 hours, filtration, washing, and drying, air baking was performed at 450°C. The potassium content is 1.
They were 2% by weight and 1.4% by weight.

次に、これを10倍量の水に懸濁させ、0.6%のテト
ラアンミンパラジウムクロリド水溶液を加え、75℃、
3時間イオン交換させた。濾過、洗浄、乾燥の後、40
0℃で空気焼成した。その結果、パラジウム及びカリウ
ムのaHkがそれぞれ0.8重量%、0.7重量%のも
のと0.5重量%、0.96重量%のものとか得られた
。さらに、コバルト含量か1296或いは109δにな
るように硝酸コバルト水溶液に、パラジウムとカリウム
を担持させた安定化ゼオライトを加え含浸した。水を真
空中で留去し、上記と同様、窒素及び水素で活性化処理
を行い触媒とした。各金属の含量は以下のようになった
Next, this was suspended in 10 times the volume of water, 0.6% tetraamine palladium chloride aqueous solution was added, and the mixture was heated at 75°C.
Ion exchange was performed for 3 hours. After filtration, washing and drying, 40
Air firing was performed at 0°C. As a result, the aHk of palladium and potassium was 0.8% by weight, 0.7% by weight, 0.5% by weight, and 0.96% by weight, respectively. Further, stabilized zeolite supporting palladium and potassium was added to the cobalt nitrate aqueous solution so that the cobalt content was 1296 or 109δ, and impregnated. Water was distilled off in vacuo, and the catalyst was activated with nitrogen and hydrogen in the same manner as above. The content of each metal was as follows.

Cat、No、 Co (重量%)Pd(重量%)K(
重量%)11  12   0.7   0.612 
   10      0.5      0.9実施
例1〜8.比較例1 300mlのステンレス製電磁攪拌式オートクレブに無
水コハク酸45g1ジオキサン75g及び表1に示す各
種触媒を4.5g仕込み、系内を水素で充分置換した後
、初期圧を45kg/cjGになるように水素を圧入し
た。加熱攪拌しながら240℃に昇温し、所定温度に達
してから100kg/ cj Gに調整された水素を圧
入した。その後、理論水素吸収量に達するまで反応させ
、終了後オドクレープを冷却した。室温まで冷却後、水
素をパージし液を取り出し、触媒を濾過してから濾液を
ガスクロマトグラフィーにより分析した。結果を表1に
示す。
Cat, No, Co (wt%) Pd (wt%) K(
Weight%) 11 12 0.7 0.612
10 0.5 0.9 Examples 1-8. Comparative Example 1 A 300 ml stainless steel electromagnetic stirring autoclave was charged with 45 g of succinic anhydride, 75 g of dioxane, and 4.5 g of various catalysts shown in Table 1, and after the system was sufficiently replaced with hydrogen, the initial pressure was adjusted to 45 kg/cjG. Hydrogen was injected into the tank. The temperature was raised to 240°C while stirring, and after reaching a predetermined temperature, hydrogen adjusted to 100 kg/cj G was injected under pressure. Thereafter, the reaction was allowed to occur until the theoretical amount of hydrogen absorption was reached, and after completion of the reaction, the odocrape was cooled. After cooling to room temperature, hydrogen was purged, the liquid was taken out, the catalyst was filtered, and the filtrate was analyzed by gas chromatography. The results are shown in Table 1.

実施例9〜11、比較例2 無水マレイン酸60g1ジオキサン60g及び表2に示
す各種触媒6gを300m1のステンレス製電磁攪拌式
オートクレーブに仕込み、系内を水素で充分置換した後
、まず加熱攪拌しながら40℃、初期圧を50kg/c
jGで1時間反応させた。
Examples 9 to 11, Comparative Example 2 60 g of maleic anhydride, 60 g of dioxane, and 6 g of the various catalysts shown in Table 2 were charged into a 300 ml stainless steel electromagnetic stirring autoclave, and after the system was sufficiently replaced with hydrogen, the mixture was first heated and stirred. 40℃, initial pressure 50kg/c
jG for 1 hour.

その後250℃に昇温し、所定温度に達してから100
 kg/cjGに調整された水素を圧入した。実施例1
と同様理論水素吸収量に達するまで反応させ、後処理を
してからガスクロマトグラフィーにて分析した。結果を
表2に示す。
After that, the temperature was raised to 250℃, and after reaching the specified temperature, it was heated to 100℃.
Hydrogen adjusted to kg/cjG was injected under pressure. Example 1
The reaction was carried out in the same manner as above until the theoretical hydrogen absorption amount was reached, followed by post-treatment and analysis by gas chromatography. The results are shown in Table 2.

実施例12〜16、比較例3 300 mlのステンレス製電磁攪拌式オートクレーブ
に無水コハク酸45g1ジオキサン75g及び表3に示
す触媒を4.5g仕込み、系内を水素で充分置換した後
、反応時間を3時間に設定し実施例1と同様の操作で水
素化反応を行ってからガスクロマトグラフィーにて分析
した。結果を表3に示す。
Examples 12 to 16, Comparative Example 3 45 g of succinic anhydride, 75 g of dioxane, and 4.5 g of the catalyst shown in Table 3 were placed in a 300 ml stainless steel electromagnetic stirring autoclave, and after the system was sufficiently replaced with hydrogen, the reaction time was The hydrogenation reaction was carried out in the same manner as in Example 1 for 3 hours, and then analyzed by gas chromatography. The results are shown in Table 3.

Claims (2)

【特許請求の範囲】[Claims] (1)コバルトおよびパラジウムを担持させた結晶性ア
ルミノシリケート担体からなるγ−ブチロラクトン製造
用触媒。
(1) A catalyst for producing γ-butyrolactone comprising a crystalline aluminosilicate carrier supporting cobalt and palladium.
(2)マレイン酸又はコハク酸の無水物を水素化反応す
るにあたり、触媒として特許請求の範囲第(1)項記載
の触媒を用いることを特徴とするγ−ブチロラクトンの
製造法。
(2) A method for producing γ-butyrolactone, which comprises using the catalyst described in claim (1) as a catalyst in hydrogenating anhydride of maleic acid or succinic acid.
JP02118816A 1990-05-10 1990-05-10 Catalyst for producing γ-butyrolactone and method for producing γ-butyrolactone using the same Expired - Fee Related JP3092138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02118816A JP3092138B2 (en) 1990-05-10 1990-05-10 Catalyst for producing γ-butyrolactone and method for producing γ-butyrolactone using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02118816A JP3092138B2 (en) 1990-05-10 1990-05-10 Catalyst for producing γ-butyrolactone and method for producing γ-butyrolactone using the same

Publications (2)

Publication Number Publication Date
JPH0416237A true JPH0416237A (en) 1992-01-21
JP3092138B2 JP3092138B2 (en) 2000-09-25

Family

ID=14745851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02118816A Expired - Fee Related JP3092138B2 (en) 1990-05-10 1990-05-10 Catalyst for producing γ-butyrolactone and method for producing γ-butyrolactone using the same

Country Status (1)

Country Link
JP (1) JP3092138B2 (en)

Also Published As

Publication number Publication date
JP3092138B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
JPH0729962B2 (en) Method for producing phenols
JPS5869846A (en) Manufacture of methylamine
JP3520519B2 (en) Method for producing 3-methylpiperidine and 3-methylpyridine by catalytic cyclization of 2-methyl-1,5-diaminopentane
US5684207A (en) Preparation of methyl isobutyl ketone
US4118434A (en) Hydroalkylation using multimetallic zeolite catalyst
JPH0416237A (en) Catalyst and method for preparing gamma-butylolactone
US5502217A (en) Process for preparing lactones
JPH0637401B2 (en) Method for producing hydrocarbon by hydrogenation of carbon dioxide
JP2862257B2 (en) Method for producing pyridine bases
JP3132063B2 (en) Process for producing triethylenediamines and piperazines
JPH0517461A (en) Method for producing triethylenediamines and piperazines
JP3194799B2 (en) Production method of lactones
JPH0517460A (en) Production of triethylene diamine compounds and piperazine compounds
JPS59115746A (en) Catalyst for making morpholine and its manufacture
EP0278729B1 (en) Process for the isomerization of dichlorotoluene
JPS62181256A (en) Synthesis method of pyridine base
JPH11511176A (en) Method for producing 1,4-butenediol
KR100404579B1 (en) Method for preparing N-alkyl-2-pyrrolidone
JP4769996B2 (en) Process for producing triethylenediamines and piperazines
JPH03232875A (en) Production of gamma-butyrolactone
JP4854111B2 (en) Method for producing pyrroles
JP2516217B2 (en) Process for producing 4-hydroxy-α-methylbenzyl alcohol
JPH0782188A (en) Method for producing 1,4-butanediol
JP2715525B2 (en) Dehydrohalogenation method
JPH0570391A (en) Method for producing aromatic hydroxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees