[go: up one dir, main page]

JPH0415666B2 - - Google Patents

Info

Publication number
JPH0415666B2
JPH0415666B2 JP57025425A JP2542582A JPH0415666B2 JP H0415666 B2 JPH0415666 B2 JP H0415666B2 JP 57025425 A JP57025425 A JP 57025425A JP 2542582 A JP2542582 A JP 2542582A JP H0415666 B2 JPH0415666 B2 JP H0415666B2
Authority
JP
Japan
Prior art keywords
well
region
semiconductor substrate
semiconductor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57025425A
Other languages
Japanese (ja)
Other versions
JPS58142682A (en
Inventor
Hidetsugu Oda
Toshuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57025425A priority Critical patent/JPS58142682A/en
Publication of JPS58142682A publication Critical patent/JPS58142682A/en
Publication of JPH0415666B2 publication Critical patent/JPH0415666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/15Charge-coupled device [CCD] image sensors
    • H10F39/158Charge-coupled device [CCD] image sensors having arrangements for blooming suppression

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明はMOS型の固体撮像素子の構成に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a MOS type solid-state image sensor.

電荷転送素子は大別して電荷結合素子(以後
CCDと記す)とバケツトブリゲードデバイスと
に分類されるが、本発明ではCCDを中心に述べ
る。
Charge transfer devices can be broadly divided into charge coupled devices (hereinafter referred to as charge coupled devices).
CCD) and bucket brigade devices; however, in this invention, the CCD will be mainly described.

CCDは1970年に発表されて以来、従来からの
高度の集積回路技術を基盤とし、その発展ととも
に急速な開発が進められ、近年固体撮像、アナロ
グ遅延線、メモリ等の各種の応用がなされるよう
になつた。特にCCDを用いた固体撮像素子は
MOS型の撮像素子とともに低消費電力、小型軽
量、高集積化が可能など、多くの特徴を有し近年
その開発が急である。ところでこれら固体撮像素
子にはブルーミング、スミア現象により特性が損
なわれる欠点があつた。これは高照度の被写体を
撮像したときに素子内部で発生する過剰電荷が基
板内を拡散する結果、隣接絵素あるいは隣接レジ
スタへ電荷がオーバフローレ再生画像が損なわれ
る現象であり固体撮像素子の最大の欠点であつ
た。従来このような欠点を除するためにオーバフ
ロードレインと称される拡散層を絵素間に配置さ
せることにより過剰電荷を吸収しようという試み
もなされてはいるがこの構造では本質的に高密度
化が不可能なこと、入射光量の利用効率が良くな
いこと等の欠点があつた。
Since CCD was announced in 1970, it has been based on conventional advanced integrated circuit technology, and has been rapidly developed as CCD has progressed. It became. In particular, solid-state image sensors using CCDs
Along with MOS-type image sensors, they have many characteristics such as low power consumption, small size and light weight, and can be highly integrated, and their development has been rapid in recent years. However, these solid-state image sensing devices have a drawback in that their characteristics are impaired by blooming and smear phenomena. This is a phenomenon in which excess charge generated inside the element when imaging a subject with high illuminance diffuses within the substrate, and as a result, charge overflows to adjacent picture elements or registers, spoiling the reproduced image. It was a shortcoming. In order to eliminate this drawback, attempts have been made to absorb excess charge by arranging a diffusion layer called an overflow drain between picture elements, but this structure essentially does not allow high density. However, there were disadvantages such as impossibility and poor utilization of the amount of incident light.

第1図aは従来のCCD固体撮像素子の主要部
の断面図を示す。第1図aにおいて1は一導電型
を有する半導体基板であり本例ではP型半導体を
示す。2は半導体基板1と反対導電型を有する半
導体領域で半導体基板との間にP−N接合を形成
し所謂フオトダイオードを作る。3は半導体基板
1と反対導電型を有する半導体領域で埋込みチヤ
ネルを構成している。
FIG. 1a shows a cross-sectional view of the main parts of a conventional CCD solid-state image sensor. In FIG. 1a, 1 is a semiconductor substrate having one conductivity type, and in this example, a P-type semiconductor is shown. Reference numeral 2 denotes a semiconductor region having a conductivity type opposite to that of the semiconductor substrate 1, and a PN junction is formed between the semiconductor region and the semiconductor substrate to form a so-called photodiode. A semiconductor region 3 having a conductivity type opposite to that of the semiconductor substrate 1 constitutes a buried channel.

4は表面チヤネルで形成されるトランスフアゲ
ート領域を示す。5は埋込みチヤネル3およびト
ランスフアゲート領域4を覆うべく形成される転
送電極、6は絶縁膜、7はチヤネルストツパ、8
はアルミニウムなどの光シールド電極を示す。
4 indicates a transfer gate region formed by a surface channel. 5 is a transfer electrode formed to cover the buried channel 3 and the transfer gate region 4; 6 is an insulating film; 7 is a channel stopper;
indicates a light shield electrode such as aluminum.

つぎにこの素子の動作について説明する。 Next, the operation of this element will be explained.

第2図はこの素子を駆動する駆動波形の一部を
示し、ここでは転送電極5に印加される垂直駆動
パルス波形を示す。この垂直駆動パルスは3値レ
ベルを有し、垂直プランキング期間VBにおい
て、高レベルVHとなり、有効期間においては中
間レベルと低レベルとの間を往復する振幅VMの
パルスとなる。
FIG. 2 shows a part of the drive waveform for driving this element, and here the vertical drive pulse waveform applied to the transfer electrode 5 is shown. This vertical drive pulse has three levels, and becomes a high level VH during the vertical blanking period VB, and becomes a pulse with an amplitude VM that reciprocates between the intermediate level and the low level during the valid period.

第1図b,cは垂直パルスが高、中、低レベル
時の第1図aに示すデバイス内部のポテンシヤル
分布を示す。
FIGS. 1b and 1c show the potential distribution inside the device shown in FIG. 1a when the vertical pulse is at high, medium, and low levels.

まず第1図b,cにおいて11,14はフオト
ダイオード2のポテンシヤル、12,15,16
はトランスフアゲート領域4のポテンシヤル、1
3,17,18は埋込みチヤネル3のチヤネルポ
テンシヤルをそれぞれ示している。第2図におけ
る時刻t0において垂直駆動パルスが高レベルとな
ると、第1図bに示されるようにトランスフアゲ
ート領域4、埋込みチヤネル3のポテンシヤルは
12,13の如く深い電位に設定されフオトダイ
オード2に存在していた信号電荷は埋込みチヤネ
ル3で構成される垂直シフトレジスタへ読み出さ
れる。それと同時にフオトダイオード2はトラン
スフアゲート領域4のポテンシヤル12で決まる
電位11に設定される。つぎに垂直有効期間内に
おいて既に読み出された信号電荷は、第2図に示
す中間レベルと低レベルとの間を振幅VMで往復
するパルスにより垂直方向に転送される、この期
間フオトダイオード領域2では光電変換された電
荷が蓄積される。第1図cには時刻t1あるいはt2
におけるポテンシヤル図を示している。
First, in FIGS. 1b and 1c, 11 and 14 are the potentials of photodiode 2, 12, 15, and 16.
is the potential of transfer gate region 4, 1
3, 17, and 18 indicate channel potentials of the embedded channel 3, respectively. When the vertical drive pulse becomes high level at time t0 in FIG. 2, the potentials of the transfer gate region 4 and the buried channel 3 are set to deep potentials such as 12 and 13, as shown in FIG. 1b, and the photodiode 2 The signal charges existing in the channel 3 are read out to the vertical shift register constituted by the embedded channel 3. At the same time, the photodiode 2 is set to a potential 11 determined by the potential 12 of the transfer gate region 4. Next, the signal charge already read out within the vertical effective period is transferred vertically by a pulse that goes back and forth between the intermediate level and the low level with an amplitude VM shown in FIG. In this case, the photoelectrically converted charges are accumulated. In Figure 1c, time t 1 or t 2
The diagram shows the potential diagram for .

トランスフアゲート領域あるいは埋込みチヤネ
ル領域のポテンシヤルは時刻t1の中間レベルでは
16,18で示される実線のようになり、時刻t2
の低レベルでは15,17で示される点線のよう
になる。
The potential of the transfer gate region or buried channel region is as shown by solid lines 16 and 18 at the intermediate level at time t 1 and at time t 2
At a low level, it becomes like the dotted lines shown at 15 and 17.

ところで光電変換された電荷が蓄積されるとと
もにフオトダイオード領域のポテンシヤル14は
浅くなる。入射光が強い場合にはフオトダイオー
ドポテンシヤル14はトランスフアゲート領域ポ
テンシヤル16よりも浅くなり、過剰に発生した
電荷はシフトレジスタへオーバフローしてブルー
ミングを起す。また第1図に示される構造の素子
では半導体基板1内部にまで深く入射した光によ
り発生した電荷が四方に拡散してゆきその結果シ
フトレジスタへ漏れ込むことによるスミアが発生
する。このように従来の素子ではブルーミング、
スミアを抑圧することが不可能であつた。このた
め各絵素子間にオーバーフロードレインと称され
る拡散層を配置することによりブルーミング、ス
ミアを軽減する試みもなされてはいるが、既に述
べたようにこの構造では本質的に解決はなされな
い。
Incidentally, as the photoelectrically converted charges are accumulated, the potential 14 in the photodiode region becomes shallower. When the incident light is strong, the photodiode potential 14 becomes shallower than the transfer gate region potential 16, and excessively generated charges overflow into the shift register, causing blooming. Further, in the element having the structure shown in FIG. 1, charges generated by light that has entered deeply into the semiconductor substrate 1 are diffused in all directions, and as a result, smear occurs due to leakage into the shift register. In this way, conventional elements exhibit blooming,
It was impossible to suppress the smear. For this reason, attempts have been made to reduce blooming and smear by arranging a diffusion layer called an overflow drain between each picture element, but as already mentioned, this structure does not essentially solve the problem.

本発明の目的は前記従来の欠点を除去した新し
い固体撮像素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new solid-state image sensor that eliminates the above-mentioned conventional drawbacks.

本発明によれば一導電型を有する半導体基板上
に形成され、この半導体基板と同じ導電型を有し
入射光を光電変換するための半導体受光部と、こ
の受光部で光電変換された信号電荷を転送するた
めのシフトレジスタと前記受光部およびシフトレ
ジスタとを電気的に分離あるいは結合するための
トランスフアゲートと、前記シフトレジスタおよ
びトランスフアゲートを駆動する手段とを有する
固体撮像素子において、前記シフトレジスタおよ
びトランスフアゲートは前記半導体基板と反対導
電型を有する第1のウエル上に形成され、前記受
光部直下の少なくとも一部の領域は前記半導体基
板と同一導電型の半導体領域で形成され、この半
導体領域をはさんで第1のウエルと反対側の基板
内に第1のウエルと同じ導電型の第2のウエルを
設け、前記受光部と前記半導体基板とは前記半導
体領域を介して互いに接続され、少なくとも動作
時には第1、第2のウエルと基板の間に逆バイア
スを印加して前記半導体領域を空乏化させること
を特徴とする固体撮像素子が得られる。
According to the present invention, a semiconductor light receiving section is formed on a semiconductor substrate having one conductivity type, has the same conductivity type as the semiconductor substrate, and is for photoelectrically converting incident light, and a signal charge photoelectrically converted in the light receiving section. A solid-state imaging device comprising: a shift register for transferring a signal; a transfer gate for electrically separating or coupling the light receiving section and the shift register; and means for driving the shift register and the transfer gate. and a transfer gate is formed on a first well having a conductivity type opposite to that of the semiconductor substrate, and at least a part of the region immediately below the light receiving portion is formed of a semiconductor region having the same conductivity type as the semiconductor substrate, and this semiconductor region A second well of the same conductivity type as the first well is provided in the substrate on the opposite side of the first well, and the light receiving portion and the semiconductor substrate are connected to each other via the semiconductor region, A solid-state imaging device is obtained, characterized in that, at least during operation, a reverse bias is applied between the first and second wells and the substrate to deplete the semiconductor region.

以下本発明について図面を用いて詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

第3図aは本発明による実施例を示し素子主要
部の断面図を示す。第1図aにおいて21は一導
電型を有する半導体基板であり本実施例ではN型
の基板について示している。22,23は半導体
基板21上に形成されこの半導体基板とは反対導
電型を有する半導体領域であり、この実施例では
P型不純物のイオン注入により形成されたP−
wellである。24はP−well22,23挾まれた
領域でありフオトダイオード2あるいは基板21
と同一導電型を有する半導体領域である。他の番
号は第1図aに示すものと同一である。
FIG. 3a shows an embodiment according to the present invention and shows a sectional view of the main part of the device. In FIG. 1a, 21 is a semiconductor substrate having one conductivity type, and in this embodiment, an N-type substrate is shown. Reference numerals 22 and 23 denote semiconductor regions formed on the semiconductor substrate 21 and having a conductivity type opposite to that of the semiconductor substrate.
Well. 24 is a region sandwiched between P-wells 22 and 23, and is a region between photodiode 2 or substrate 21.
This is a semiconductor region having the same conductivity type as . Other numbers are the same as shown in FIG. 1a.

本素子の特徴は第1図aに示す従来の素子と異
なり基板がN型となつており、活性領域はフオト
ダイオードの一部を除きP−well上に形成されて
いることである。さらに本素子においてはフオト
ダイオード直下の少なくとも一部領域はP−well
22,23で挾まれた半導体領域24で構成され
ており、この領域は基板21あるいはフオトダイ
オード2と同一導電型を有している。つぎに本素
子の動作について説明する。
The feature of this device is that, unlike the conventional device shown in FIG. 1a, the substrate is of N type, and the active region is formed on a P-well except for a part of the photodiode. Furthermore, in this device, at least a part of the area directly below the photodiode is a P-well.
It consists of a semiconductor region 24 sandwiched between 22 and 23, and this region has the same conductivity type as the substrate 21 or the photodiode 2. Next, the operation of this device will be explained.

本素子の駆動パルスは第2図に示すものと同一
のものを用いることができる。本素子の動作時に
はP−well22,23と基板21との間には逆バ
イアス電圧VSUBが常に印加されている。このVSUB
の値としては領域24を空乏化するのに充分な値
が必要である。第3図bは第3図bにおける一点
鎖線A−A′の断面におけるフオトダイオード領
域およびその直下のポテンシヤル分布を示してい
る。第3図bに示すポテンシヤルはP−wellを基
準の電位として示されており実線30がポテンシ
ヤル分布、VPDはフオトダイオード領域ポテンシ
ヤル、VSUBはP−wellと基板とに印加される逆バ
イアス電圧値であり、基板の電位を示す。また
VBはA−A′上で領域24中の最も浅い電位を示
している。このVBの値は領域24に隣接するP
−well22,23かから拡がる空乏層の延び、あ
るいはVSUB電圧によつて決定され、動作時にはP
−wellの電位よりも常に深くなつている。さらに
この電位VBは駆動パルス電圧が中間レベルのと
きのトランスフアゲート領域の電位16よりも常
に深くなるように設定されている。
The same driving pulses as shown in FIG. 2 can be used for this element. During operation of this device, a reverse bias voltage V SUB is always applied between the P-wells 22 and 23 and the substrate 21 . This V SUB
The value of must be sufficient to deplete the region 24. FIG. 3b shows the photodiode region and the potential distribution immediately below the photodiode region in a cross section taken along the dashed line A-A' in FIG. 3b. The potential shown in Figure 3b is shown with the P-well as a reference potential, where the solid line 30 is the potential distribution, V PD is the photodiode region potential, and V SUB is the reverse bias voltage applied to the P-well and the substrate. value, indicating the potential of the substrate. Also
V B indicates the shallowest potential in region 24 on A-A'. This value of V B is the value of P adjacent to area 24.
-Determined by the extension of the depletion layer spreading from wells 22 and 23 or by the V SUB voltage, and during operation, P
-Always deeper than the well potential. Furthermore, this potential V B is set to always be deeper than the potential 16 of the transfer gate region when the drive pulse voltage is at an intermediate level.

光入力により光電変換がなされるとフオトダイ
オード領域には信号電荷が蓄積され、同時に電位
VPDも浅くなつてゆく。
When photoelectric conversion is performed due to optical input, signal charges are accumulated in the photodiode area, and at the same time the potential is
V PD also becomes shallower.

このとき電位VPDが、駆動パルス電圧が中間レ
ジスタ時のトランスフア領域のポテンシヤル16
に達すると過剰電荷がシフトレジスタへ漏れ込み
ブルーミングを起すことになるが、本素子におい
てはポテンシヤル16よりも常にVBの値の方が
大きくなるように制御されているため過剰電荷は
シフトレジスタへオーバーフローする以前にVB
の電位を乗り越えて基板21側へ掃き出される。
この結果ブルーミングが抑制される。
At this time, the potential V PD is the potential 16 of the transfer region when the drive pulse voltage is the intermediate register.
When the value reaches 16, excess charge leaks into the shift register and causes blooming, but in this device, the value of V B is always controlled to be larger than potential 16, so the excess charge flows into the shift register. V B before overflow
It overcomes the potential of , and is swept out to the substrate 21 side.
As a result, blooming is suppressed.

さらにP−well22,23と基板21との間に
は常に逆バイアス電圧が印加されているため領域
24の電位は隣接するP−well22,23の電位
よりも常に深くなる。その結果フオトダイオード
直下、主に領域24で発生した電荷が横方向に拡
散しP−well、さらには埋込みチヤネル3へと漏
れ込んでゆくことがなくスミアを抑圧させること
ができる。
Furthermore, since a reverse bias voltage is always applied between the P-wells 22 and 23 and the substrate 21, the potential of the region 24 is always deeper than the potential of the adjacent P-wells 22 and 23. As a result, charges generated directly below the photodiode, mainly in the region 24, are diffused in the lateral direction and do not leak into the P-well and further into the buried channel 3, thereby suppressing smear.

また本素子は絵素間にオーバーフロードレイン
を配置した素子と比較して本質的に高密度化、高
感度化が可能であることは明らかである。
Furthermore, it is clear that this element can essentially achieve higher density and higher sensitivity than an element in which an overflow drain is arranged between picture elements.

以上述べたように本発明によればブルーミン
グ、スミアを抑圧でき高密度、高感度の固体撮像
素子が得られる。
As described above, according to the present invention, it is possible to suppress blooming and smear and obtain a high-density, high-sensitivity solid-state imaging device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜cは従来の固体撮像素子の主要部の
断面図および素子内部のポテンシヤル分布を示
す。第2図は前記固体撮像素子の駆動波形の一
例、第3図a,bは本発明による固体撮像素子の
一実施例の主要部の断面図および破線A−A′で
の素子内部のポテンシヤル分布である。 第1図〜第3図において1,21は半導体基
板、2はフオトダイオード、3は埋込みチヤネ
ル、4はトランスフアゲート領域、5は電極、2
2,23は半導体基板21と反対導電型を有する
半導体領域である。
FIGS. 1a to 1c show cross-sectional views of the main parts of a conventional solid-state image sensing device and the potential distribution inside the device. FIG. 2 is an example of the drive waveform of the solid-state image sensor, and FIGS. 3a and 3b are cross-sectional views of the main parts of an embodiment of the solid-state image sensor according to the present invention, and the potential distribution inside the device along the broken line A-A'. It is. 1 to 3, 1 and 21 are semiconductor substrates, 2 is a photodiode, 3 is a buried channel, 4 is a transfer gate region, 5 is an electrode, 2
2 and 23 are semiconductor regions having a conductivity type opposite to that of the semiconductor substrate 21.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型を有する半導体基板上に形成され、
この半導体基板と同じ導電型を有し入射光を光電
変換するための半導体受光部と、この受光部で光
電変換された信号電荷を転送するためのシフトレ
ジスタと前記受光部およびシフトレジスタとを電
気的に分離あるいは結合するためのトランスフア
ゲートと、前記シフトレジスタおよびトランスフ
アゲートを駆動する手段とを有する固体撮像素子
において、前記シフトレジスタおよびトランスフ
アゲートは前記半導体基板と反対導電型を有する
第1のウエル上に形成され、前記受光部直下の少
なくとも一部の領域は前記半導体基板と同一導電
型の半導体領域で形成され、この半導体領域をは
さんで第1のウエルと反対側の基板内に第1のウ
エルと同じ導電型の第2のウエルを設け、前記受
光部と前記半導体基板とは前記半導体領域を介し
て互いに接続され、少なくとも動作時には第1、
第2のウエルと基板の間に逆バイアスを印加して
前記半導体領域を空乏化させることを特徴とする
固体撮像素子。
1 Formed on a semiconductor substrate having one conductivity type,
A semiconductor light receiving section having the same conductivity type as this semiconductor substrate and for photoelectrically converting incident light, a shift register for transferring the signal charge photoelectrically converted in this light receiving section, and the light receiving section and shift register are electrically connected to each other. In the solid-state imaging device, the solid-state imaging device has a transfer gate for separating or coupling the semiconductor substrate, and a means for driving the shift register and the transfer gate, wherein the shift register and the transfer gate are formed in a first well having a conductivity type opposite to that of the semiconductor substrate. At least a part of the region immediately below the light receiving portion is formed of a semiconductor region of the same conductivity type as the semiconductor substrate, and a first well is formed in the substrate on the opposite side of the first well with this semiconductor region in between. A second well of the same conductivity type as the well is provided, and the light receiving portion and the semiconductor substrate are connected to each other via the semiconductor region, and at least during operation, the first well and the semiconductor substrate are connected to each other through the semiconductor region.
A solid-state imaging device, characterized in that the semiconductor region is depleted by applying a reverse bias between the second well and the substrate.
JP57025425A 1982-02-18 1982-02-18 Solid-state image pickup element Granted JPS58142682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025425A JPS58142682A (en) 1982-02-18 1982-02-18 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025425A JPS58142682A (en) 1982-02-18 1982-02-18 Solid-state image pickup element

Publications (2)

Publication Number Publication Date
JPS58142682A JPS58142682A (en) 1983-08-24
JPH0415666B2 true JPH0415666B2 (en) 1992-03-18

Family

ID=12165603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025425A Granted JPS58142682A (en) 1982-02-18 1982-02-18 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS58142682A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650774B2 (en) * 1984-06-04 1994-06-29 松下電子工業株式会社 Solid-state imaging device
JP2714379B2 (en) * 1986-06-27 1998-02-16 テキサス インスツルメンツ インコ−ポレイテツド Charge-coupled device
JPH04181774A (en) * 1990-11-16 1992-06-29 Sony Corp solid state imaging device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124480U (en) * 1978-02-20 1979-08-31
JPS5724576A (en) * 1980-07-22 1982-02-09 Toshiba Corp Solid state image pick up device

Also Published As

Publication number Publication date
JPS58142682A (en) 1983-08-24

Similar Documents

Publication Publication Date Title
US4672455A (en) Solid-state image-sensor having reverse-biased substrate and transfer registers
JPH0523505B2 (en)
JPS5819080A (en) solid-state image sensor
JPH0831988B2 (en) Solid-state imaging device
JP2917361B2 (en) Solid-state imaging device
JPH0415666B2 (en)
JP2964571B2 (en) Solid-state imaging device
JPH0421351B2 (en)
JPS6160592B2 (en)
JPS5842370A (en) solid-state imaging device
JPH0150156B2 (en)
JP2901328B2 (en) Solid-state imaging device
JPH031871B2 (en)
JPS60244068A (en) embedded channel charge coupled device
JPH0424872B2 (en)
JPS60124180A (en) Solid-state image pickup plate and image pickup method
JPH05243546A (en) Solid-state image sensing device
JPH06275809A (en) Solid-state image pickup device
JPH0424871B2 (en)
KR970005728B1 (en) Solid state imaging device and manufacturing method thereof
JPS6262067B2 (en)
JPS63152166A (en) solid-state image sensor
Strunk et al. Progressive scan CCD image sensor for high-speed photography
JPH0414551B2 (en)
JPS62181465A (en) CCD solid-state image sensor