[go: up one dir, main page]

JPH0415706A - Model estimation controller - Google Patents

Model estimation controller

Info

Publication number
JPH0415706A
JPH0415706A JP11180090A JP11180090A JPH0415706A JP H0415706 A JPH0415706 A JP H0415706A JP 11180090 A JP11180090 A JP 11180090A JP 11180090 A JP11180090 A JP 11180090A JP H0415706 A JPH0415706 A JP H0415706A
Authority
JP
Japan
Prior art keywords
variable
conditions
future
manipulated variable
evaluation function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11180090A
Other languages
Japanese (ja)
Inventor
Junko Oya
大矢 純子
Minoru Iino
穣 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11180090A priority Critical patent/JPH0415706A/en
Publication of JPH0415706A publication Critical patent/JPH0415706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To eliminate the interruption of the estimation control by reducing gradually the control request conditions until a second optimum manipulated variable when the solution of an optimum manipulated variable that satisfies temporarily the limit conditions can not be obtained. CONSTITUTION:A future value estimating means 1 obtains the estimation formulas for the future values of a controlled variable (y) and a manipulated variable (u) based on a model obtained by approximating the dynamic characteristic of a control subject and sets the limit conditions related to the future values of both variables (y) and (u) together with the evaluation functions of the secondary forms related to the future values of the variable (y) estimated by the estimation formula, the deviation against the target value (r), and the future value of the variable (u) respectively. Then the means 1 calculates the future value of the variable (u) by a secondary plan method in order to satisfy those set limit conditions and also minimizes the evaluation function. If the evaluation function includes no enable solution, the conditions concerning the control request are least changed for the time being only at that time point in order to obtain a second optimum solution. Therefore the conditions are gradually reduced until the second optimum solution (manipulate valiable) is obtained in regard of such control requests for the limit conditions, the evaluation function, the target value, etc. Thus the estimation control is never interrupted.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、制御対象を近似するモデルを用いて制御対象
を最適に制御するためのモデル予測制御装置に係り、特
に運転条件に関する多数の制約か課せられたプラントを
最適に制御・運転するのに好適なモデル予測制御装置に
関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a model predictive control device for optimally controlling a controlled object using a model that approximates the controlled object, and particularly relates to a model predictive control device for optimally controlling a controlled object using a model that approximates the controlled object. The present invention relates to a model predictive control system suitable for optimally controlling and operating a plant that is subject to a large number of constraints regarding conditions.

(従来の技術) 近年、プラントに課せられた多数の制約を満足しなから
最適な制御・運転をするため、プラントのインパルス応
答あるいはステップ応答に基づいて線形離散時間モデル
を構築し、このモデルから導かれる予測式から制御量未
来値の目標値からの偏差と操作量未来値に関する二次形
式の評価関数を最小化するような最適操作量を逐次算出
するモデル予測制御が多く用いられている。
(Prior art) In recent years, in order to achieve optimal control and operation while satisfying the many constraints imposed on plants, a linear discrete-time model is constructed based on the impulse response or step response of the plant, and from this model Model predictive control is often used to sequentially calculate an optimal manipulated variable that minimizes a quadratic evaluation function regarding the deviation of the future value of the controlled variable from the target value and the future value of the manipulated variable from the derived predictive equation.

すなわち、なるべく一定の操作量の下でなるべく目標値
に近い動きをする制御未来値が得られるように現時点て
加える操作量を決定しようとするものである。
That is, it is intended to determine the amount of operation to be applied at the present time so as to obtain a control future value that moves as close to the target value as possible under a constant amount of operation.

制御量、操作量の未来値を決めるための予測式は、過去
の制御量、操作量に関する関数で表されるので、制御未
来値がより目標値に近づくように、過去の制御量、操作
量に基づいて毎回予測を行ってはそ時点で加える操作量
を決める。
The prediction formula for determining future values of controlled variables and manipulated variables is expressed as a function related to past controlled variables and manipulated variables, so past controlled variables and manipulated variables are A prediction is made each time based on the , and the amount of operation to be applied at that time is determined.

制御量、操作量に関する制約条件を満足する操作量を求
めるには、評価関数を最小にする解を二次計画法(QP
)により求める方法がある。
To find the manipulated variable that satisfies the constraints on the controlled and manipulated variables, use quadratic programming (QP) to find a solution that minimizes the evaluation function.
).

(発明が解決しようとする課題) ところが、プラントに課せられた制約が多すぎたり、予
測式を求める時間長が長すぎたり、無理な目標軌道に制
御量を追従させようとしたりすると、制御量、操作量の
すべての予測値が制約条件を同時に満足するような最適
操作量の解が存在存在せず、その時点での操作量を決定
できずに予測制御が行えなくなってしまうことがある。
(Problem to be solved by the invention) However, if there are too many constraints imposed on the plant, if the time required to obtain a prediction formula is too long, or if an attempt is made to make the controlled variable follow an impossible target trajectory, the controlled variable , there is no solution to the optimal manipulated variable such that all predicted values of the manipulated variable simultaneously satisfy the constraint conditions, and the manipulated variable at that point in time cannot be determined, making it impossible to perform predictive control.

本発明は上記課題を解決するためになされ、その目的は
すべての予測値が制約条件を満足するような解が存在し
ないときでも、評価関数のパラメータ、制約条件、目標
値軌道などを最小限変化させてその時点での準最適操作
量を決定し、予測制御を続行させることが出来るモデル
予測制御装置を提供することである。
The present invention was made in order to solve the above problems, and its purpose is to change the parameters of the evaluation function, constraints, target value trajectory, etc. to a minimum even when there is no solution such that all predicted values satisfy the constraints. It is an object of the present invention to provide a model predictive control device capable of determining a quasi-optimal operation amount at that point in time and continuing predictive control.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、請求項(1)の発明では、モ
デールを用いて制御量の未来値を予測し、制御要求に関
する条件を満たしながら評価関数を最小化する最適操作
量を算出すると共に制御要求に関する条件を満たす操作
量の可能解が存在しない場合には準最適解を得るためそ
の時点でのみ暫定的に制御要求に関する条件を最小限変
化させる条件処理手段を備えた未来値予測手段を設けた
ことを特徴としている。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the invention of claim (1) uses a model to predict the future value of the control amount, and predicts the future value of the control amount while satisfying the conditions regarding the control request. In addition to calculating the optimal manipulated variable that minimizes the evaluation function, if there is no possible solution for the manipulated variable that satisfies the conditions related to the control request, the conditions related to the control request are temporarily minimized only at that point in order to obtain a semi-optimal solution. The present invention is characterized in that a future value prediction means is provided with a condition processing means for changing.

(作用) 上記構成の請求項(1)の発明によれば、未来値予測手
段は、制御対象の動特性を近似したモデルを用いてiM
I!I量及び操作量の未来値の予測式を求め、制御量及
び操作量の未来値に関する制約条件を設定し、前記予測
式によって予測された前記制御量の未来値と目標値との
偏差と前記操作量の未来値に関する二次形式の評価関数
を設定して、設定された制約条件を満足しかつ評価関数
を最小化する操作量の未来値を二次計画法を用いて算出
する。
(Operation) According to the invention of claim (1) having the above configuration, the future value prediction means uses a model that approximates the dynamic characteristics of the controlled object to
I! A prediction formula for the future value of the I quantity and the manipulated variable is determined, a constraint condition regarding the future value of the controlled variable and the manipulated variable is set, and the deviation between the future value of the control variable predicted by the prediction formula and the target value is calculated. A quadratic evaluation function regarding the future value of the manipulated variable is set, and a future value of the manipulated variable that satisfies the set constraints and minimizes the evaluation function is calculated using quadratic programming.

この評価関数に可能解が存在しない場合には準最適解を
得るためその時点でのみ暫定的に制御要求に関する条件
を最小限変化させる。
If there is no possible solution to this evaluation function, the conditions related to the control request are temporarily changed to the minimum level only at that point in time in order to obtain a quasi-optimal solution.

従って、制約条件、評価関数、目標値などの制御要求に
関する条件を、準最適解(準最適操作量)が得られるま
で順次緩和していく。
Therefore, conditions related to control requests such as constraints, evaluation functions, and target values are gradually relaxed until a quasi-optimal solution (quasi-optimal manipulated variable) is obtained.

これにより、予測制御を中断することがなく、続行する
ことが出来る。
Thereby, predictive control can be continued without being interrupted.

(実施例) 次に本発明に係るモデル予測制御装置の実施例について
説明する。第1図はモデル予測制御装置1が適用された
プロセス制御系3を示すブロック図であり、第2図はモ
デル予測制御装置1の構成を示すブロック図である。
(Example) Next, an example of the model predictive control device according to the present invention will be described. FIG. 1 is a block diagram showing a process control system 3 to which the model predictive control device 1 is applied, and FIG. 2 is a block diagram showing the configuration of the model predictive control device 1. As shown in FIG.

モデル予測制御装置1は目標値r及び制御対象物である
プラント5の制御量yを入力して最適な操作量Uを出力
する。原料Sから製品pを生産するプラント5では、製
品pの生産目標量「(目標値)が変化したとき、原料S
の投入量U(操作量)を操作して製品pの生産量y(制
御量)を目標値「に追従させる場合を考える。
The model predictive control device 1 inputs the target value r and the control amount y of the plant 5, which is the object to be controlled, and outputs the optimal operation amount U. In plant 5, which produces product p from raw material S, when the production target amount of product p (target value) changes, raw material S
Consider the case where the production amount y (controlled amount) of product p is made to follow the target value by manipulating the input amount U (operated amount).

第2図に示されるように、モデル予測制御装置1には、
プラント5の制御量及び操作量の未来値に関する制約条
件や評価関数のパラメータや制御量目標値を入力するた
めの人力装置7と、プラント5の実際の制御量を観測す
るセンサ9が設けられている。
As shown in FIG. 2, the model predictive control device 1 includes:
A human power device 7 for inputting constraint conditions regarding future values of controlled variables and manipulated variables of the plant 5, parameters of evaluation functions, and controlled variable target values, and a sensor 9 for observing actual controlled variables of the plant 5 are provided. There is.

また、モデル予測制御装置1には、プラント5の動特性
を近似するモデル11と、未来値予測手段2と、が設け
られている。
Further, the model predictive control device 1 is provided with a model 11 that approximates the dynamic characteristics of the plant 5 and a future value prediction means 2.

未来値予測手段2には、モデル11を用いて制御量の未
来値の予測式を求める予測手段13と、人力装置7から
人力された制約条件を変形して二次計画法(QP)用の
制約条件を設定する制約条件設定手段15と、制御量未
来値の目標値からの偏差と操作量未来値に関する二次形
式の評価関数を設定する評価関数設定手段17と、が設
けられている。
The future value prediction means 2 includes a prediction means 13 that uses a model 11 to obtain a prediction formula for the future value of the controlled variable, and a prediction means 13 that uses a model 11 to obtain a prediction formula for the future value of the controlled variable, and a prediction means 13 that uses a model 11 to transform the constraint conditions manually input from the human power device 7 to generate a prediction formula for quadratic programming (QP). Constraint condition setting means 15 for setting constraint conditions, and evaluation function setting means 17 for setting a quadratic-form evaluation function regarding the deviation of the controlled variable future value from the target value and the manipulated variable future value are provided.

さらに、未来値予測手段2には、制約条件設定手段15
の設定した制約条件を満足しかつ評価関数設定手段17
の設定した評価関数を最小化する操作量の未来値を二次
計画法を用いて逐次算出する最適操作量算出手段19と
、最適操作量算出手段]−9で可能解が求まらない場合
に準最適操作量を得るためその時点てのみ暫定的に制御
要求に関する条件を最小限変化させる条件処理手段21
と、が設けられている。
Further, the future value prediction means 2 includes a constraint setting means 15.
The evaluation function setting means 17 satisfies the constraints set by
Optimal operation amount calculation means 19 that sequentially calculates the future value of the operation amount that minimizes the evaluation function set by using quadratic programming; condition processing means 21 for temporarily changing the conditions related to the control request only at that point in time in order to obtain a semi-optimal operation amount;
and are provided.

また、モデル予測制御装置1には、求められた最適操作
量をプラント5に加えるアクチュエータ23が設けられ
ている。
Further, the model predictive control device 1 is provided with an actuator 23 that applies the determined optimal operation amount to the plant 5.

現時点k(第に段)での操作量ukを決めるには、次の
ようにして操作量変化率ΔUを求めれば良い。まず操作
量Uと制御量yの関係から未来の数段にわたる制御量と
操作量変化率の未来系列V−[Vm+L・′°°・y*
+L・・o−1コ゛(1)Δu−[Δ’ k l ”’
I Δu −+−−−+]   −(2)の予測式を求
める。ここでnp、n、は、制御ll 量、操作量の未
来値を予測する時間長(余測長、制御長)である。次に
、人力装置1で切り出された時刻に+Lからk + L
 + n p  1までの目標値rを目標値未来値系列 3” ” [Y” o + ・・・+  Y” IIp
−1]    ・・・(3)としてセットする。制御量
予測値と目標値未来値との偏差(y” +3’ k+L
h+ )と操作量変化予測値Δu k+1かなるべく小
さくなるように、前時点での操作量u k−、からの変
化率ΔU、を求める。
In order to determine the manipulated variable uk at the current moment k (the 1st stage), the manipulated variable change rate ΔU may be determined as follows. First, from the relationship between the manipulated variable U and the controlled variable y, the future series of the controlled variable and the rate of change of the manipulated variable over several steps in the future V-[Vm+L・'°°・y*
+L...o-1 co゛(1) Δu-[Δ' k l ”'
A prediction formula of I Δu −+−−−+] −(2) is determined. Here, np and n are time lengths (extra measurement length, control length) for predicting future values of control quantities and manipulated variables. Next, k + L from +L at the time extracted by the human-powered device 1
+ n p The target value r up to 1 is the target value future value series 3” ” [Y” o + ...+ Y” IIp
-1] ...Set as (3). Deviation between the predicted control value and the future target value (y” +3' k+L
The rate of change ΔU from the manipulated variable u k− at the previous point in time is determined so that the predicted manipulated variable change value Δu k+1 (h+) is as small as possible.

この計算は第3図に示されるフローチャートに従って行
われる。
This calculation is performed according to the flowchart shown in FIG.

第3図に示されるように、ステップ101で制御量y、
を読み込み、ステップ103で予測手段13により、モ
デル11を用いて制御量、操作量変化率の予測式を求め
る。ステップ105で制約条件があるか否かが判断され
る。制約条件がある場合にはステップ106て制約条件
が設定される。
As shown in FIG. 3, in step 101, the control amount y,
is read in, and in step 103, the prediction means 13 uses the model 11 to find a prediction formula for the controlled variable and the rate of change in the manipulated variable. In step 105, it is determined whether there are any constraint conditions. If there are constraint conditions, the constraint conditions are set in step 106.

次いで、ステップ107で評価関数設定手段17により
以下に示す評価関数Jが設定される。
Next, in step 107, the evaluation function setting means 17 sets the evaluation function J shown below.

J ″Σ  (y”  +    y −・L・1 )
+λΣ (Δu、、、)   (λは重み係数)・・・
 (4) ステップ105で制約条件がない場合には制御量yを操
作量予測値変化率ΔUの式で表しておいてステップ10
9て最適操作量算出手段19てδJ/δΔu−0・・・
(5) を解くことにより、Jを最小化する最適な操作量変化率
ΔUが得られ、Δu、が決まる。
J ″Σ (y” + y −・L・1)
+λΣ (Δu,,,) (λ is the weighting coefficient)...
(4) If there are no constraint conditions in step 105, express the controlled variable y by the formula of the predicted manipulated variable change rate ΔU, and then proceed to step 105.
9, optimal operation amount calculation means 19, δJ/δΔu-0...
By solving (5), the optimal operation amount change rate ΔU that minimizes J can be obtained, and Δu is determined.

しかし、設備上の理由などから、操作量U、制御量y、
あるいはこれらの変化率Δu1Δyには、多くの場合法
のような上下限値が設けられている。
However, due to equipment reasons, the manipulated variable U, the controlled variable y,
Alternatively, these rates of change Δu1Δy are often provided with upper and lower limits, such as a law.

u 1゜ ≦ U ≦ U □8 Δ umlm  ≦ Δ U ≦ Δ U □8Y m
 l a  ≦ y ≦ yllat        
      ・・・ (6)Δ yl。 ≦Δ y ≦
Δ y□8 この上下限値間で、評価関数Jを最小化するように操作
量変化率ΔUを決めるため、ステップ1゜7で二次計画
法(QP)を利用する。制約条件設定手段15により、
u、y、 Δy1をモデル11を用いてΔUの式で表し
、制約条件を b ffi、、≦A−ΔU≦b、、、、     −(
7)の形にまとめて書き直す。
u 1゜ ≦ U ≦ U □8 Δ umlm ≦ Δ U ≦ Δ U □8Y m
l a ≦ y ≦ yllat
... (6)Δyl. ≦Δy≦
Δy□8 In order to determine the manipulated variable change rate ΔU so as to minimize the evaluation function J between the upper and lower limits, quadratic programming (QP) is used in step 1°7. By the constraint setting means 15,
Using model 11, u, y, Δy1 are expressed by the formula ΔU, and the constraint condition is b ffi,, ≦A−ΔU≦b, , −(
Rewrite them in the form of 7).

ステップ109では、最適操作量算出手段19により、
これを二次計画法で解いて、すべての制約条件を満たし
ながら、評価関数Jを最小化する最適な操作量変化率Δ
Uか得られる。
In step 109, the optimum operation amount calculation means 19 calculates
Solve this using quadratic programming to find the optimal manipulated variable change rate Δ that minimizes the evaluation function J while satisfying all constraints.
You can get U.

ステップ111で評価関数J((4式))に最適解が存
在しているか否かが判断される。最適解が存在していな
い場合にはステップ113で条件処理か実行される。
In step 111, it is determined whether an optimal solution exists for the evaluation function J ((formula 4)). If the optimal solution does not exist, conditional processing is executed in step 113.

この条件処理では、上下限値で挟まれる範囲が小さい、
あるいは評価関数(4)式内のバラータn、やn、か大
きい(すなわち予測長、制御長が長い)などの場合、可
能解、すなわちすべての制約条件を満足するΔUが存在
せず、二次計画法による解が得られないことがある。現
時点での値を決められないとこれより先の値を決めらる
ことか出来ない。このため、予測制御は中断されてしま
う。このような事態を避けるため、本実施例では最適操
作量算出手段19により評価関数の解が得られないとス
テップ113て判明した場合、ステップ113で以下の
条件処理がなされる。
In this condition processing, the range between the upper and lower limits is small,
Alternatively, if the varata n in the evaluation function (4) is large (that is, the predicted length and control length are long), there is no possible solution, that is, ΔU that satisfies all the constraints, and the quadratic Sometimes a solution cannot be obtained using the planning method. If you can't decide on the current value, you won't be able to decide on the future value. Therefore, predictive control is interrupted. In order to avoid such a situation, in this embodiment, when it is determined in step 113 that the optimal operation amount calculating means 19 cannot obtain a solution to the evaluation function, the following condition processing is performed in step 113.

(1)予測長を一段(n、を1)減らし、二次計画法を
解き直す。これは、現在の状況で予測される一連の操作
量に対する一連の制御量の予測値の最後の要素は遠い未
来のものであり、制約条件や評価関数に対する優先度が
低いため、制約条件を満たさず目標値から離れてもかま
わない、という理由に基づく。
(1) Reduce the prediction length by one step (n, by 1) and re-solve the quadratic programming. This is because the last element of the predicted value of a series of control variables for a series of manipulated variables predicted in the current situation is in the distant future and has low priority for constraints and evaluation functions. This is based on the reason that it does not matter if the value deviates from the target value.

(2)評価関数Jの操作量に関する重み係数λを変えて
、二次計画法を解き直す。これはΔUの定常性をどの程
度評価するかを変えることである。
(2) Resolve the quadratic programming method by changing the weighting coefficient λ regarding the manipulated variable of the evaluation function J. This is to change the degree to which the stationarity of ΔU is evaluated.

例えば、λを小さくすることは、ΔUのより大きな変動
を許すということである。
For example, reducing λ means allowing greater variation in ΔU.

(3)制御量の上下限値(しきい値)を緩めて、二次計
画法を再度解き直す。
(3) Relax the upper and lower limits (thresholds) of the controlled variable and solve the quadratic programming again.

(4)制御量の目標値を変えて、二次計画法を解き直す
。これは、制御量の目標値の変化を緩やかにして無理な
制御要求を緩和し、二次計画法による準最適解が得られ
るようにしたものである。
(4) Change the target value of the controlled variable and solve the quadratic programming again. This is done by making the change in the target value of the controlled variable gradual, alleviating unreasonable control demands, and allowing a quasi-optimal solution to be obtained by quadratic programming.

例えば、本実施例のモデル予測制御装置1では、次式の
ような目標値フィルタを用いて新たにylを設定し直す
For example, in the model predictive control device 1 of this embodiment, yl is newly set using a target value filter as shown in the following equation.

1+σS+α2 (σS)2 +α3 (σ5)3(α
1  σはパラメータ)      ・・・(8)この
フィルタはパラメータσの値を大きくするほど時定数が
大きくなり、フィルタにかけられた目標値rは、第4図
に示すように、以前より変化が緩やかになる。
1+σS+α2 (σS)2 +α3 (σ5)3(α
1 σ is a parameter) ...(8) The time constant of this filter increases as the value of the parameter σ increases, and the target value r applied to the filter changes more slowly than before, as shown in Figure 4. become.

(1)〜(4)の方法のうちの一つ、またはいくつかを
、解が得られるまで繰り返す(ステップ113)。この
ようにして算出された準最適操作量ΔUのうち、第1要
素のΔu、たけ用いてその時点での操作量u*−uトH
+Δukを求め、次の時点での操作量は変更前の条件で
新たに計算し直す。
One or more of the methods (1) to (4) are repeated until a solution is obtained (step 113). Of the semi-optimal operation amount ΔU calculated in this way, the first element Δu is used to calculate the operation amount u * - u to H at that point.
+Δuk is determined, and the manipulated variable at the next point in time is newly calculated using the conditions before the change.

以上のようにして、−時的に制約条件を満たす評価関数
の解が得られなくても、予測制御を中断することなく行
うことが出来る。
As described above, even if a solution to the evaluation function that satisfies the temporal constraints cannot be obtained, predictive control can be performed without interruption.

[発明の効果] 以上説明したように本発明に係るモデル予測制御装置で
は、−時的に制約条件を満たす最適操作量の解が得られ
なくても、準最適操作量が求まるまで、順次制御要求に
関する条件を緩和していく手段を有するので、いかなる
場合でも準最適操作員(準最適解)が得られ、予測制御
を中断することなく行うことが出来るという優れた効果
が得られる。
[Effects of the Invention] As explained above, in the model predictive control device according to the present invention, - Even if a solution to the optimal manipulated variable that satisfies the temporal constraints cannot be obtained, sequential control is performed until a quasi-optimal manipulated variable is found. Since there is a means for relaxing the requirements, a sub-optimal operator (sub-optimal solution) can be obtained in any case, and predictive control can be performed without interruption, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るモデル予測制御装置が適用された
プロセス制御系を示すブロック図、第2図は未来値予測
手段の実施例の構成を示すブロック図、第3図はモデル
予測制御装置の動作を示すフローチャート、第4図は制
御量目標値を緩やかにする目標値フィルタの説明図であ
る。 1・・・モデル予測制御装置 11・・・モデル 13・・・予測手段 ]5・・・制約条件設定手段 17・・・評価関数設定手段 19・・・最適操作量算出手段 21・・・条件処理手段
Fig. 1 is a block diagram showing a process control system to which the model predictive control device according to the present invention is applied, Fig. 2 is a block diagram showing the configuration of an embodiment of the future value prediction means, and Fig. 3 is the model predictive control device. FIG. 4 is an explanatory diagram of a target value filter that moderates the controlled variable target value. 1...Model predictive control device 11...Model 13...Prediction means]5...Constraint condition setting means 17...Evaluation function setting means 19...Optimum operation amount calculation means 21...Conditions processing means

Claims (1)

【特許請求の範囲】  制御対象の動特性を近似するモデルを用いて制御対象
を最適に制御するモデル予測制御装置において、 前記モデルを用いて制御量の未来値を予測し制御要求に
関する条件を満しながら評価関数を最小化する最適操作
量を算出すると共に制御要求に関する条件を満たす操作
量の可能解が存在しない場合には準最適解を得るためそ
の時点でのみ暫定的に制御要求に関する条件を最小限変
化させる条件処理手段を備えた未来値予測手段を設けた
ことを特徴とするモデル予測制御装置。
[Claims] A model predictive control device that optimally controls a controlled object using a model that approximates the dynamic characteristics of the controlled object, which uses the model to predict the future value of a controlled variable to satisfy conditions regarding control requests. While calculating the optimal manipulated variable that minimizes the evaluation function, if there is no possible solution for the manipulated variable that satisfies the conditions related to the control request, the conditions related to the control request are temporarily determined only at that point in order to obtain a semi-optimal solution. 1. A model predictive control device comprising future value predicting means equipped with condition processing means for minimally changing conditions.
JP11180090A 1990-05-01 1990-05-01 Model estimation controller Pending JPH0415706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11180090A JPH0415706A (en) 1990-05-01 1990-05-01 Model estimation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11180090A JPH0415706A (en) 1990-05-01 1990-05-01 Model estimation controller

Publications (1)

Publication Number Publication Date
JPH0415706A true JPH0415706A (en) 1992-01-21

Family

ID=14570476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11180090A Pending JPH0415706A (en) 1990-05-01 1990-05-01 Model estimation controller

Country Status (1)

Country Link
JP (1) JPH0415706A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020489A1 (en) * 1992-03-31 1993-10-14 Kabushiki Kaisha Yaskawa Denki Prediction control apparatus
US6777122B2 (en) 2001-05-22 2004-08-17 Nissan Motor Co., Ltd. Vaporizer temperature control in fuel cell power plant
US6777123B2 (en) 2001-05-25 2004-08-17 Nissan Motor Co., Ltd. Combustor temperature control of fuel cell power plant
JP2009294874A (en) * 2008-06-04 2009-12-17 Fuji Electric Systems Co Ltd Model prediction controller and program
JP2009294879A (en) * 2008-06-04 2009-12-17 Fuji Electric Systems Co Ltd Model prediction controller
JP2018516414A (en) * 2015-06-05 2018-06-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap System and method for control of slope imbalance in model predictive control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020489A1 (en) * 1992-03-31 1993-10-14 Kabushiki Kaisha Yaskawa Denki Prediction control apparatus
US5696672A (en) * 1992-03-31 1997-12-09 Kabushiki Kaisha Yaskawa Denki Preview control apparatus
US6777122B2 (en) 2001-05-22 2004-08-17 Nissan Motor Co., Ltd. Vaporizer temperature control in fuel cell power plant
US6777123B2 (en) 2001-05-25 2004-08-17 Nissan Motor Co., Ltd. Combustor temperature control of fuel cell power plant
JP2009294874A (en) * 2008-06-04 2009-12-17 Fuji Electric Systems Co Ltd Model prediction controller and program
JP2009294879A (en) * 2008-06-04 2009-12-17 Fuji Electric Systems Co Ltd Model prediction controller
JP2018516414A (en) * 2015-06-05 2018-06-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap System and method for control of slope imbalance in model predictive control

Similar Documents

Publication Publication Date Title
US5682309A (en) Feedback method for controlling non-linear processes
JP6357027B2 (en) Online adaptive model predictive control in process control systems.
US5268835A (en) Process controller for controlling a process to a target state
JP5697899B2 (en) Adaptive controller based on continuously scheduled model parameters
DE69122313T2 (en) Adaptive control based on a variable horizon with means for minimizing operating costs
JPH08505973A (en) Multivariate predictive control method using range control method
JPH06301406A (en) Hierarchical model predictive control system
JP6927446B1 (en) Control devices, control methods and programs
JPH0415706A (en) Model estimation controller
JPH0883104A (en) Plant controller
JPH0535309A (en) Model prediction control device
JP3279250B2 (en) Multivariable process control system
CN108594643A (en) A kind of guaranteed cost control method being limited strict feedback systems for total state
WO1996005541A1 (en) Cascade tuning controller and method of use therefor
US5649062A (en) Auto-tuning controller and method of use therefor
JP2001067103A (en) Process control method and apparatus
US5633987A (en) Auto-scaling controller and method of use therefor
JPH07191709A (en) Parameter setting method for model estimating control
JPH04256102A (en) Model estimation controller
JP2758246B2 (en) Auto tuning controller
JP7521712B1 (en) Control device, control method, and program
JPH08115102A (en) controller
Artemova et al. ENERGY-SAVING CONTROL OF THE HEATING PROCESS
JPH117307A (en) Model predicting device and method therefor
Zayed et al. A Novel Implicit Adaptive Zero Poleplacement PID Controller