JPH04155175A - Air separation equipment air cooler air outlet temperature control method - Google Patents
Air separation equipment air cooler air outlet temperature control methodInfo
- Publication number
- JPH04155175A JPH04155175A JP2276328A JP27632890A JPH04155175A JP H04155175 A JPH04155175 A JP H04155175A JP 2276328 A JP2276328 A JP 2276328A JP 27632890 A JP27632890 A JP 27632890A JP H04155175 A JPH04155175 A JP H04155175A
- Authority
- JP
- Japan
- Prior art keywords
- air
- temperature
- fluorocarbon
- outlet temperature
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000000926 separation method Methods 0.000 title claims description 10
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000003507 refrigerant Substances 0.000 claims abstract description 14
- 238000001704 evaporation Methods 0.000 claims abstract description 11
- 230000008020 evaporation Effects 0.000 claims abstract description 10
- 238000001179 sorption measurement Methods 0.000 claims description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 239000003463 adsorbent Substances 0.000 claims description 4
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 abstract description 38
- 239000003595 mist Substances 0.000 abstract description 8
- 238000009833 condensation Methods 0.000 abstract description 5
- 230000005494 condensation Effects 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 7
- 238000009738 saturating Methods 0.000 abstract 1
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 52
- 239000007789 gas Substances 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04775—Air purification and pre-cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation Of Gases By Adsorption (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、空気深冷分離装置における原料空気中の水分
および炭酸ガスを吸着塔で除去するための原料空気前処
理装置におけるフロン等の冷凍機を使用し、冷媒で空気
を直接熱交で冷却する空気分離装置空気冷却器の空気出
口温度制御方法に関するものである。Detailed Description of the Invention [Industrial Field of Application] The present invention relates to the freezing of fluorocarbons, etc. in a feed air pretreatment device for removing moisture and carbon dioxide from feed air in an air cryogenic separation device using an adsorption tower. This invention relates to a method for controlling the air outlet temperature of an air separation device air cooler that uses a refrigerant to cool air by direct heat exchange.
空気液化深冷分離装置では、原料空気中の水分および炭
酸ガス等の不純物を除去するため、可逆式熱交換器に代
って、吸着剤を充填した吸着塔で深冷分離器に入ろ「段
階でこれら不純物を除去する方法がしばしばとられる。In air liquefaction cryogenic separation equipment, in order to remove impurities such as moisture and carbon dioxide from the feed air, instead of a reversible heat exchanger, an adsorption column filled with adsorbent is used to remove impurities such as moisture and carbon dioxide from the air that enters the cryogenic separator. Methods are often used to remove these impurities.
吸着塔を使用する原料空気前処理装置においては、吸着
塔の水分電々を減らすため、原料空気を約5℃記後まで
冷却する必要があり、このため従来からフロン冷凍機を
使用しフロン冷媒で空気を直接空気冷却器で冷却する方
法がしばしばとられている。フロン冷媒で空気な直接冷
却する方式で重要なポイントは、空気冷却器で空気を冷
却する段階で、フロンの、tia度をO′C以下にする
と空気冷却器で空気中の水分が氷結し空気冷却器を閉塞
してしまうことと、空気冷却器でフロンが完全に蒸発ぜ
ずに液状で冷凍機に戻ることによる液圧縮を防止するこ
とで′ある。In feed air pre-treatment equipment that uses an adsorption tower, it is necessary to cool the feed air to approximately 5°C in order to reduce the water charge in the adsorption tower. A method of cooling the air directly with an air cooler is often used. An important point in the direct cooling method using air with a fluorocarbon refrigerant is that when the air is cooled with an air cooler, if the tia degree of the fluorocarbon is lower than O'C, the moisture in the air will freeze in the air cooler and the air will cool. This is to prevent clogging of the cooler and liquid compression caused by the Freon returning to the refrigerator in liquid form without being completely evaporated in the air cooler.
このため、従来の方法は、フロンの蒸発温度はo’cu
TIこならないように、蒸発圧力を一定に制御すること
と、冷5[機への液バブク防止のため空気冷却器フロン
出口温度を検出して、フロンの飽和温度より高い過熱温
度になるように温度I!1Ii5計で、フロン供給膨張
弁を制御する方法がとられている。なお、この種の装置
として関連するものには例えば特公昭64−10756
号が挙げられる。Therefore, in the conventional method, the evaporation temperature of CFC is o'cu.
In order to avoid overheating, the evaporation pressure must be controlled at a constant level, and the air cooler freon outlet temperature must be detected in order to prevent liquid bubbling into the cooling unit. Temperature I! 1Ii5 meter uses a method of controlling the Freon supply expansion valve. In addition, related devices of this type include, for example, Japanese Patent Publication No. 64-10756.
The number is mentioned.
上記従来技術は冷凍圧縮機で圧縮きれたフロンガス中に
含まれる油の影響については空気冷却器の設計上の問題
だけとし、温度制御上は、フロノ出ローli度!11B
計の設定値と計器の感度調整だけの問題とされ、空気冷
却fi内に濃縮される油の問題については、温度制御上
何ら月1されていなかった。このため、実際の運転にお
いては装2の増減量運転等、冷凍負荷条件によって空気
冷却器内に凝縮される油のため、伝熱性能が悪化し、空
気出口温度が上昇したり、フロン出口で液バツクを長時
間継続することによる冷凍圧縮機へ悪影響を与えること
がしばしば発生していた。In the above conventional technology, the effect of oil contained in the fluorocarbon gas compressed by the refrigeration compressor is considered only as a problem in the design of the air cooler, and in terms of temperature control, the effect of oil contained in the fluorocarbon gas that has been completely compressed by the refrigeration compressor is considered as a problem in the design of the air cooler. 11B
The problem was considered to be only the adjustment of the meter settings and the sensitivity of the meter, and the problem of oil concentrating in the air cooling fi was not checked at all in terms of temperature control. For this reason, in actual operation, oil condenses in the air cooler due to refrigeration load conditions such as increase/decrease operation of unit 2, resulting in poor heat transfer performance, an increase in air outlet temperature, and a rise in the freon outlet. Continuing liquid back-up for a long time often had an adverse effect on the refrigeration compressor.
このような不具合現象が発生した場合、従来はフロン出
口温度やフロン出口圧力を手動で調節計の設定値や感度
を調整していた。In the past, when such a malfunction occurred, the setting value and sensitivity of the controller were manually adjusted for the Freon outlet temperature and Freon outlet pressure.
本発明は、かかる問題点を解決し、空気冷却器の空気出
口温度を安定させる冷却器本体の目的を完全自動化させ
ようとする制御方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a control method that solves these problems and completely automates the purpose of the cooler body to stabilize the air outlet temperature of the air cooler.
本発明は上記目的を達成させるために空気冷却器内に持
込まれる油の量と、持出される油の量との物質収支に看
目し、70ノ液中に油が多量に溶解する特性を利用して
、空気冷却器の空気出口温度で、フロン出口2i度に制
限範囲を定めてフロン出口温度調節計の設定置を自動的
にセットさせるものである。In order to achieve the above object, the present invention takes into consideration the material balance between the amount of oil brought into the air cooler and the amount of oil taken out. Utilizing this, a limit range is set for the freon outlet 2i degrees based on the air outlet temperature of the air cooler, and the setting position of the freon outlet temperature controller is automatically set.
一般に、冷凍圧縮機で圧縮されたフロンガスは圧縮機の
潤滑油と一緒に油分離器に導かれ、ここでフロンガスと
油と蕃こ分離される。しかし油分離器でフロンガス中の
油を完全に除去することは技術的に不可能であり、普通
油分離器で分離された70ノガス中には100 ppm
程度の油分が含まれている。Generally, fluorocarbon gas compressed by a refrigeration compressor is led to an oil separator together with the lubricating oil of the compressor, where the fluorocarbon gas and oil are separated. However, it is technically impossible to completely remove oil from fluorocarbon gas with an oil separator, and 100 ppm is contained in 70 nogas separated by an ordinary oil separator.
Contains some amount of oil.
このガス中に含まれた油分は、凝縮器で凝縮されたフロ
ン液中に溶解される。The oil contained in this gas is dissolved in the fluorocarbon liquid condensed in the condenser.
フロン液中に微量溶解されている油分は空気冷却器で加
熱されるが、この時フロン液中の油分は蒸発せず熱交換
器内で濃縮されて行くことになる。A small amount of oil dissolved in the fluorocarbon liquid is heated in an air cooler, but at this time the oil in the fluorocarbon liquid does not evaporate but is concentrated in the heat exchanger.
この油濃縮により空気冷却器の伝熱性能が低下すること
になる。この油濃縮防止のため空気冷却器のフロン蒸発
ガスのガス速度を上げて油分をガスと一緒に持出すこと
で熱交換器を設計するが、空気分りIm装置の場合、装
置の増減量運転や、起動時の吸II培単独再生、季!5
4こよる温度の変化などで冷凍機の負荷は最大と最小で
は20%程度の減量運転を行うことになり、これまでの
単なるフロンガスの流速だけで油を持出すことに不可能
になってしまう。この油濃縮は、フロン側の加熱度即ち
70ノ出口!!度調節計の設定値を上昇させると更に油
の持出しが困難となる。This oil concentration reduces the heat transfer performance of the air cooler. To prevent this oil from condensing, a heat exchanger is designed to increase the gas velocity of the evaporated fluorocarbon gas in the air cooler and take out the oil together with the gas. , Suction II culture independent playback at startup, season! 5
4 Due to changes in temperature, etc., the load on the refrigerator will have to be reduced by about 20% between the maximum and minimum load, making it impossible to remove the oil with just the flow rate of fluorocarbon gas. . This oil concentration is due to the degree of heating on the Freon side, that is, the outlet is 70! ! If the setting value of the temperature controller is increased, it becomes even more difficult to remove the oil.
空気冷却器の蒸発温度は0℃近くであるので、油の粘度
が高くなることもフロンガスfi達だけでは油の持出し
を困難にしている理由である。Since the evaporation temperature of the air cooler is close to 0°C, the viscosity of the oil increases, which also makes it difficult to take out the oil using just the fluorocarbon gas fi.
本発明では、かかる現象を明解にし、油がフロン液中に
多量にIBMする原理を利用し、空気冷却器内で油濃縮
が起った場合、伝熱性能が低下するため、空気出口+1
1度が上昇することから、この空気出口温度上昇を検知
して、フロン出口温度調節計の設定温度を下げ、出口か
ら油を溶解したミストを一部同伴させ油分を熱交換器内
から持出させようとするものである。In the present invention, this phenomenon is clarified, and by utilizing the principle that a large amount of oil is IBM in the Freon liquid, when oil concentration occurs in the air cooler, the heat transfer performance decreases, so the air outlet +
Since the air temperature rises by 1 degree, this increase in air outlet temperature is detected, and the set temperature of the freon outlet temperature controller is lowered, allowing some of the oil-dissolved mist to be brought out from the outlet and the oil content removed from the heat exchanger. It is an attempt to do so.
空気冷却器内に持込まれるフロン液中の油分が冷媒循環
量の100 ppmとすると、フロンミスト中に含まれ
る油分は2スト量の2.5%程度であるので油の物質収
支を計算すると、空気冷却器から出るフロンガス中のミ
スト量は1%以下の量で良いことになる。この微量なミ
ストは冷凍圧縮機の液バツクには長時間連続しなければ
それ程悪影響を与えない。このようにして油分を持出す
ことによって空気冷却器は元の伝熱性能を確保できるの
で空気出口温度が規定1度になったら再びフロン出口温
度の設定値を自動的に上昇させることができる。If the oil content in the fluorocarbon liquid brought into the air cooler is 100 ppm of the refrigerant circulation amount, the oil content in the fluorocarbon mist is about 2.5% of the 2-stroke amount, so calculating the oil mass balance: This means that the amount of mist in the freon gas emitted from the air cooler should be 1% or less. This small amount of mist does not have a bad effect on the liquid bag of the refrigeration compressor unless it continues for a long time. By removing the oil in this way, the air cooler can maintain its original heat transfer performance, so that when the air outlet temperature reaches the specified 1 degree, the set value of the freon outlet temperature can be automatically raised again.
この時、フロン出口温度の設定値を上げ過ぎると冷凍負
荷が小さい場合は、油の物質収支が乱れ油濃縮の原因と
なるのでフロン出口温度の上限を設けこの範囲で安定運
転を行うことができる。At this time, if the set value of the freon outlet temperature is increased too much and the refrigeration load is small, the mass balance of the oil will be disrupted, causing oil concentration. Therefore, an upper limit is set for the freon outlet temperature and stable operation can be performed within this range. .
上記のように空気冷却器内の油の物買収支上から本発明
では、油濃縮の影響を空気冷却器の空気出口温度で検出
し、フロンの蒸発飽和温度以上で上限を設Stたフロン
出口温度調節計の設定値を自動的にセットするカスケー
ド制御方式により、空気冷却器内の油濃縮のバランスを
とることができるので、空気分離!1M1tの増減量運
転等の冷凍負荷変動に対する完全自動制御が可能となる
。As described above, in view of the acquisition of oil in the air cooler, the present invention detects the influence of oil concentration at the air outlet temperature of the air cooler, and sets an upper limit at the fluorocarbon outlet at a temperature equal to or higher than the evaporation saturation temperature of the fluorocarbon. The cascade control method that automatically sets the temperature controller setpoint allows you to balance the oil concentration in the air cooler, resulting in air separation! Fully automatic control of refrigeration load fluctuations such as 1M1t increase/decrease operation is possible.
以下、本発明の一実施例を、冷媒としてフロンR−22
を使用した空気分離装置の空気冷却器の温度制御を例に
とり第1図により説明する。Hereinafter, one embodiment of the present invention will be described using Freon R-22 as a refrigerant.
The temperature control of the air cooler of an air separation device using the air cooler will be explained using FIG. 1 as an example.
図において、原料空気圧縮mlで約54/mGに圧縮さ
れた空気はアフタークーラー2で水により約40℃まで
冷却され導管3より空気冷却器4に導かれる。空気冷却
器4は管内にフロン、管外に空気を流す熱交換器で、フ
ロンの蒸発潜熱を利用して空気を約5℃まで冷却する。In the figure, air compressed to about 54/mG per milliliter of raw air is cooled to about 40° C. by water in an aftercooler 2 and led to an air cooler 4 through a conduit 3. The air cooler 4 is a heat exchanger that flows fluorocarbons inside the tubes and air outside the tubes, and uses the latent heat of vaporization of the fluorocarbons to cool the air to about 5°C.
5℃まで冷却された空気は水分を滅じた後、導管5から
空気入口の切替弁6で2基−組の吸着剤を充填した@1
塔7の一方を通り、吸着塔7を通過する過程で空気中に
含まれる残りの水分および炭酸ガス等の不純物が吸着除
去される。After the air cooled to 5°C has lost moisture, it is filled with two sets of adsorbents from the conduit 5 through the switching valve 6 at the air inlet.
The air passes through one side of the tower 7, and in the process of passing through the adsorption tower 7, impurities such as remaining moisture and carbon dioxide contained in the air are adsorbed and removed.
吸着塔7で完全ドライガスとなった空気は空気出口切替
弁8の一方から導管9を通って空気深冷分離器lOに導
かれ、分離器lO内で冷却され酸素−窒素の沸点差を利
用した精留分離により製品ガスと廃窒素ガスに分離され
る。分離された製品酸素、窒素は熱交換後常雇となって
導管11.L!を通って取出される。残りの魔M票ガス
は熱交換後導管13より、再生加熱器14に導かれる。The air that has become a completely dry gas in the adsorption tower 7 is guided from one side of the air outlet switching valve 8 through the conduit 9 to the air cryogenic separator IO, where it is cooled and uses the boiling point difference between oxygen and nitrogen. It is separated into product gas and waste nitrogen gas through rectification separation. The separated products oxygen and nitrogen are transferred to conduit 11 after heat exchange. L! is extracted through the The remaining magic gas is led to the regeneration heater 14 through the conduit 13 after heat exchange.
再生加熱器には通常電気ヒータが採用されており、再生
加熱器14で杓150℃まで昇温された廃窒素ガスは窒
素切替弁巧により、空気の不純物を一定時間吸看したも
う一方の吸着塔7を通り、吸着剤の再生ガスとして使用
される。吸着1;N7で不純物を脱着した再生ガスは出
O窒素切替弁16の一方から導管18を通って大気に放
出される。The regeneration heater usually uses an electric heater, and the waste nitrogen gas heated to 150°C in the regeneration heater 14 is transferred to the other adsorption tank, which absorbs air impurities for a certain period of time, using a nitrogen switching valve. It passes through column 7 and is used as regeneration gas for the adsorbent. Adsorption 1: The regeneration gas from which impurities have been desorbed with N7 is discharged to the atmosphere from one side of the output nitrogen switching valve 16 through the conduit 18.
吸着塔7で空気中の不純物を除去するためには吸S塔7
に入る空気中の水分が規定量以下でなければならない。In order to remove impurities from the air in the adsorption tower 7, the S absorption tower 7 is used.
The moisture content of the entering air must be below the specified amount.
このため空気冷却器4の空気出口温度を常に目標温度以
下にし飽和水分量を最小に押えることが必要となる。For this reason, it is necessary to keep the air outlet temperature of the air cooler 4 always below the target temperature and to suppress the saturated moisture content to a minimum.
空気冷却器4で空気を冷却するためのフロンは受液器口
内に保有されており、冷媒となる70ノ液は杓40℃の
飽和液として導管Iからフロン冷却n4で戻り蒸発70
ノガスで過冷却さnフロン供給膨張弁nで約O℃の飽和
圧力まで減圧され空気冷却!′!4の管内に導かれる。Freon for cooling the air in the air cooler 4 is held in the receiver port, and the refrigerant 70 is returned as a saturated liquid at 40°C from the conduit I through the Freon cooling n4 and evaporated.
It is supercooled with no gas and depressurized to the saturation pressure of about 0°C by the Freon supply expansion valve n and air cooled! ′! 4 is guided into the tube.
管内のフロン液は管外の空気と熱交換し、空気を冷却す
るとともに自身は蒸発気化し空気冷却器4の70ノ出口
管スを通ってフロン冷却n4に導かれ、加熱蒸気となっ
て導管スよりフロン圧縮*25で規定圧力まで圧縮され
る。圧縮された70ノガスは導管5より油分離器nに導
かれフロンガス中の油分は分離され、分離された油は導
管圏より油ポツプ31で昇圧され油冷却器βで水で冷却
されフロノ圧縮凌5の瀾滑油として循環使用される。一
方油分離器nで油分を除去したフロンガスは導管囚より
凝縮器四に導かれ、水で冷却されフロン液となって元の
受液器Wに戻される。空気冷却器4の空気出口温度は従
来は、フロン出01FZ3に設置された温度調節計(で
フロン供給膨張弁nを制御していた。一方フロンの蒸発
温度は導管為に取付けられた圧力#節計菖で圧力調節弁
あを介して蒸発飽和温度を一定に制御する方式がとられ
ている。The fluorocarbon liquid inside the tube exchanges heat with the air outside the tube, cools the air, and evaporates itself into a vaporized state.The fluorocarbon liquid in the tube is led to the fluorocarbon cooling n4 through the 70 outlet pipe of the air cooler 4, and is turned into heated steam and sent to the conduit. The gas is compressed to the specified pressure using freon compression*25. The compressed 70 NO gas is led to the oil separator n through the conduit 5, where the oil in the fluorocarbon gas is separated, and the separated oil is pressurized from the conduit area in the oil pot 31, cooled with water in the oil cooler β, and passed through the fluorocarbon compressor. It is used as a lubricating oil in No. 5. On the other hand, the fluorocarbon gas from which oil has been removed in the oil separator n is guided through a conduit to the condenser 4, cooled with water, turned into a fluorocarbon liquid, and returned to the original liquid receiver W. Conventionally, the air outlet temperature of the air cooler 4 was controlled by a temperature controller installed at the fluorocarbon outlet 01FZ3, and the fluorocarbon supply expansion valve n.On the other hand, the evaporation temperature of the fluorocarbon was controlled by the pressure node installed for the conduit. A system is used in which the evaporation saturation temperature is controlled at a constant level via a pressure control valve in the meter.
従来方式ではフロン出口管るに設置された温度調節計お
でフロン供給膨張弁nを制御しているだけであったので
、油分IIIFg27でフロンガス中に微量含まれる油
分は、フロン液の中に混入され、空気冷却器4内で温度
調節計羽の温度設定値によっては油の分質収支が乱れ、
空気冷却器4内で油濃縮が起ることがしばしばあり、そ
の都度設定値を1iL更するなどの手動操作を必要とし
、最悪の場合は空気出口温度を上げ過ぎて吸II塔7の
性能にも影響するようなことがあった。In the conventional system, the temperature controller installed in the Freon outlet pipe only controlled the Freon supply expansion valve n, so the trace amount of oil contained in the Freon gas due to oil content IIIFg27 was mixed into the Freon liquid. Depending on the temperature setting value of the temperature controller vane in the air cooler 4, the oil quality balance may be disturbed.
Oil condensation often occurs in the air cooler 4, requiring manual operations such as changing the set value by 1 iL each time. There were also some influences.
本発明では、かかる弊害を無くするため、空気冷却器4
の空気出口管に温度調節計Iを設け、更にフロン出口管
Zに取付けられている温度調節計おの設定値に下限温度
の設定値として蒸発飽和温度以上、上限温度として蒸発
飽和温度+10℃の制限値を設けた。これにより通常油
の濃縮が無い場合は伝熱性能は阻害されないので空気出
口温度は目標の5℃以下になっており、温度調節計Iで
フロン出口温度調節計(の設定値は飽和温度+lθ℃ま
で、空気出口Ii度の変斧に応じて上昇しフロン圧縮機
5に完全な加熱蒸気として吸入され、圧縮機として最良
の条件で運転される。In the present invention, in order to eliminate such adverse effects, the air cooler 4
A temperature controller I is installed on the air outlet pipe of the fluorocarbon outlet pipe. A limit value was set. As a result, if there is no condensation of normal oil, the heat transfer performance is not inhibited, so the air outlet temperature is below the target of 5℃, and the setting value of the Freon outlet temperature controller (of the temperature controller I) is the saturation temperature + lθ℃. Until then, the air temperature rises in accordance with the variable temperature of the air outlet Ii, and the freon compressor 5 is sucked into the completely heated vapor, and the compressor is operated under the best conditions.
分離装置の負荷変動により、冷媒の負荷が変動し空気冷
却器4内に油濃縮が起ると、空気出口温度は目標の5℃
以上と上昇する。この場合は空気出口温度調節計菫より
フロン出口温度調節計(の設定値を自動的に低下させる
ので、フロン出口温度低下により出口管にミスト同伴を
ともなう条件ができ、空気冷却器4管内の油分はフロン
液ミスト中に含まれ同伴され、再び正常に戻される。When the load of the refrigerant fluctuates due to the load fluctuation of the separation device and oil condensation occurs in the air cooler 4, the air outlet temperature decreases to the target of 5°C.
It increases as above. In this case, since the set value of the freon outlet temperature controller is automatically lowered by the air outlet temperature controller, the drop in the freon outlet temperature creates a condition in which mist is entrained in the outlet pipe, and the oil in the air cooler's four pipes increases. is included in the Freon solution mist and is entrained, returning it to normal.
フロン熱交換器は、空気冷却器4で同伴される少量のミ
ストを加熱蒸発させる目的で設置されたものでフロン圧
縮機への液バツク防止となっている。The fluorocarbon heat exchanger is installed for the purpose of heating and evaporating a small amount of mist entrained by the air cooler 4, and prevents the liquid from backing up to the fluorocarbon compressor.
本実施例によれば、これまで完全自動化ができなかった
空気冷却器でフロンで直接空気を冷却するシステムの温
度制御が可能となり、負荷変動等があっても常に安定運
転ができる。According to this embodiment, it is now possible to control the temperature of a system that directly cools air with Freon using an air cooler, which has not been possible to fully automate up to now, and allows stable operation at all times even when there are load fluctuations.
本実施例では冷媒にフロンを使った場合についまた、フ
ロン出口温度の制限範囲4こついても空気冷却器の設計
条件によって最適範囲にすることが必要である。In this embodiment, when Freon is used as the refrigerant, it is necessary to set the limit range 4 of the Freon outlet temperature to an optimum range depending on the design conditions of the air cooler.
本発明によれば、油濃縮の影響を空気冷却器の空気出口
温度で検出し、フロンの蒸発飽和2i度以上で上限を設
けた70ノ出口温度調節計の設定値を自動的にセットす
ることにより、空気冷却器内の油濃縮のバラ7スをとる
ことができるので、空気冷却器の空気出口温度の安定化
と自#1制御とが可能となる。According to the present invention, the influence of oil concentration is detected by the air outlet temperature of the air cooler, and the setting value of the 70 outlet temperature controller is automatically set with an upper limit set at 2i degrees or more at the evaporation saturation of Freon. This makes it possible to balance the oil concentration within the air cooler, making it possible to stabilize the air outlet temperature of the air cooler and perform self-control.
第1図は本発明の一実a例を示す系統図である。
l・・・・・・空気圧縮機、4・・・・・・空気冷却器
、7 ・・・・・・吸着塔、lO・・・・・・空気分鴫
器、14・・・・・・再生加熱器、19・・・・・・受
液器、n・・・・・フロン供給膨張弁、δ・・曲フロン
圧縮黴、n・・・・・・油分離器、お・・・・・・フロ
ノ出ロfiff−#劾計、I・・・・・・空気出口−\
代理人 弁理士 小 川 勝 男゛−にン
荊炒りFIG. 1 is a system diagram showing an example of the present invention. l... Air compressor, 4... Air cooler, 7... Adsorption tower, lO... Air fractionator, 14...・Regeneration heater, 19...Liquid receiver, n...Freon supply expansion valve, δ...bent fluorocarbon compressed mold, n...oil separator,...・・・Frono exit fiff-#gain measure, I...Air outlet-\ Agent Patent attorney Masaru Ogawa
Claims (1)
た吸着塔で除去するために吸着塔の前段にフロン等の冷
凍機の冷媒で原料空気を直接冷却する空気冷却器を設け
た空気分離装置空気冷却器の空気出口温度制御方法にお
いて、 空気冷却器空気出口に温度調節計を設け、冷媒液供給膨
張弁を冷媒ガス出口配管に設けた温度調節計で自動制御
するようにし、この冷媒ガス出口温度調節計の設定範囲
に冷媒蒸発圧力の飽和温度以上の制限値を設け、この制
限値以内で前記空気冷却器出口の温度調節計で自動的に
冷媒ガス出口温度調節計の設定値をセットすることを特
徴とする空気分離装置空気冷却器の空気出口温度制御方
法。[Claims] 1. Air cooling in which the raw air is directly cooled with a refrigerant from a refrigerator such as chlorofluorocarbons before the adsorption tower in order to remove moisture and carbon dioxide from the raw air using an adsorption tower filled with an adsorbent. In the air outlet temperature control method of an air separation device air cooler equipped with a device, a temperature controller is provided at the air outlet of the air cooler, and a refrigerant liquid supply expansion valve is automatically controlled by the temperature controller provided in the refrigerant gas outlet piping. A limit value above the saturation temperature of the refrigerant evaporation pressure is set in the setting range of this refrigerant gas outlet temperature controller, and the refrigerant gas outlet temperature is automatically adjusted within this limit value by the temperature controller at the air cooler outlet. A method for controlling an air outlet temperature of an air cooler of an air separation device, characterized by setting a set value of a meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2276328A JPH04155175A (en) | 1990-10-17 | 1990-10-17 | Air separation equipment air cooler air outlet temperature control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2276328A JPH04155175A (en) | 1990-10-17 | 1990-10-17 | Air separation equipment air cooler air outlet temperature control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04155175A true JPH04155175A (en) | 1992-05-28 |
Family
ID=17567918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2276328A Pending JPH04155175A (en) | 1990-10-17 | 1990-10-17 | Air separation equipment air cooler air outlet temperature control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04155175A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009208001A (en) * | 2008-03-04 | 2009-09-17 | Hitachi Plant Technologies Ltd | Dehumidifier, control method of dehumidifier, and air conditioning system |
-
1990
- 1990-10-17 JP JP2276328A patent/JPH04155175A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009208001A (en) * | 2008-03-04 | 2009-09-17 | Hitachi Plant Technologies Ltd | Dehumidifier, control method of dehumidifier, and air conditioning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5630913A (en) | Water distillation system | |
US20230400234A1 (en) | Water treatment system of coupling heat pump with multi-effect evaporation and operating method thereof | |
US3316736A (en) | Absorption refrigeration systems | |
JPS61280357A (en) | Method and device for operating heat pump or refrigerator | |
US5423189A (en) | Control system for absorption heat transfer plants | |
JPH04155175A (en) | Air separation equipment air cooler air outlet temperature control method | |
JP2000055503A (en) | Absorption refrigeration equipment | |
JP3495267B2 (en) | Refrigeration equipment for gas liquefaction and re-vaporization | |
CN208794818U (en) | Energy-efficient roller temperature control system | |
JP3676531B2 (en) | Nitrogen gas production method | |
US5315839A (en) | Control system for absorption heat transfer plants | |
JPS5857668B2 (en) | Absorption liquid crystal prevention device for absorption refrigerators | |
GB687106A (en) | Improvements in and relating to the concentration by evaporation of heat sensitive liquors | |
JP2002195681A (en) | Absorption refrigeration equipment | |
JPS5838936Y2 (en) | Water-lithium salt absorption refrigerator | |
JPH0275865A (en) | Controlling method for absorption refrigerator | |
JPS58160783A (en) | Controller for absorption refrigerator | |
JP2654832B2 (en) | Absorption refrigerator | |
KR20030081153A (en) | Absorption refrigerator | |
JPH06147751A (en) | Air liquefying and separating device | |
JP2000199655A (en) | Ammonia absorption refrigerator and control method of the evaporator | |
EP3321604A1 (en) | Refrigeration system and related method of revamping | |
Wang | Absorption Systems | |
JPS6131865A (en) | Absorption type refrigerator | |
JPH0618118A (en) | Absorption type refrigerating machine |