JPH04155930A - Production of semiconductor device - Google Patents
Production of semiconductor deviceInfo
- Publication number
- JPH04155930A JPH04155930A JP2282278A JP28227890A JPH04155930A JP H04155930 A JPH04155930 A JP H04155930A JP 2282278 A JP2282278 A JP 2282278A JP 28227890 A JP28227890 A JP 28227890A JP H04155930 A JPH04155930 A JP H04155930A
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxide film
- silicon substrate
- phosphorus
- polysilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 claims abstract description 38
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 18
- 239000011574 phosphorus Substances 0.000 claims abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 6
- 238000000151 deposition Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 25
- 229910052710 silicon Inorganic materials 0.000 abstract description 25
- 239000010703 silicon Substances 0.000 abstract description 25
- 239000013078 crystal Substances 0.000 abstract description 19
- 230000007547 defect Effects 0.000 abstract description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 15
- 229920005591 polysilicon Polymers 0.000 abstract description 15
- 238000011109 contamination Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 8
- 238000005247 gettering Methods 0.000 abstract description 7
- 239000011229 interlayer Substances 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000005224 laser annealing Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 11
- 239000002019 doping agent Substances 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 1
- -1 arsenic ions Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の製造方法に関し、特に半導体装置
に有害な重金属や結晶欠陥を取り除くプロセスであるエ
クストリンシックゲッタリング(extrinsic
Lettering )に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing semiconductor devices, and in particular extrinsic gettering, which is a process of removing heavy metals and crystal defects harmful to semiconductor devices.
Lettering).
回路素子形成前または途上で半導体基板の裏面の歪場を
導入することによりエクストリンシックゲッタリング(
EG)が行なわれている。Extrinsic gettering (
EG) is being carried out.
回路素子形成前または形成途中で半導体基板裏面の結晶
格子を損傷させてから熱処理すると、結晶欠陥が誘起さ
れ重金属などの汚染不純物が捕獲される。したがって結
晶欠陥密度が高いほうがEGの能力が高くなる。If the crystal lattice on the back surface of the semiconductor substrate is damaged before or during the formation of circuit elements and then subjected to heat treatment, crystal defects are induced and contaminant impurities such as heavy metals are captured. Therefore, the higher the crystal defect density, the higher the EG ability.
結晶格子の損傷は半導体基板裏面を物理的に損傷させる
方法、イオン注入による損傷、ドーパントの過剰拡散に
よって結晶格子を歪ませる方法あるいはこれらを複合し
た方法によって行なわれている。Damage to the crystal lattice is carried out by physically damaging the back surface of the semiconductor substrate, by ion implantation, by distorting the crystal lattice by over-diffusion of dopants, or by a combination of these methods.
物理的に損傷させる方法は、5i02やA 1 a03
の細粒を半導体基板裏面に打ちつける方法やレーザ照射
を行なう方法などがある。非常に簡便ではあるが、損傷
に用いた細粒や損傷部の欠落などによる汚染が欠点とな
る。Physical damage methods include 5i02 and A 1 a03.
There are methods such as bombarding the back surface of the semiconductor substrate with fine grains and laser irradiation. Although it is very simple, it has the disadvantage of contamination due to fine particles used for damage or missing parts of the damage.
イオン注入法やドーパントの過剰拡散法は燐が用いられ
ることが多い。微粒子汚染がない代りに処理工程が複雑
で、イオン注入や熱拡散の際の重金属汚染などが問題に
なる。せっかく導入された結晶欠陥が製造工程で繰り返
される熱処理により減少したり消滅し易いという欠陥が
ある。そのため強力なEG効果を必要とするときは、E
G処理を追加して補強しなければならない。Phosphorus is often used in the ion implantation method and the dopant overdiffusion method. Although there is no particulate contamination, the processing process is complicated, and heavy metal contamination during ion implantation and thermal diffusion becomes a problem. There are defects in which crystal defects that have been introduced are likely to be reduced or eliminated by repeated heat treatments during the manufacturing process. Therefore, when a strong EG effect is required, the E
It is necessary to add G processing to strengthen it.
このようにそれぞれの長所や短所を考慮して、必要とさ
れるEGの強度や工程に対応してEG処理を複合させて
いる。In this way, considering the advantages and disadvantages of each, EG treatments are combined in accordance with the required EG strength and process.
つぎに従来技術によるNチャネルMO8FETの製造工
程について、第3図(a)〜(e)を参照して説明する
。Next, the manufacturing process of an N-channel MO8FET according to the prior art will be explained with reference to FIGS. 3(a) to 3(e).
はじめに第3図(a)に示すように、P型シリコン基板
1の表面にフィールド酸化膜2、ゲート酸化膜3、ポリ
シリコン膜4を形成する。このとき裏面にも酸化膜6と
ポリシリコン膜5とが形成される。First, as shown in FIG. 3(a), a field oxide film 2, a gate oxide film 3, and a polysilicon film 4 are formed on the surface of a P-type silicon substrate 1. At this time, an oxide film 6 and a polysilicon film 5 are also formed on the back surface.
つぎに第3図(b)に示すように、裏面のポリシリコン
膜5、酸化膜6を除去してから30分間燐拡散を行なう
。シリコン基板1の裏面には燐の過剰拡散による結晶欠
陥16が発生した。Next, as shown in FIG. 3(b), after removing the polysilicon film 5 and oxide film 6 on the back surface, phosphorus is diffused for 30 minutes. Crystal defects 16 were generated on the back surface of the silicon substrate 1 due to excessive diffusion of phosphorus.
つぎに第3図(C)に示すように、ポリシリコンからな
るゲート電極9、保護酸化膜10、N”型ソース11、
N+型ドレイン12、層間絶縁膜14を形成する。Next, as shown in FIG. 3(C), a gate electrode 9 made of polysilicon, a protective oxide film 10, an N'' type source 11,
An N+ type drain 12 and an interlayer insulating film 14 are formed.
つぎに第3図(d)に示すように、コンタクトを開口し
、配線18,19、表面保護膜20を形成してMOSF
ETが完成する。Next, as shown in FIG. 3(d), contacts are opened, wiring lines 18 and 19, and a surface protection film 20 are formed to form the MOSFET.
ET is completed.
半導体基板裏面にドーパントを過剰に拡散させる方法は
、回路素子製造工程における熱処理工程と兼用されるこ
とが多い。The method of excessively diffusing a dopant into the back surface of a semiconductor substrate is often used as a heat treatment step in the circuit element manufacturing process.
しかしこの方法では回路素子形成領域に必要量以上のド
ーパントが拡散すると素子特性を変動させる欠点がある
。これを防ぐためドーパント拡散の影響がないように慎
重に工程を選択するか、回路素子に保護膜を形成する必
要がある。However, this method has the disadvantage that if more than the required amount of dopant is diffused into the circuit element formation region, the element characteristics will change. To prevent this, it is necessary to carefully select the process to avoid the influence of dopant diffusion, or to form a protective film on the circuit element.
しかし製造工程の順序が固定されると、必要なな場合に
EGの効果が得られるとは限らない。However, if the order of manufacturing steps is fixed, the effects of EG may not always be obtained when necessary.
また保護膜の堆積や除去には多くの工程を追加する必要
があり、素子の製造工程を複雑化する上に、保護膜の堆
積や除去により素子領域に表面損傷を与えたり、新たな
汚染を引き起すなどの問題がある。Furthermore, the deposition and removal of the protective film requires many additional steps, which not only complicates the device manufacturing process, but also causes surface damage to the device area and introduces new contamination. There are problems such as causing
半導体集積回路の高速化、高集積化にともない、製造工
程は低温化の傾向にあってドーパントの拡散温度が下っ
ている。そのため半導体基板内部に拡散するドーパント
の量が減り拡散深さが浅くなり、誘起される結晶欠陥が
減ってEG効果が低下するという問題が生じている。As semiconductor integrated circuits become faster and more highly integrated, the manufacturing process tends to be lower in temperature, and the diffusion temperature of dopants is lowered. Therefore, a problem arises in that the amount of dopant diffused into the semiconductor substrate decreases and the diffusion depth becomes shallower, resulting in a decrease in the number of induced crystal defects and a decrease in the EG effect.
本発明の半導体装置の製造方法は、半導体基板の下面に
燐ドープ酸化シリコン膜を堆積する工程と、該酸化シリ
コン膜上からエキシマレーザを照射する工程とを含むも
のである。The method for manufacturing a semiconductor device of the present invention includes the steps of depositing a phosphorus-doped silicon oxide film on the lower surface of a semiconductor substrate, and irradiating the silicon oxide film with an excimer laser.
本発明において常温でリンドープSOG膜を回転塗布し
てから、低エネルギーのエキシマレーザを照射してレー
ザアニールを行なっている。In the present invention, a phosphorus-doped SOG film is spin-coated at room temperature and then laser annealed by irradiation with a low-energy excimer laser.
エキシマレーザはSOG膜をほとんど透過するが、シリ
コン基板に対しては吸収係数が大きいため大部分が吸収
される。Most of the excimer laser passes through the SOG film, but most of it is absorbed by the silicon substrate due to its large absorption coefficient.
したがってシリコン基板の表面近傍が高温になり、SO
G膜に含有する燐が基板内に拡散する。Therefore, the temperature near the surface of the silicon substrate becomes high, and SO
Phosphorus contained in the G film diffuses into the substrate.
エキシマレーザはパルス毎の照射時間が極めて短い上に
、レーザエネルギー吸収層が表面近傍に限られるので、
基板全体の温度を上昇させることはなく、素子特性を変
動させることはない。Excimer laser has an extremely short irradiation time for each pulse, and the laser energy absorption layer is limited to the vicinity of the surface.
The temperature of the entire substrate does not increase, and the device characteristics do not change.
また燐は固相拡散によって直接基板内に取り込まれるの
で、SOG[Iから蒸発して素子領域に回り込んで拡散
することはない。したがって素子領域に拡散防止用の保
護膜を形成する必要はない。Further, since phosphorus is directly taken into the substrate by solid phase diffusion, it does not evaporate from SOG[I and diffuse into the element region. Therefore, there is no need to form a protective film for preventing diffusion in the element region.
照射レーザエネルギーは燐を拡散させるに十分で、しか
も基板表面に溶融蒸発にともなう損傷を与えないために
、0.1〜0.4J/cmQ11pulseが最適であ
る。The irradiation laser energy is optimally 0.1 to 0.4 J/cm Q11 pulse, since it is sufficient to diffuse phosphorus and does not damage the substrate surface due to melting and evaporation.
またシリコン基板内に過剰に拡散させるためにはSOG
膜の燐濃度は2m01%以上が必要で、レーザの透過性
および耐熱性を得るために20mo 1%以下が望まし
い。In addition, in order to diffuse excessively into the silicon substrate, SOG
The phosphorus concentration of the film is required to be 2 mol % or more, and desirably 20 mol % or less in order to obtain laser transparency and heat resistance.
本発明の第1の実施例について、第1図(a)〜(e)
を参照して説明する。Regarding the first embodiment of the present invention, FIGS. 1(a) to (e)
Explain with reference to.
はじめに第1図(a)に示すように、P型シリコン基板
1の表面にフィールド酸化膜2、ゲート酸化膜3を形成
し、さらにCVD法によりポリシリコン膜4を成長する
。このとき裏面には酸化膜6とポリシリコン膜5とが形
成されている。First, as shown in FIG. 1(a), a field oxide film 2 and a gate oxide film 3 are formed on the surface of a P-type silicon substrate 1, and then a polysilicon film 4 is grown by CVD. At this time, an oxide film 6 and a polysilicon film 5 are formed on the back surface.
つぎに第1図(b)に示すように、シリコン基板1の裏
面に形成されていたポリシリコン膜5、酸化膜8を残し
たままPOCノ。ガスを用いて900℃で30分間燐拡
散を行なう。このとき燐はシリコン基板1に拡散しない
ので裏面に結晶欠陥は発生しない。Next, as shown in FIG. 1(b), a POC film is formed while leaving the polysilicon film 5 and oxide film 8 formed on the back surface of the silicon substrate 1. Phosphorus diffusion is performed using gas at 900° C. for 30 minutes. At this time, phosphorus does not diffuse into the silicon substrate 1, so no crystal defects occur on the back surface.
つぎに第1図(C)に示すように、ポリシリコンからな
るゲート電極9、保護酸化膜10、N+型ソース11、
N“型ドレイン12、層間絶縁膜14を形成する。この
ときシリコン基板1の裏面に形成されていたポリシリコ
ン膜5、酸化膜6は熱酸化およびエツチングの繰り返し
により消滅し、シリコン基板1の裏面が露出している。Next, as shown in FIG. 1(C), a gate electrode 9 made of polysilicon, a protective oxide film 10, an N+ type source 11,
An N" type drain 12 and an interlayer insulating film 14 are formed. At this time, the polysilicon film 5 and oxide film 6 formed on the back surface of the silicon substrate 1 are eliminated by repeated thermal oxidation and etching, and the back surface of the silicon substrate 1 is removed. is exposed.
つぎに第1図(d)に示すように、シリコン基板1の裏
面に燐濃度6mo 1%のSOG膜15を回転塗布し、
この上からKrFをレーザ源とするエネルギー密度0.
IJ/cm2epulseのエキシマレーザを照射する
。シリコン基板1の裏面には燐が過剰拡散して結晶欠陥
16が発生した。Next, as shown in FIG. 1(d), an SOG film 15 with a phosphorus concentration of 6 mo and 1% is spin-coated on the back surface of the silicon substrate 1.
From above, the energy density of KrF as a laser source is 0.
Irradiate with an excimer laser of IJ/cm2 epulse. Phosphorus was excessively diffused on the back surface of the silicon substrate 1, and crystal defects 16 were generated.
最後に第1図(e)に示すように、コンタクトを開口し
、配線18,1θ、表面保護膜20を形成してMOSF
ETが完成する。Finally, as shown in FIG. 1(e), contacts are opened, wiring 18, 1θ, and a surface protection film 20 are formed to form the MOSFET.
ET is completed.
このMOSFETのシリコン基板とN3型ドレインとで
形成されたP−N”接合における逆バイアスリーク特性
を測定したところ約1O−13A/mm2で、従来例の
リークレベル約10−”A/mm2と比べて2桁改善さ
れた。The reverse bias leakage characteristic of the P-N" junction formed between the silicon substrate and the N3 type drain of this MOSFET was measured and found to be approximately 10-13A/mm2, compared to the leakage level of approximately 10-"A/mm2 in the conventional example. improved by two digits.
さらにシリコン基板基板裏面を露出させたのち、3分間
ライトエツチング(Wright etching)し
て光学顕微鏡で観察し、残存結晶欠陥の数を比較した。Furthermore, after exposing the back surface of the silicon substrate, it was subjected to light etching for 3 minutes and observed under an optical microscope, and the number of remaining crystal defects was compared.
その結果本実施例の2×105個/cm2で、従来例の
8X10’個/cm2に比べてはるかに高密度の残存結
晶欠陥が認められた。As a result, a much higher density of residual crystal defects was observed at 2×10 5 defects/cm 2 in this example, compared to 8×10′ defects/cm 2 in the conventional example.
従来例では燐拡散により導入された結晶欠陥が後工程の
熱処理の繰り返しにより減少したものと考えられる。In the conventional example, it is thought that the crystal defects introduced by phosphorus diffusion were reduced by repeating the heat treatment in the post-process.
従ってMO8FET製造工程後半では、本実施例を適用
した方がEG能力が高く、コンタクト開口の際のドライ
加工による汚染を十分ゲッタしてN+型ドレインのP−
N”接合のリーク特性を改善したと考えられる。Therefore, in the latter half of the MO8FET manufacturing process, applying this example has a higher EG ability, and can sufficiently getter the contamination caused by the dry processing during contact opening, so that the P-
This is thought to have improved the leakage characteristics of the N'' junction.
つぎに本発明の第2の実施例について、第2図(a)〜
(d)を参照して説明する。Next, regarding the second embodiment of the present invention, FIGS.
This will be explained with reference to (d).
はじめに第2図(a)に示すように、結晶面が(100
)、比抵抗15Ω・cmのP型シリコン基板1上にフィ
ールド酸化膜2および保護酸化膜10を形成したのち、
キャパシタ領域となるトレンチを形成する。First, as shown in Figure 2(a), the crystal plane is (100
), after forming a field oxide film 2 and a protective oxide film 10 on a P-type silicon substrate 1 with a specific resistance of 15 Ω·cm,
A trench that will become a capacitor region is formed.
つぎに砒素をイオン注入してトレンチの壁面にN+型層
13を形成する。Next, arsenic ions are implanted to form an N+ type layer 13 on the wall surface of the trench.
つぎに第2図(b)に示すように、シリコン基板1の裏
面に燐濃度10mol%のSOG膜15を回転塗布し、
X e CI!をレーザ源とするエキシマレーザをエネ
ルギー密度0.4J/cm2・pulseで照射して燐
をシリコン基板1内部に拡散させて結晶欠陥16を発生
させる。Next, as shown in FIG. 2(b), an SOG film 15 with a phosphorus concentration of 10 mol% is spin coated on the back surface of the silicon substrate 1.
X e CI! An excimer laser with an energy density of 0.4 J/cm 2 ·pulse is applied as a laser source to diffuse phosphorus into the silicon substrate 1 and generate crystal defects 16 .
つぎに第2図(C)に示すように、トレンチ壁面に容量
膜17を形成し、ストレージゲートとなるポリシリコン
膜21を埋め込み、さらに絶縁膜7、ゲート酸化膜3、
ゲート電極9、絶II膜8、N″″型ソース11、N+
型ドレイン12を形成する。Next, as shown in FIG. 2(C), a capacitive film 17 is formed on the trench wall surface, a polysilicon film 21 that will become a storage gate is embedded, and an insulating film 7, a gate oxide film 3,
Gate electrode 9, isolation II film 8, N″″ type source 11, N+
A mold drain 12 is formed.
最後に第2図(d)に示すように、層間絶縁膜14、配
線18を形成して、1トランジスタ、1キヤパシタから
なるDRAMののメモリセルが完成する。Finally, as shown in FIG. 2(d), an interlayer insulating film 14 and wiring 18 are formed to complete a DRAM memory cell consisting of one transistor and one capacitor.
このようにしてできたメモリセルの記憶保持時間を測定
したところ、SOG膜とXeCル−ザ照射を行なわなか
ったものに比べて20〜25%延びた。良品率も約8%
向上している。When the memory retention time of the memory cell thus produced was measured, it was found to be 20 to 25% longer than that of a cell without an SOG film and no XeC laser irradiation. Good product rate is about 8%
It's improving.
トレンチ形成の際のドライ加工やトレンチ壁面のN1型
層形成のためのイオン注入の際の汚染が、そのあとのE
G処理でゲッタされ低減したためと考えられる。Contamination during dry processing during trench formation and during ion implantation to form an N1 type layer on the trench wall surface causes subsequent E
This is thought to be due to gettering and reduction in G processing.
シリコン基板裏面に燐ドープ二酸化シリコン膜(SOG
膜)を回転塗布してから、低エネルギーのエキシマレー
ザを照射する。シリコン基板裏面に燐の過剰拡散による
結晶欠陥を発生させ、これらのゲッタリング効果によっ
て、素子形成領域の汚染不純物を減少させて素子特性を
向上させることができる。A phosphorus-doped silicon dioxide film (SOG) is deposited on the back side of the silicon substrate.
After spin-coating the film, it is irradiated with a low-energy excimer laser. Crystal defects are generated on the back surface of the silicon substrate due to excessive diffusion of phosphorus, and the gettering effect of these can reduce contaminating impurities in the device formation region and improve device characteristics.
回路素子形成面に保護膜を形成する必要がないので汚染
もなく、製造工程を複雑にすることがない。Since there is no need to form a protective film on the circuit element formation surface, there is no contamination and the manufacturing process is not complicated.
素子特性を変動させるような熱処理や、ドーパントの素
子領域への周り込みがないので、EG処理を行なう位置
に制約がない。必要とされる工程の直前で実施すること
により、効率的にゲッタリング効果を得ることができる
。非常にクリーンでフレキシブルな、簡便なEG処理法
である。Since there is no heat treatment that would change the device characteristics and there is no dopant infiltration into the device region, there are no restrictions on the location where the EG treatment is performed. By performing it immediately before the required process, the gettering effect can be efficiently obtained. This is a very clean, flexible, and simple EG processing method.
第1図(a)〜(e)は本発明の第1の実施例を工程順
に示す断面図、第2図(a)〜(d)は本発明の第2の
実施例を工程順に示す断面図、第3図(a) 〜(d)
は従来技術によるMOSFETの製造工程を示す断面図
である。
1・・・P型シリコン基板、2・・・フィールド酸化膜
、3・・・ゲート酸化膜、4.5・・・ポリシリコン膜
、θ・・・酸化膜、7,8・・・絶縁膜、9・・・ゲー
ト電極、10・・・保護酸化膜、11・・・N+型ソー
ス、12・・・N+型ドレイン、13・・・N+型履、
14・・・層間絶縁膜、15・・・SOG膜、16・・
・結晶欠陥、17・・・容量膜、18.19・・・配線
、20・・・表面保護膜・21°−11J 71J″′
膜・代9人弁、オ内原晋第 l 図
第2 図
第3 図
第3 図FIGS. 1(a) to (e) are cross-sectional views showing the first embodiment of the present invention in the order of steps, and FIGS. 2(a) to (d) are cross-sectional views showing the second embodiment of the present invention in the order of steps. Figure 3 (a) to (d)
1 is a cross-sectional view showing a manufacturing process of a MOSFET according to the prior art. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field oxide film, 3... Gate oxide film, 4.5... Polysilicon film, θ... Oxide film, 7, 8... Insulating film , 9... Gate electrode, 10... Protective oxide film, 11... N+ type source, 12... N+ type drain, 13... N+ type drain,
14... Interlayer insulating film, 15... SOG film, 16...
・Crystal defect, 17...Capacitive film, 18.19...Wiring, 20...Surface protection film ・21°-11J 71J'''
Mem・dai 9 people's dialect, Susumu Ouchihara l Figure 2 Figure 3 Figure 3
Claims (1)
て、前記半導体基板の下面に燐ドープ酸化シリコン膜を
堆積する工程と、該酸化シリコン膜上からエキシマレー
ザを照射する工程とを含むことを特徴とする半導体装置
の製造方法。 2、燐ドープ酸化シリコン膜の燐含有濃度が2〜20m
ol%である請求項1記載の半導体装置の製造方法。 3、エキシマレーザの照射エネルギーが0.1〜0.4
J/cm^2・pulseである請求項1記載の半導体
装置の製造方法。[Claims] 1. In the step of forming a circuit element on the upper surface of the semiconductor substrate, a step of depositing a phosphorous-doped silicon oxide film on the lower surface of the semiconductor substrate, and a step of irradiating the silicon oxide film with an excimer laser A method for manufacturing a semiconductor device, comprising: 2. The phosphorus content concentration of the phosphorus-doped silicon oxide film is 2 to 20 m
2. The method of manufacturing a semiconductor device according to claim 1, wherein 3. Excimer laser irradiation energy is 0.1 to 0.4
2. The method for manufacturing a semiconductor device according to claim 1, wherein the pulse is J/cm^2·pulse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2282278A JPH04155930A (en) | 1990-10-19 | 1990-10-19 | Production of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2282278A JPH04155930A (en) | 1990-10-19 | 1990-10-19 | Production of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04155930A true JPH04155930A (en) | 1992-05-28 |
Family
ID=17650355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2282278A Pending JPH04155930A (en) | 1990-10-19 | 1990-10-19 | Production of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04155930A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015186625A1 (en) * | 2014-06-03 | 2015-12-10 | 株式会社日本製鋼所 | Method for producing semiconductor having gettering layer, method for manufacturing semiconductor device, and semiconductor device |
KR20180123435A (en) * | 2017-05-08 | 2018-11-16 | 가부시기가이샤 디스코 | Method for forming gettering layer |
-
1990
- 1990-10-19 JP JP2282278A patent/JPH04155930A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015186625A1 (en) * | 2014-06-03 | 2015-12-10 | 株式会社日本製鋼所 | Method for producing semiconductor having gettering layer, method for manufacturing semiconductor device, and semiconductor device |
JPWO2015186625A1 (en) * | 2014-06-03 | 2017-06-22 | 株式会社日本製鋼所 | Manufacturing method of semiconductor having gettering layer, manufacturing method of semiconductor device, and semiconductor device |
KR20180123435A (en) * | 2017-05-08 | 2018-11-16 | 가부시기가이샤 디스코 | Method for forming gettering layer |
JP2018190837A (en) * | 2017-05-08 | 2018-11-29 | 株式会社ディスコ | Method for forming gettering layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5792699A (en) | Method for reduction of reverse short channel effect in MOSFET | |
JPS6260818B2 (en) | ||
JPH10209168A (en) | Manufacture of semiconductor device | |
JP2957757B2 (en) | Transistor fabrication method | |
JPH04155930A (en) | Production of semiconductor device | |
JPH1167682A (en) | Manufacture of semiconductor device | |
JPH0393233A (en) | Manufacture of semiconductor device | |
JP3296304B2 (en) | Method for manufacturing semiconductor device | |
JPS63271972A (en) | Manufacturing method of thin film transistor | |
KR100551337B1 (en) | Source / drain junction formation method in semiconductor silicide formation process | |
JPH05152227A (en) | Manufacture of semiconductor device improved diffusion region formation means | |
JPH03175638A (en) | Manufacture of semiconductor device | |
TW304283B (en) | Method of forming buried contact | |
JPH05109736A (en) | Manufacture of semiconductor device | |
JPH0555232A (en) | Manufacture of semiconductor device | |
TW323390B (en) | The method for forming lightly doped drain on semiconductor device | |
CN114496760A (en) | A kind of formation method of MOS transistor | |
JP2925936B2 (en) | Method for manufacturing semiconductor memory device | |
JPH0423427A (en) | Manufacturing method of semiconductor device | |
JPH04721A (en) | Manufacture of semiconductor device | |
US20040142519A1 (en) | Methods of manufacturing a semiconductor device | |
JPS6321825A (en) | Manufacture of semiconductor device | |
CN112750835A (en) | Anti-fuse structure and manufacturing method thereof | |
JPH0458524A (en) | Manufacture of semiconductor device | |
JPH0254539A (en) | Manufacturing method of vertical MOS FET |