[go: up one dir, main page]

JPH0415543A - Ozone concentration measurement method and device - Google Patents

Ozone concentration measurement method and device

Info

Publication number
JPH0415543A
JPH0415543A JP11869990A JP11869990A JPH0415543A JP H0415543 A JPH0415543 A JP H0415543A JP 11869990 A JP11869990 A JP 11869990A JP 11869990 A JP11869990 A JP 11869990A JP H0415543 A JPH0415543 A JP H0415543A
Authority
JP
Japan
Prior art keywords
ozone
water
optical fiber
light
ozone concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11869990A
Other languages
Japanese (ja)
Inventor
Koichi Uchino
内野 幸一
Hidehiko Yanagisawa
柳澤 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP11869990A priority Critical patent/JPH0415543A/en
Publication of JPH0415543A publication Critical patent/JPH0415543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オゾン濃度測定方法及び装置に関し、特に、
光ファイバによって照射光と透過光を案内することによ
り、測定誤差の少ない高精度のオゾン濃度を得るための
新規な改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for measuring ozone concentration, and in particular,
This invention relates to a novel improvement for obtaining highly accurate ozone concentration with little measurement error by guiding irradiated light and transmitted light through optical fibers.

〔従来の技術〕[Conventional technology]

従来、用いられていたこの種のオゾン濃度測定方法とし
ては種々あるが、その中で代表的なものについて述へる
と、第7図にて示す特開昭63=24.8842号公報
第5図の構成を挙げることができる。
There are various methods of measuring ozone concentration of this type that have been used in the past, but the most representative one is shown in FIG. The configuration of the figure can be mentioned.

すなわち、オゾン水濃度計1内に設けられた基準水用セ
ル2及びオゾン水用セル3内に、配管45が接続して設
けられており、これらの各配管45は、基準水か充填さ
れた基準水容器6及びオゾン水が充填されたオゾン水容
器7に接続されている。
That is, pipes 45 are connected to the reference water cell 2 and ozone water cell 3 provided in the ozone water concentration meter 1, and each of these pipes 45 is filled with reference water. It is connected to a reference water container 6 and an ozone water container 7 filled with ozone water.

従って、基準水容器6からの基準水を配管4を介して基
準水用セル2に導くと共に、オゾン水容器7からのオゾ
ン水を配管5を介してオゾン水用セル3に導かれ、各セ
ル2.3中のオゾン濃度を計測して、この計測した値を
ランバート・ベールの法則を適用してオゾン濃度を求め
るようにしていた。
Therefore, the reference water from the reference water container 6 is guided to the reference water cell 2 via the pipe 4, and the ozone water from the ozone water container 7 is guided to the ozone water cell 3 via the pipe 5, and each cell 2.3, the ozone concentration was measured and the Lambert-Beer law was applied to the measured value to determine the ozone concentration.

〔発明が解決しようとする課題〕 従来のオゾン濃度測定方法は、以」二のように構成され
ていたため、次のような課題が存在していた。
[Problems to be Solved by the Invention] The conventional ozone concentration measuring method was configured as described below, and therefore had the following problems.

すなわち、基準水及びオゾン水を、基準水用セル及びオ
ゾン水用セルに配管を介して導く必要があり、セル及び
配管が必要であり、構造が複雑化していた。
That is, it is necessary to guide the reference water and ozone water to the reference water cell and the ozone water cell through piping, which requires cells and piping, making the structure complicated.

また、基準水及びオゾン水配管に通ずために、オゾンと
配管がなしんだ状態で使用しないと、オゾンの減少かあ
り、測定の初期に誤差が多く、迅速な測定を行うことか
極めて困難であった。
In addition, since it connects to the reference water and ozone water piping, if it is not used with the ozone and piping disconnected, ozone may decrease, and there will be many errors in the initial stage of measurement, making it extremely difficult to perform quick measurements. Met.

さらに、基準水及びオゾン水を配管を介して導くため、
各配管の長さの差によって、誤差が発生することになっ
ていた。
Furthermore, in order to guide the reference water and ozone water through piping,
Errors were to occur due to differences in the length of each pipe.

本発明は、以上のような課題を解決するためになされた
もので、特に、光ファイバによって照射光と透過光を案
内することにより、測定誤差の少ない高精度のオゾン濃
度を得るようにしたオゾン濃度測定方法及び装置を提供
することを目的とする。
The present invention has been made to solve the above-mentioned problems. In particular, the present invention is an ozone solution that obtains highly accurate ozone concentration with less measurement error by guiding irradiated light and transmitted light through optical fibers. The purpose of the present invention is to provide a method and device for measuring concentration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるオゾン濃度測定方法は、基準水とオゾン水
に対し、オゾンの吸収スペクトルに適Bするスペクトル
を有する光源からの光を照射し、透過した光量を測定し
、オゾンのスペクトル吸収特性によってオゾン濃度を測
定するオゾン濃度測定方法において、前記光を光ファイ
バを経由して前記基準水中とオゾン水中に導くようにし
た方法である。
The ozone concentration measuring method according to the present invention irradiates reference water and ozonated water with light from a light source having a spectrum B suitable for the absorption spectrum of ozone, measures the amount of transmitted light, and determines the ozone concentration based on the spectral absorption characteristics of ozone. In the ozone concentration measuring method for measuring concentration, the light is guided into the reference water and ozone water via an optical fiber.

また、他の発明であるオゾン濃度測定装置は、基準水と
オゾン水に対し、オゾンの吸収スペク1〜ルに適きする
スペクトルを有する光源からの光を照射し、透過した光
量を測定し、オゾンのスペクトル吸収特性によってオゾ
ン濃度を測定するオゾン濃度測定装置において、前記光
源からの光を受光する光学系と、前記光学系に設けられ
た基準水用入射光ファイバ及びオゾン水用入射光ファイ
バと、前記基準水用入射光ファイバに接続され基準水容
器内に設けられた第1検出部と、前記第1検出部に接続
された基準水用透過光ファイバと、前記オゾン水用入射
光ファイバに接続されオゾン水容器内に設けられた第2
検出部と、前記第2検出部に接続されたオゾン水用透過
光ファイバと、前記各透過光ファイバからの透過光を光
電変換した電気信号を処理するための信号処理部とを備
えた装置である。  〔作 用〕 本発明によるオゾン濃度測定方法及び装置においては、
光源からの光が基準水用入射光ファイバ及びオゾン水用
入射光ファイバを介して基準水とオゾン水内に照射され
、この基準水とオゾン水を透過した透過光は、基準水用
透過光ファイバ及びオゾン水用透過光ファイバを経て、
信号変換部で電気信号に変換され、これらの電気信号を
信号処理部て処理することにより、ランバート・ベール
の法則に基づいてオゾン水のオゾン濃度を得ることがで
きる。
In addition, an ozone concentration measuring device according to another invention irradiates reference water and ozonated water with light from a light source having a spectrum suitable for ozone absorption spectra 1 to 1, and measures the amount of transmitted light. An ozone concentration measuring device that measures ozone concentration based on the spectral absorption characteristics of ozone, comprising: an optical system that receives light from the light source; an input optical fiber for reference water and an input optical fiber for ozonated water provided in the optical system; , a first detection section connected to the reference water input optical fiber and provided in the reference water container; a reference water transmission optical fiber connected to the first detection section; and a reference water input optical fiber connected to the ozone water input optical fiber. A second tube connected to the ozone water container
A device comprising a detection unit, an ozonated water transmission optical fiber connected to the second detection unit, and a signal processing unit for processing an electric signal obtained by photoelectrically converting transmitted light from each transmission optical fiber. be. [Function] In the ozone concentration measuring method and device according to the present invention,
Light from the light source is irradiated into the reference water and ozone water through the reference water input optical fiber and the ozone water input optical fiber, and the transmitted light that has passed through the reference water and ozone water is transmitted to the reference water transmission optical fiber. And through the transparent optical fiber for ozonated water,
The ozone concentration of the ozonated water can be obtained based on the Beer-Lambert law by converting into electrical signals in the signal converter and processing these electrical signals in the signal processing section.

また、従来のセルを用いた濃度計に比較すると、オゾン
濃度計内にはオゾン水を導く必要がなく光ファイバによ
って信号を取り出すため、測定精度を大巾に向上させる
ことができる。
Furthermore, compared to a densitometer using a conventional cell, there is no need to introduce ozone water into the ozone densitometer, and the signal is extracted through an optical fiber, making it possible to greatly improve measurement accuracy.

〔実施例〕〔Example〕

以下、図面と共に本発明によるオゾン濃度測定方法及び
装置の好適な実施例について詳細に説明する。
Hereinafter, preferred embodiments of the ozone concentration measuring method and apparatus according to the present invention will be described in detail with reference to the drawings.

尚、従来例と同−又は相当部分には、同一符号を用いて
説明する。
Note that the same reference numerals are used to describe the same or equivalent parts as in the conventional example.

第1図から第6図迄は、本発明によるオゾン濃度測定方
法及び装置を示すためのもので、第1図は全体構成を示
すブロック構成図、第2図は第1図の概略構成図、第3
図は第1図の検出部を示す拡大構成図、第4図、第5図
及び第6図は第3図の他の実施例を示す構成図である。
1 to 6 are for showing the ozone concentration measuring method and apparatus according to the present invention. FIG. 1 is a block configuration diagram showing the overall configuration, FIG. 2 is a schematic configuration diagram of FIG. 1, Third
This figure is an enlarged block diagram showing the detection section of FIG. 1, and FIGS. 4, 5, and 6 are block diagrams showing other embodiments of the embodiment shown in FIG. 3.

図において符号1で示されるものは、オゾン水濃度計で
あり、このオゾン水濃度計1は、第1、第2信号変換部
10,11、第1、第2電気信号増中器12.13、信
号処理部14及び表示部15とから構成されている。
What is indicated by the reference numeral 1 in the figure is an ozone water concentration meter, and this ozone water concentration meter 1 includes first and second signal converters 10 and 11, first and second electric signal intensifiers 12 and 13. , a signal processing section 14, and a display section 15.

前記第1信号変換部10に接続された基準水用透過光フ
ァイバ20は、基準水容器6内の第1検出部21に接続
され、前記第2信号変換部1.1に接続されたオゾン水
用透過光ファイバ22は、オゾン水容器7内の第2検出
部23に接続されている。
The transmission optical fiber 20 for reference water connected to the first signal conversion section 10 is connected to the first detection section 21 in the reference water container 6, and the ozone water transmission optical fiber connected to the second signal conversion section 1.1 is connected to the first detection section 21 in the reference water container 6. The transmission optical fiber 22 is connected to a second detection section 23 inside the ozone water container 7.

次に、符号30で示される乙のは、オゾンの吸収スペク
トルに適合するスペク1〜ルを有する光源てあり、この
光源30からの光30aは、光学系31で分光される。
Next, a light source indicated by reference numeral 30 has a spectrum 1 to 1 that matches the absorption spectrum of ozone, and light 30a from this light source 30 is separated by an optical system 31.

前記光学系31に設けられた基準水用入射光ファイバ3
2は前記第1検出部21に接続され、前記光学系31に
設けられたオゾン水用入射光ファイバ33は前記第2検
出部23に接続されている。
Reference water input optical fiber 3 provided in the optical system 31
2 is connected to the first detection section 21 , and an ozone water input optical fiber 33 provided in the optical system 31 is connected to the second detection section 23 .

前記各光ファイバ20,22,32.33は、材質、断
面共同−のものであり、紫外線を通しやすい光ファイバ
であることが必要である。
The optical fibers 20, 22, 32, and 33 are made of the same material and have the same cross section, and must be optical fibers that easily transmit ultraviolet rays.

前記光源30からの光30aは、前記光源30の発生ず
る放射エネルギーあるいは光量等の変化を補正するため
に設けられた補正用信号変換部40に入射されており、
この補正用信号変換部40の出力信号40aは、電気信
号増幅器41を介して前記信号処理部14に印加されて
いる。
The light 30a from the light source 30 is incident on a correction signal converter 40 provided for correcting changes in radiant energy or light amount generated by the light source 30,
The output signal 40a of this correction signal conversion section 40 is applied to the signal processing section 14 via an electric signal amplifier 41.

前記各検出部21.23は、詳細には、第3図で示すよ
うに構成されており、各入射光ファイバ32.33から
の入射光は、各検出部21.,23の反射ミラー42を
通り、凹部C内の基準水又はオゾン水にあてられる。こ
のオゾン水にあてた場合、紫外線がオゾン水に吸収され
なかった紫外線が反射ミラー43を介して各透過光ファ
イバ2022に導かれるように構成されている。また、
前記各検出部21.23は、直接基準水又はオゾン水中
に浸漬されるため、防水構造て構成されている。
Each of the detection units 21.23 is configured as shown in FIG. 3 in detail, and the incident light from each input optical fiber 32.33 is transmitted to each detection unit 21.23. , 23, and is applied to the reference water or ozone water in the recess C. When exposed to this ozonated water, the ultraviolet rays that are not absorbed by the ozonated water are configured so that they are guided to each transmission optical fiber 2022 via the reflection mirror 43. Also,
Each of the detection units 21, 23 is directly immersed in reference water or ozone water, and therefore has a waterproof structure.

尚、前記各検出部21.23の構成は、第3図に示ずも
のの他、第4図に示すように、反射ミラーを用いず、各
入射光ファイバ32.33と各透過光ファイバ20.2
2間を、間隙りを介して一対の検出器50.51を互い
に直線状に離間さぜな構成、第5図て示すように、光量
を高効率で伝達するために一対のレンズ52を配設した
構成、第6図のように、前述の第4図の構成の各検出器
50.51内にレンズ52を設けた構成とした場きも同
様の作用効果を得ることができるもので、オゾンの最大
吸収帯波長254n+nを利用する場りは、レンズ52
もこの254旧nを良好に透過するものとすることが必
要である。
In addition to the configuration shown in FIG. 3, the configuration of each of the detection units 21.23 does not use a reflecting mirror, and includes each input optical fiber 32.33 and each transmission optical fiber 20.23, as shown in FIG. 2
As shown in FIG. 5, a pair of lenses 52 are arranged to transmit the amount of light with high efficiency. Similar effects can be obtained by using a configuration in which a lens 52 is provided in each of the detectors 50 and 51 in the configuration shown in FIG. 4, as shown in FIG. When using the maximum absorption band wavelength 254n+n, the lens 52
It is also necessary that this 254 old n be transmitted well.

本発明によるオゾン濃度測定方法を適用するオゾン濃度
測定装置は、前述したように構成されており、以下に、
その動作について説明する。
The ozone concentration measuring device to which the ozone concentration measuring method according to the present invention is applied is configured as described above, and as follows:
Its operation will be explained.

まず、光源30からの光30aは、光学系31により分
光され、一方の光は、基準水用入射光ファイバ32から
基準水中の第1検出部21を経て、基準水用透過光ファ
イバ20から第1信号変換部10に送られて、光電変換
される。
First, the light 30a from the light source 30 is separated by the optical system 31, and one of the lights passes from the reference water incident optical fiber 32 to the first detection section 21 in the reference water, and from the reference water transmission optical fiber 20 to the first detection section 21. 1 signal converter 10, where it is photoelectrically converted.

また、他方の光は、オゾン水用入射光ファイバ33から
オゾン水中の第2検出部23を経て、オゾン水用透過光
ファイバ22から第2信号変換部1]−に送られ光電変
換される。
The other light is sent from the ozonated water incident optical fiber 33 to the second detection section 23 in the ozonated water, and is sent from the ozonated water transmission optical fiber 22 to the second signal conversion section 1]-, where it is photoelectrically converted.

前記各信号変換部10.11で光電変換された電気信号
1.0a、llaは、第1、第2電気信号増中部12.
13を介して信号処理部14に送られる。
The electrical signals 1.0a, lla photoelectrically converted by the respective signal converters 10.11 are transferred to the first and second electrical signal intensifiers 12.
The signal is sent to the signal processing unit 14 via 13.

前記信号処理部14ては、基準水の透過光量Aとオゾン
水の透過光JLBを参照し、周知のランバート・ヘール
の法則に基ついて信号処理してオゾン濃度を測定し、こ
の測定結果を表示部]−5に表示する。
The signal processing unit 14 refers to the amount of transmitted light A of the reference water and the transmitted light JLB of ozone water, performs signal processing based on the well-known Lambert-Hale law, measures the ozone concentration, and displays the measurement results. section]-5.

また、前記第2検出部23は、前記基準水容器G内の基
準水内に浸漬させて、この基準水の透過光量Aとオゾン
水の透過光量Bの割合を謂へ、信号処理部14において
補正を行うように構成されている。
Further, the second detection section 23 is immersed in the reference water in the reference water container G, and the signal processing section 14 calculates the ratio of the amount of transmitted light A of this reference water and the amount of transmitted light B of ozone water. It is configured to perform the correction.

さらに、前記各電気信号増幅部12.13を1個の回路
部で構成し、図示しない切換スイッチを用いて切換るよ
うにした場会も同様の作用効果を得ることができるもの
である。
Further, similar effects can be obtained in a case where each of the electrical signal amplification sections 12, 13 is configured as one circuit section and is switched using a changeover switch (not shown).

〔発明の効果〕〔Effect of the invention〕

本発明によるオゾン濃度測定方法及び装置は、以上のよ
うに構成されているため、次のような効果を得ることが
できる。
Since the ozone concentration measuring method and apparatus according to the present invention are configured as described above, the following effects can be obtained.

すなわち、オゾン水濃度計と基準水及びオゾン水間は、
光ファイバて接続されているため、従来のように、基準
水やオゾン水を直接案内するための配管が必要てなく、
オゾンの減少のない高精度のオゾン濃度を得ることがで
きる。
In other words, the distance between the ozone water concentration meter, the reference water, and the ozone water is
Since it is connected using optical fiber, there is no need for piping to directly guide reference water or ozone water as in the past.
Highly accurate ozone concentration without ozone depletion can be obtained.

また、前述の効果により、測定誤差を少なくすることが
てきると共に、立上り特性が良好であるため、測定開始
後、直ちに高精度の測定を行うことかできる。
Further, due to the above-mentioned effects, measurement errors can be reduced, and since the rise characteristic is good, highly accurate measurement can be performed immediately after starting measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第61迄は、本発明によるオゾン濃度測定方
法及び装置を示すためのもので、第1図は全体構成を示
すブロック構成図、第2図は第1図の概略構成図、第3
図は第1図の検出部を示す拡大構成図、第4図、第5図
及び第6図は第3図の他の実施例を示す構成図、第7図
は従来のオゾン濃度測定方法を示す概略構成図である。 6は基準水容器、7はオゾン水容器、14は信号処理部
、20は基準水用透過光ファイバ、21は第1検出部、
22はオゾン水用透過光ファイバ、23は第2検出部、
30は光源、30aは光、31は光学系、32は基準水
用入射光ファイバ、33はオゾン水用入射光ファイバで
ある。
1 to 61 are for showing the ozone concentration measuring method and apparatus according to the present invention. FIG. 1 is a block configuration diagram showing the overall configuration, FIG. 2 is a schematic configuration diagram of FIG. 1, and FIG. 3
The figure is an enlarged block diagram showing the detection section in Figure 1, Figures 4, 5, and 6 are block diagrams showing other embodiments of Figure 3, and Figure 7 shows the conventional ozone concentration measuring method. FIG. 6 is a reference water container, 7 is an ozone water container, 14 is a signal processing section, 20 is a transmission optical fiber for reference water, 21 is a first detection section,
22 is a transmission optical fiber for ozonated water, 23 is a second detection section,
30 is a light source, 30a is a light, 31 is an optical system, 32 is an input optical fiber for reference water, and 33 is an input optical fiber for ozone water.

Claims (2)

【特許請求の範囲】[Claims] (1)基準水とオゾン水に対し、オゾンの吸収スペクト
ルに適合するスペクトルを有する光源(30)からの光
(30a)を照射し、透過した光量を測定し、オゾンの
スペクトル吸収特性によってオゾン濃度を測定するオゾ
ン濃度測定方法において、 前記光(30a)を光ファイバ(20、22、32、3
3)を経由して前記基準水中とオゾン水中に導くように
したことを特徴とするオゾン濃度測定方法。
(1) Standard water and ozone water are irradiated with light (30a) from a light source (30) having a spectrum matching the absorption spectrum of ozone, the amount of transmitted light is measured, and the ozone concentration is determined based on the spectral absorption characteristics of ozone. In the method for measuring ozone concentration, the light (30a) is transmitted through optical fibers (20, 22, 32, 3
3) A method for measuring ozone concentration, characterized in that the ozone is introduced into the reference water and the ozone water via step 3).
(2)基準水とオゾン水に対し、オゾンの吸収スペクト
ルに適合するスペクトルを有する光源(30)からの光
を照射し、透過した光量を測定し、オゾンのスペクトル
吸収特性によってオゾン濃度を測定するオゾン濃度測定
装置において、 前記光源(30)からの光(30a)を受光する光学系
(31)と、前記光学系(31)に設けられた基準水用
入射光ファイバ(32)及びオゾン水用入射光ファイバ
(33)と、前記基準水用入射光ファイバ(32)に接
続され基準水容器(6)内に設けられた第1検出部(2
1)と、前記第1検出部(21)に接続された基準水用
透過光ファイバ(20)と、前記オゾン水用入射光ファ
イバ(33)に接続されオゾン水容器(7)内に設けら
れた第2検出部(23)と、前記第2検出部(23)に
接続されたオゾン水用透過光ファイバ(22)と、前記
各透過光ファイバ(20、22)からの透過光を光電変
換した電気信号を処理するための信号処理部(14)と
を備えたことを特徴とするオゾン濃度測定装置。
(2) Irradiate the reference water and ozone water with light from a light source (30) having a spectrum matching the absorption spectrum of ozone, measure the amount of transmitted light, and measure the ozone concentration based on the spectral absorption characteristics of ozone. The ozone concentration measuring device includes an optical system (31) that receives light (30a) from the light source (30), an input optical fiber (32) for reference water provided in the optical system (31), and an input optical fiber (32) for ozone water. An input optical fiber (33) and a first detection section (2) connected to the reference water input optical fiber (32) and provided in the reference water container (6).
1), a transmission optical fiber for reference water (20) connected to the first detection section (21), and an incident optical fiber for ozone water (33) connected to the ozone water container (7). a second detection unit (23), an ozonated water transmission optical fiber (22) connected to the second detection unit (23), and photoelectric conversion of transmitted light from each of the transmission optical fibers (20, 22). 1. An ozone concentration measuring device comprising: a signal processing section (14) for processing an electrical signal generated by the ozone concentration.
JP11869990A 1990-05-10 1990-05-10 Ozone concentration measurement method and device Pending JPH0415543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11869990A JPH0415543A (en) 1990-05-10 1990-05-10 Ozone concentration measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11869990A JPH0415543A (en) 1990-05-10 1990-05-10 Ozone concentration measurement method and device

Publications (1)

Publication Number Publication Date
JPH0415543A true JPH0415543A (en) 1992-01-20

Family

ID=14742960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11869990A Pending JPH0415543A (en) 1990-05-10 1990-05-10 Ozone concentration measurement method and device

Country Status (1)

Country Link
JP (1) JPH0415543A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658878A (en) * 1992-08-05 1994-03-04 Japan Energy Corp Liquid property determination sensor and liquid property determination method
JPH06167449A (en) * 1992-11-30 1994-06-14 General Signal Japan Kk Method and equipment for controlling concentration
JPH0829345A (en) * 1993-12-22 1996-02-02 Shinetsu Quartz Prod Co Ltd Measuring device that guides a light beam through a liquid medium
WO2008001833A1 (en) 2006-06-29 2008-01-03 Sakura Color Products Corporation Ink composition for detecting dissolved ozone and method of detecting dissolved ozone
WO2013073524A1 (en) * 2011-11-15 2013-05-23 オリンパス株式会社 Optical sensor
JP2016080628A (en) * 2014-10-21 2016-05-16 住友電気工業株式会社 probe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105287A (en) * 1977-02-25 1978-09-13 Mitsubishi Electric Corp Ozone densitometer
JPS61241638A (en) * 1985-04-19 1986-10-27 Daiwa Shoji Kk Detection of reference light of optical densitometer
JPS63218842A (en) * 1987-03-06 1988-09-12 Sasakura Eng Co Ltd Method and apparatus for measuring concentration of ozone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105287A (en) * 1977-02-25 1978-09-13 Mitsubishi Electric Corp Ozone densitometer
JPS61241638A (en) * 1985-04-19 1986-10-27 Daiwa Shoji Kk Detection of reference light of optical densitometer
JPS63218842A (en) * 1987-03-06 1988-09-12 Sasakura Eng Co Ltd Method and apparatus for measuring concentration of ozone

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658878A (en) * 1992-08-05 1994-03-04 Japan Energy Corp Liquid property determination sensor and liquid property determination method
JPH06167449A (en) * 1992-11-30 1994-06-14 General Signal Japan Kk Method and equipment for controlling concentration
JPH0829345A (en) * 1993-12-22 1996-02-02 Shinetsu Quartz Prod Co Ltd Measuring device that guides a light beam through a liquid medium
WO2008001833A1 (en) 2006-06-29 2008-01-03 Sakura Color Products Corporation Ink composition for detecting dissolved ozone and method of detecting dissolved ozone
WO2013073524A1 (en) * 2011-11-15 2013-05-23 オリンパス株式会社 Optical sensor
JP2013104812A (en) * 2011-11-15 2013-05-30 Olympus Corp Optical sensor
US9267788B2 (en) 2011-11-15 2016-02-23 Olympus Corporation Optical sensor having light guide members with characteristic detection portions whose optical charateristics vary in accordance with a physicochemical state
JP2016080628A (en) * 2014-10-21 2016-05-16 住友電気工業株式会社 probe

Similar Documents

Publication Publication Date Title
US3770354A (en) Photoelectric photometer
CN101308090B (en) Fire field multi- parameter laser wavelength modulated spectrum detection method and apparatus
KR950033445A (en) Temperature measuring method and apparatus using optical fiber
CN101504314A (en) Atmosphere ultraviolet radiation flux measuring apparatus and method
CN105136431A (en) Measurement system for optical element transmittance and reflectance based on acousto-optic modulation
Massie et al. A high-intensity spectrophotometer interfaced with a computer for food quality measurement
JPH0415543A (en) Ozone concentration measurement method and device
CN101196469A (en) Textile Optical Performance Testing System Based on Linear Gradient Filter
CN201503394U (en) Instrument for detecting chemical oxygen demand quantity of water body in real time
EP0176826A3 (en) Method and apparatus for dual-beam spectral transmission measurements
JPH0269639A (en) Laser gas sensor
JPS58156837A (en) Measuring device for optical gas analysis
JPH0416749A (en) Ozone concentration measurement method and device
CN114460022A (en) A towed hyperspectral absorbance sensor system and its calibration method
CN201772994U (en) Vertical incidence film reflectivity meter with the characteristics of symmetry and self calibration
CN113376106B (en) How to measure alcohol content
JPS5899733A (en) Turbidimeter
CN222166849U (en) An optical path structure for online total nitrogen monitor
CN110657947A (en) An optical fiber calibration method based on gas absorption cell for signal splicing
JPS5992318A (en) Spectrometry method
CN211292572U (en) Multi-optical path transmission spectrum measurement interface for water quality sample measurement
RU2094757C1 (en) Method of determination of ultraviolet radiation intensity
SU1010525A1 (en) Photon photoelectric counter spectral sensitivity measuring method
CN101915660A (en) Vertical incidence thin-film reflectometer with symmetry and self-alignment
US5061066A (en) Method for realizing a primary photometric standard of optical radiation using a photodetector and photodetecting apparatus therefor