[go: up one dir, main page]

JPH04154697A - Mn-zn ferrite single crystal and its production - Google Patents

Mn-zn ferrite single crystal and its production

Info

Publication number
JPH04154697A
JPH04154697A JP27552990A JP27552990A JPH04154697A JP H04154697 A JPH04154697 A JP H04154697A JP 27552990 A JP27552990 A JP 27552990A JP 27552990 A JP27552990 A JP 27552990A JP H04154697 A JPH04154697 A JP H04154697A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
platinum
zno
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27552990A
Other languages
Japanese (ja)
Other versions
JP2866466B2 (en
Inventor
Sukehito Yoneda
米田 祐仁
Sakae Shibata
栄 柴田
Eiji Nakamura
英二 中村
Eiichiro Iwano
英一郎 岩野
Eiji Kamisaka
栄志 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP27552990A priority Critical patent/JP2866466B2/en
Publication of JPH04154697A publication Critical patent/JPH04154697A/en
Application granted granted Critical
Publication of JP2866466B2 publication Critical patent/JP2866466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the subject single crystal having a uniform composition, free from remarkable contamination of platinum and excellent in crystallinity at a low cost by thoroughly fusing the raw material and subsequently allowing the fused raw material to stand for one hour or longer in growing the single crystal. using a crucible made of Pt or Pt-Rh alloy. CONSTITUTION:A crucible 1 made of Pt or Pt-Rh alloy is set to a supporting unit 7 linked to an elevating unit 10 and placed in an electric furnace 5. A prescribed amount of raw material powder is then charged to the crucible 1, heated to form a fused liquid 4 and allowed to stand in that state for one hour or longer. The crucible 1 is then slowly lowered so that an Mn-Zn ferrite single crystal may be produced from the bottom of the crucible 1 taking a long time. A sintered ZnO rod 2 is suspended from a sintered rod-elevating unit 3 arranged over the electric furnace 5 to a position right above the surface of the fused liquid 4 and ZnO is sublimed to prevent evaporation of ZnO from the fused liquid 4. Composition variation of the single crystal can be prevented thereby, thus obtaining the objective Mn-Zn ferrite single crystal having <=500ppm contamination of Pt and/or Rh.

Description

【発明の詳細な説明】 (産業上の利用分野) ブリッジマン法によるMn−Znフェライト単結晶の育
成方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an improvement in a method for growing Mn--Zn ferrite single crystals using the Bridgman method.

(従来の技術) 従来、Mn−Znフェライト単結晶の製造には、白金ま
たは白金にロジウムなどを添加した金属ルツボを用いた
ブリッジマン法が用いられてきた。このブリッジマン法
を用いた単結晶育成法は、大型の単結晶が比較的容易に
得られるなどの利点がある°一方、白金または白金ロジ
ウムなどのルツボ成分の金属粒子が単結晶中に混入析出
し、得られた単結晶を磁気ヘッドなどに微細加工する際
金属粒子が剥離し寸法精度を悪化する、Mn−Znフェ
ライト融液からのZnOの昇華により、単結晶の育成方
向に沿って組成変動が発生し、得られた単結晶の内使用
可能な部分が極く一部となってしまうなどの問題点があ
った。
(Prior Art) Conventionally, the Bridgman method using platinum or a metal crucible in which rhodium or the like is added to platinum has been used to manufacture Mn-Zn ferrite single crystals. Single crystal growth using the Bridgman method has the advantage that large single crystals can be obtained relatively easily.On the other hand, crucible component metal particles such as platinum or platinum-rhodium may be mixed into the single crystal and precipitated. However, when the obtained single crystal is microfabricated into magnetic heads, etc., the metal particles peel off and the dimensional accuracy deteriorates. Due to the sublimation of ZnO from the Mn-Zn ferrite melt, the composition changes along the growth direction of the single crystal. There was a problem that only a small portion of the single crystal obtained was usable.

(発明が解決しようとする課題) これらの問題に対し、これまでは主に組成が均一なMn
−Znフェライトを得るための研究がなされてきた。即
ち、組成変動対策については、原料を連続的にルツボ内
に供給しながら単結晶を育成するという方法が提案、研
究されているが、このような方法では組成が均一な単結
晶は得られ歪ものの、白金混入が無くならないという問
題蕉□があり、また育成中に原料を融液中に供給するた
め融液に乱れが生じ単結晶の結晶性が組成変動対策を行
わない従来のものと比較して悪(なるという問題点もあ
った。また、原料を供給するための機構や供給する原料
も原料を棒状に成形し焼結する必要があり、そのため本
来単結晶インゴット−本当りの磁気ヘッド等に使用可能
な部分を増やしてコストダウンをはかる目的で行った組
成変動対策が、その組成変動対策に必要なコストが決し
て低いものではないため、組成変動対策を行っても大幅
なコストダウンにならなかった。
(Problems to be solved by the invention) To solve these problems, hitherto the main focus has been on Mn with a uniform composition.
- Research has been conducted to obtain Zn ferrite. In other words, as a countermeasure against compositional fluctuations, a method has been proposed and researched in which single crystals are grown while continuously supplying raw materials into a crucible. However, there is a problem that platinum contamination is not eliminated, and since the raw material is supplied into the melt during growth, the melt is disturbed and the crystallinity of the single crystal is lower than that of the conventional method where no measures are taken to change the composition. There was also the problem that the mechanism for supplying the raw materials and the raw materials to be supplied required the raw materials to be formed into a rod shape and sintered. Countermeasures against compositional fluctuations were implemented with the aim of reducing costs by increasing the number of parts that can be used, etc., but since the cost required to counteract compositional fluctuations is by no means low, even if the countermeasures against compositional fluctuations are implemented, the costs will not be significantly reduced. did not become.

(課題を解決するための手段) 本発明者等は、上記欠点を解決するため、白金の侵入経
路、組成変動の原因を究明し、その対策を研究して本発
明に到達したもので、これによれば低コストで組成変動
を抑え且つ白金混入を低減した、結晶性の良好なMn−
Znフェライトを提供することかできるもので、本発明
の要旨は、白金または白金−ロジウム合金製ルツボを用
いて育成されたMn−Znフェライト単結晶において、
白金および/またはロジウムの混入量が500ppm以
下であることを特徴とするMn−Znフェライト単結晶
および、ptまたはPt−Rh合金製ルツボを用いて原
料全体を完全に溶融し、さらにその状態を1時間以上保
持した後単結晶育成を行うことを特徴とするMn−Zn
フェライト単結晶の製造方法ならびにMn−Znフェラ
イト単結晶育成中に電気炉内でルツボ内融液とは別にZ
nOを昇華させながら単結晶を育成することを特徴とす
るMn−Znフェライト単結晶の製造方法にある。
(Means for Solving the Problems) In order to solve the above-mentioned drawbacks, the present inventors investigated the route of platinum penetration and the causes of compositional fluctuations, researched countermeasures therefor, and arrived at the present invention. According to Mn-
It is possible to provide Zn ferrite, and the gist of the present invention is to provide a Mn-Zn ferrite single crystal grown using a crucible made of platinum or platinum-rhodium alloy,
Using an Mn-Zn ferrite single crystal characterized by a platinum and/or rhodium content of 500 ppm or less and a crucible made of pt or Pt-Rh alloy, the entire raw material is completely melted, and the state is further reduced to 1. Mn-Zn characterized in that single crystal growth is performed after holding for a period of time or more.
During the manufacturing method of ferrite single crystal and the growth of Mn-Zn ferrite single crystal, Z is separated from the melt in the crucible in an electric furnace.
A method for producing an Mn--Zn ferrite single crystal, characterized by growing a single crystal while sublimating nO.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者等は、先ず白金(以下、白金とは白金(Pt)
または白金−ロジウム合金(Pt−Rh)の両者を指す
、)混入の機構について研究を行った。即ち、白金混入
に関しては、融液中の白金はその大部分がルツボの底に
沈み、沈まないものは逆に融液の液面近くに集まって(
るという挙動を示すことが判明した。そこでMn−Zn
フェライトを育成する前に原料全体を完全に溶融し、そ
の状態で充分時間を置くことにより、従来単結晶中に混
入していた白金を、単結晶インゴットの最下部と最上部
に集め、単結晶中の白金混入量を500ppm以下に激
減させることに成功した。ここで原料を完全に溶融して
から単結晶育成を始めるまで゛に白金を集める時間は1
時間以上が良く、それ以下では白金分離が不充分であり
本発明の効果がない。
The present inventors first discovered platinum (hereinafter platinum refers to platinum (Pt)).
We conducted research on the mechanism of contamination (which refers to both platinum and rhodium alloys (Pt-Rh)). In other words, regarding platinum contamination, most of the platinum in the melt sinks to the bottom of the crucible, and what does not sink conversely collects near the surface of the melt (
It was found that the behavior of Therefore, Mn-Zn
By completely melting the entire raw material before growing ferrite and leaving it in that state for a sufficient period of time, the platinum that was conventionally mixed in the single crystal is collected at the bottom and top of the single crystal ingot, and the single crystal is We succeeded in drastically reducing the amount of platinum mixed in to 500 ppm or less. The time required to collect platinum from the time the raw materials are completely melted until the single crystal growth begins is 1.
It is better if the time is longer than that, and if it is less than that, the platinum separation will be insufficient and the present invention will not be effective.

一方、組成変動対策については、従来研究し研究されて
いた育成中に原料を融液中に供給する方法では、固体ま
たは液体の形で原料を供給することになり、それが落下
または滴下された際に液面を乱し、先に述べたような融
液の液面に集まった白金を散らし、その散らされた白金
が単結晶中に混入析出するため、白金混入を低減させら
れないことが判明した。そのため、液面を乱さないよう
な方法が必要になる。一般に、Mn−Znフェライト単
結晶の組成変動の主な原因は融液からのZnOの昇華に
よる減少であり、そのため単結晶が成長するに従い単結
晶中のZnOも減少してしまう。本発明は、この現象に
着目したものであり、単結晶育成を行っている雰囲気中
に融液とは別にZnOを蒸発、昇華させるなどの方法に
より ZnOの蒸気を発生させ、融液面付近のZnOの
蒸気圧を高くすることにより融液からのZnOの昇華を
抑制することで組成変動対策とするものである。この方
法]こよれば、融液に固体または液体の原料を供給する
必要が無いため、融液面が乱されることがなく、融液面
に近(に集まった白金を散らすことが無いため白金混入
を少な(することができる。また、融液な乱すことがな
いため、結晶性の良好な単結晶を得ることができる。
On the other hand, with regard to measures against compositional fluctuations, the method of supplying raw materials into the melt during growth, which has been studied previously, involves supplying the raw materials in solid or liquid form, and the raw materials are not allowed to fall or drip. During this process, the liquid level is disturbed and the platinum that has collected on the melt surface is scattered as mentioned above, and the scattered platinum gets mixed into the single crystal and precipitates, so it is not possible to reduce platinum contamination. found. Therefore, a method that does not disturb the liquid level is required. Generally, the main cause of compositional fluctuations in Mn--Zn ferrite single crystals is a decrease in ZnO from the melt due to sublimation, and therefore, as the single crystal grows, ZnO in the single crystal also decreases. The present invention focuses on this phenomenon, and generates ZnO vapor by evaporating and sublimating ZnO separately from the melt in the atmosphere where the single crystal is grown, and generates ZnO vapor near the melt surface. By increasing the vapor pressure of ZnO, sublimation of ZnO from the melt is suppressed, thereby taking measures against compositional fluctuations. According to this method, there is no need to supply solid or liquid raw materials to the melt, so the melt surface is not disturbed, and the platinum that has gathered near the melt surface is not scattered. It is possible to reduce platinum contamination. Also, since the melt is not disturbed, a single crystal with good crystallinity can be obtained.

本発明に必要とされるZnOの蒸気発生装置は、次のよ
うに種々の実施態様があり、単結晶育成装置の規模、加
熱方式、温度制御方式等を考慮して適宜選択すればよい
。以下、図面により例示する。
The ZnO steam generator required for the present invention has various embodiments as described below, and may be appropriately selected in consideration of the scale of the single crystal growth apparatus, heating method, temperature control method, etc. This will be illustrated below with reference to the drawings.

1)第1図は、発明を尤も効果的に実施し得る装置で、
電気炉5(ヒーター6)内に白金ルツボ1をルツボ昇降
装置lOと連動する支持台7に載せ、ルツボ内に所定量
の原料粉末を仕込み、昇温して融液4を作り、1時間以
上保持後、単結晶育成に入る。単結晶育成条件は5 m
m/Hrの速度でルツボを降下させ、50時間かけてル
ツボ底部より単結晶を生成させる。一方単結晶育成に入
った時点で電気炉の上部に設置した焼結棒昇降装置3か
らZnO焼結棒2を融液液面直上に吊下げ、ZnOを昇
華させ、融液からのZnOの蒸発を防止し、単結晶の組
成変動を抑制する。
1) Figure 1 shows an apparatus that can carry out the invention most effectively.
Platinum crucible 1 is placed in electric furnace 5 (heater 6) on support stand 7 interlocked with crucible lifting device 1O, a predetermined amount of raw material powder is charged into the crucible, and the temperature is raised to produce melt 4 for over 1 hour. After holding, single crystal growth begins. Single crystal growth conditions are 5 m
The crucible is lowered at a speed of m/Hr, and a single crystal is produced from the bottom of the crucible over 50 hours. On the other hand, when single crystal growth begins, the ZnO sintered rod 2 is suspended directly above the melt surface from the sintered rod lifting device 3 installed at the top of the electric furnace, and the ZnO is sublimated and evaporated from the melt. and suppress compositional fluctuations in single crystals.

第2図は、従来の尤も一般的なブリッジマン法単結晶育
成装置である(以下、記号は第1図に同じ)。
FIG. 2 shows a conventional and very common Bridgman method single crystal growth apparatus (hereinafter, the symbols are the same as in FIG. 1).

第3図は従来の組成変動対策法の一種で、最初単結晶全
量の約lO% で融液4を作り、Mn−Znフェライト
単結晶と同一組成の焼結棒8をルツボ内に吊下げて、焼
結棒の先端から融液な滴下させながら単結晶育成を行な
う方法である。
Fig. 3 shows a type of conventional composition variation countermeasure method, in which a melt 4 is first prepared at about 10% of the total amount of the single crystal, and a sintered rod 8 having the same composition as the Mn-Zn ferrite single crystal is suspended in a crucible. This is a method in which single crystals are grown by dripping melt from the tip of a sintered rod.

2)第1図の融液の入ったルツボとは別にルツボの上部
に白金線で白金製小容器21を吊し、その中にZnOの
粉末を入れてお((第4図)。
2) Separately from the crucible containing the melt shown in Fig. 1, a small platinum container 21 is hung above the crucible with a platinum wire, and ZnO powder is placed in it ((Fig. 4).

3)ZnOの焼結円盤22を作りルツボの上縁に白金線
で括り付ける(第5図)。
3) Make a ZnO sintered disk 22 and attach it to the upper edge of the crucible with platinum wire (Fig. 5).

4)ルツボの蓋の内側にZnO焼結円盤を白金線で括り
付け、M9をする(第6図)。
4) Attach the ZnO sintered disk to the inside of the crucible lid with platinum wire and make M9 (Figure 6).

5)白金ルツボ吊下げ方式ではZnO焼結棒2を吊下げ
フックに引っ掛けておく(第7図)。
5) In the platinum crucible hanging method, the ZnO sintered rod 2 is hooked on a hanging hook (FIG. 7).

等°の簡単な方法で良い。従って、これらの方法によれ
ば本発明による単結晶育成のコストアップは殆どなく、
組成が均一になることから単結晶インゴット−本当りの
歩留まり向上によるコストダウンと白金混入の減少、優
れた結晶性等を綜合すると大幅なコストダウンと品質向
上が可能となった。
A simple method of equal degrees is fine. Therefore, according to these methods, there is almost no increase in the cost of growing single crystals according to the present invention.
Since the composition is uniform, it is possible to reduce costs by improving the yield of single-crystal ingots, reduce platinum contamination, and have excellent crystallinity, making it possible to significantly reduce costs and improve quality.

本発明の適用範囲は、Mn−Znフェライト単結晶とし
てMn0−ZnO−Fe20gもしくはこれにSn、 
In、 Ca、A1等の酸化物を添加したフェライト単
結晶が挙げられる。
The scope of application of the present invention is Mn0-ZnO-Fe20g as an Mn-Zn ferrite single crystal, or Sn,
Examples include ferrite single crystals to which oxides such as In, Ca, and A1 are added.

以下、本発明の具体的な実施態様を実施例を挙げて説明
するが、本発明はこれらに限定されるものではない。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples, but the present invention is not limited thereto.

(実施例1) Mn−Znフェライト単結晶を本発明のブリッジ−マン
改良法により育成した。
(Example 1) A Mn-Zn ferrite single crystal was grown by the improved Bridgman method of the present invention.

白金製ルツボ(70mmφX 250mm1(全長))
に原料として粉末のMn0595g、Zn0455g、
Fezes 2,450gを仕込み、電気炉で1.70
0℃まで昇温し組成比MnO/ZnO/Fe2O,= 
28.6/19.1152.3モル%のMn−Znフェ
ライト融液とし、完全に溶融してから1時間保持した後
、単結晶育成に入った。単結晶育成条件は5mm/Hr
の速度でルツボを降下させ、50時間かけてルツボ底部
より単結晶とした。この開割に用意した直径1 am、
長さ5cmのZnO焼結棒を電気炉の上部に設置した焼
結棒昇降機から白金製の耐熱ワイヤーでルツボ融液面の
1 cm上部に吊し、ZnOを昇華させ、融液からのZ
nOの蒸発を抑制した。このZnOの補給速度(= Z
nO昇華速度)は焼結棒昇降機により電気炉内温度分布
を考慮した適正な位置にセットして制御した。得られた
Mn−Znフェライト単結晶組成のバラつきはMnO/
ZnO/Fe20x= 0.510.510.6モル%
であった。単結晶の各成分(モル%)および白金粒混入
数(単結晶直径方向断面を観察し平方センチ当たりの数
(n)で表わす)の単結晶の長さ方向の分析値を第8図
に示した。この図のX軸は左から右にルツボ底部から上
部に向けての距離(mm)を表わしている。尚、育成終
了後のインゴットには内部に白金の析出は全く見られず
、上面に針状に結晶化した大量の白金析出が見られた。
Platinum crucible (70mmφX 250mm1 (total length))
As raw materials, powdered Mn0595g, Zn0455g,
Prepare 2,450g of Fezes and heat it to 1.70g in an electric furnace.
The temperature was raised to 0°C and the composition ratio MnO/ZnO/Fe2O,=
A 28.6/19.1152.3 mol % Mn-Zn ferrite melt was prepared, and after being completely melted and held for 1 hour, single crystal growth was started. Single crystal growth conditions are 5mm/Hr
The crucible was lowered at a speed of 50 hours to form a single crystal from the bottom of the crucible. A diameter of 1 am prepared for this opening,
A ZnO sintered rod with a length of 5 cm is suspended from a sintered rod elevator installed at the top of the electric furnace 1 cm above the melt surface of the crucible using a heat-resistant platinum wire to sublimate ZnO and remove Z from the melt.
Evaporation of nO was suppressed. This ZnO replenishment rate (= Z
The nO sublimation rate) was controlled by setting a sintered rod elevator at an appropriate position taking into account the temperature distribution in the electric furnace. The variation in the obtained Mn-Zn ferrite single crystal composition is due to MnO/
ZnO/Fe20x = 0.510.510.6 mol%
Met. Figure 8 shows the analysis values of each component (mol%) of the single crystal and the number of platinum particles mixed in (observed in the diameter direction cross section of the single crystal and expressed as number per square centimeter (n)) in the longitudinal direction of the single crystal. Ta. The X axis in this figure represents the distance (mm) from the bottom of the crucible to the top from left to right. In addition, in the ingot after the growth was completed, no platinum precipitation was observed inside the ingot, but a large amount of platinum crystallized in the form of needles was observed on the upper surface.

(比較例1.2) 比較例1は、従来通り白金ルツボ中にMn−Znフェラ
イトの原料粉末を入れて融解し、本発明の組成変動対策
(ZnOの昇華)を行わずに育成した以外は実施例1と
同様の条件で育成した。 比較例2は、これまでに提案
されている組成変動対策に倣い当初少量の原料Mn−Z
nフェライト粉末(全単結晶の10重量%)を白金ルツ
ボに入れて溶解し、その状態で1時間保持した後、さら
に、実施例1と同一の装装置を用いてMn−Znフェラ
イトの棒状焼結体を徐々に炉中に入れ棒の下部より溶融
し、ルツボ内に液滴を供給しなからルツボ上部に向か−
で単結晶を育成した。比較例1に用いた装置を32図に
、比較例3に用いた装置を第3図に示す。
(Comparative Example 1.2) In Comparative Example 1, raw material powder of Mn-Zn ferrite was placed in a platinum crucible and melted as usual, except that it was grown without taking the measures against compositional fluctuation (sublimation of ZnO) of the present invention. It was grown under the same conditions as in Example 1. In Comparative Example 2, a small amount of the raw material Mn-Z was initially
After melting n-ferrite powder (10% by weight of the total single crystal) in a platinum crucible and holding it in that state for 1 hour, Mn-Zn ferrite rods were sintered using the same mounting equipment as in Example 1. Gradually put the solid into the furnace and melt it from the bottom of the rod, supply droplets into the crucible and then move towards the top of the crucible.
Single crystals were grown. The apparatus used in Comparative Example 1 is shown in FIG. 32, and the apparatus used in Comparative Example 3 is shown in FIG.

各側で得られた単結晶の成長方向に沿った組成ヌ動及び
白金混入数を第8図に併記した。 第8Bより明らかな
ように、比較例1の組成変動対策蝶行わないものは、単
結晶の成長方向に沿ってZnと Feze3が減少しM
nOが増加して組成変動が発りしていることがわかる。
The compositional deviation along the growth direction of the single crystal obtained on each side and the platinum content are also shown in FIG. As is clear from Section 8B, in Comparative Example 1, in which no measures against compositional fluctuations were taken, Zn and Feze3 decreased along the growth direction of the single crystal.
It can be seen that nO increases and compositional fluctuations occur.

しかし白金混入は少なく、これは融液の液面の乱れが殆
ど無いためであシ。一方、比較例2の単結晶育成に必要
な原料のメ部分を育成中に供給する組成変動対策を行っ
た(のけ単結晶の組成は比較的一定であるが白金混プ数
は多い。実施例1の本発明によるものは比較例2よりも
組成変動が抑えられていることがわがシ。また、白金混
入数はも比較例1よりもルツボ1部と上部に集中する傾
向にあるが非常に少なく、比較例2に較べて格段に少な
い。また、単結晶C結晶性についても、実施例1及び比
較例1は粒界や小角粒界の発生も無く良好であったが、
比較例。
However, platinum contamination is low, and this is because there is almost no turbulence in the melt surface. On the other hand, measures were taken to change the composition of the raw material necessary for growing the single crystal in Comparative Example 2 during growth (the composition of the single crystal is relatively constant, but the number of platinum mixtures is large. It can be seen that compositional fluctuations in Example 1 according to the present invention are suppressed more than in Comparative Example 2.Also, the number of platinum mixed tends to be concentrated in the first part and the upper part of the crucible than in Comparative Example 1, but it is very , which is significantly less than that of Comparative Example 2.Also, regarding single crystal C crystallinity, Example 1 and Comparative Example 1 were good with no grain boundaries or small-angle grain boundaries.
Comparative example.

)  2では粒界は無いものの小角粒界の発生が見られ
閣  、原料供給時間が長いため融液への乱れが生じた
ことがわかる。
) In No. 2, there were no grain boundaries, but the occurrence of small-angle grain boundaries was observed, indicating that the melt was disturbed due to the long raw material supply time.

2  (実施例2) ’J     ZnOの昇華装置として実施例1で示し
たものの他に、 0 1)第1図の融液の入ったルツボとは別にルツボの
°上部に白金線で白金製小容器21を吊し、その中にZ
nOの粉末を入れておく(第4図)。
2 (Example 2) In addition to the ZnO sublimation device shown in Example 1, 1) In addition to the crucible containing the melt shown in Figure 1, a small platinum wire was attached to the top of the crucible. Hang the container 21 and place Z inside it.
Add nO powder (Figure 4).

2)ZnOの焼結円盤22を作りルツボの上縁に白金−
線で括り付ける(第5図)。
2) Make a sintered disk 22 of ZnO and place platinum on the upper edge of the crucible.
Connect them with lines (Figure 5).

3)ルツボの蓋の内側にZnO焼結円盤を白金線で括り
付け、蓋9をする′(第6図)、この方法では1  同
じ組成変動対策を行なうのに必要なZnO重量が、蓋を
載せなかった場合に比べて80%の重量で同′  等の
効果が得られた。
3) Attach a ZnO sintered disk to the inside of the crucible lid with platinum wire and cover it with a lid 9' (Fig. 6). The same effect was obtained with 80% of the weight compared to the case without it.

4)白金ルツボ吊下げ方式ではZnO焼結棒2を吊下げ
フックに引っ掛けておく(第7図)。の4種類の装置で
ZnOを昇華させた以外は実施例1と同□  様の条件
で単結晶の育成を行なった。その結果は組成分析値、白
金数共に実施例1と同様の結果で、組成変動対策が有効
であった。 また、ルツボの上にZnOの焼結体を配置
する場合には、ルツボに蓋をかぶせることにより、少量
の焼結体で組成変動対策が可能となった。
4) In the platinum crucible hanging method, the ZnO sintered rod 2 is hooked on a hanging hook (FIG. 7). Single crystals were grown under the same conditions as in Example 1 except that ZnO was sublimed using four types of equipment. The results were similar to those of Example 1 in terms of compositional analysis value and platinum count, indicating that the measures against compositional fluctuations were effective. Furthermore, when a ZnO sintered body is placed on top of a crucible, by covering the crucible with a lid, compositional fluctuations can be taken care of using a small amount of sintered body.

(発明の効果) 本発明により、組成が均一で白金混入が少なく結晶性の
良好な高品質のMn−Znフェライト単結晶が低コスト
で得られるようになった。さらに、従来組成変動対策が
困難と考えられていた吊り下げ方式のブリッジマン法に
おいても組成変動対策が可能となるため、産業上その利
用価値は極めて大きい。
(Effects of the Invention) According to the present invention, a high-quality Mn--Zn ferrite single crystal with a uniform composition, low platinum contamination, and good crystallinity can be obtained at low cost. Furthermore, it is possible to take measures against compositional fluctuations even in the hanging Bridgman method, which was conventionally thought to be difficult to deal with compositional fluctuations, so it has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図〜第7図は本発明に使用するブリッジマ
ン法単結晶育成装置の一例を示す説明図、第2図および
第3図は従来のブリッジマン法単結晶育成装置の説明図
である。第8図は本発明方法および従来方法でで作製し
たMn−Znフェライト単結晶の成長方向組成分析値を
示すグラフである。 1・・・白金ルツボ、  2・・・ ZnO焼結棒3・
・・焼結棒昇降装置、4・・・融液5・・・電気炉、 
   6・・・ヒーター7・・・ルツボ支持台、8・・
フェライト焼結棒9・・・蓋、     1o・・・ル
ツボ昇降装置21・・・白金製小容器、22・・ Zn
O焼結円盤・J3≧1/
Figures 1 and 4 to 7 are explanatory diagrams showing an example of the Bridgman method single crystal growth apparatus used in the present invention, and Figures 2 and 3 are explanatory diagrams of a conventional Bridgman method single crystal growth apparatus. It is a diagram. FIG. 8 is a graph showing the growth direction composition analysis values of Mn--Zn ferrite single crystals produced by the method of the present invention and the conventional method. 1... Platinum crucible, 2... ZnO sintered rod 3.
... Sintered rod lifting device, 4... Melt 5... Electric furnace,
6... Heater 7... Crucible support stand, 8...
Ferrite sintered rod 9...lid, 1o...crucible lifting device 21...small platinum container, 22...Zn
O sintered disk・J3≧1/

Claims (1)

【特許請求の範囲】 1、白金または白金−ロジウム合金製ルツボを用いて育
成されたMn−Znフェライト単結晶において、白金お
よび/またはロジウムの混入量が500ppm以下であ
ることを特徴とするMn−Znフェライト単結晶。 2、PtまたはPt−Rh合金製ルツボを用いて原料全
体を完全に溶融し、さらにその状態を1時間以上保持し
た後単結晶育成を行うことを特徴とするMn−Znフェ
ライト単結晶の製造方法。 3、Mn−Znフェライト単結晶育成中に電気炉内でル
ツボ内融液とは別にZnOを昇華させながら単結晶を育
成することを特徴とする請求項2に記載のMn−Znフ
ェライト単結晶製造方法。
[Claims] 1. Mn-Zn ferrite single crystal grown using a crucible made of platinum or platinum-rhodium alloy, characterized in that the amount of platinum and/or rhodium mixed is 500 ppm or less Zn ferrite single crystal. 2. A method for producing an Mn-Zn ferrite single crystal, which is characterized by completely melting the entire raw material using a crucible made of Pt or Pt-Rh alloy, and further maintaining that state for one hour or more before growing a single crystal. . 3. Mn-Zn ferrite single crystal production according to claim 2, characterized in that during the Mn-Zn ferrite single crystal growth, the single crystal is grown while sublimating ZnO separately from the melt in the crucible in an electric furnace. Method.
JP27552990A 1990-10-15 1990-10-15 Method for producing Mn-Zn ferrite single crystal Expired - Fee Related JP2866466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27552990A JP2866466B2 (en) 1990-10-15 1990-10-15 Method for producing Mn-Zn ferrite single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27552990A JP2866466B2 (en) 1990-10-15 1990-10-15 Method for producing Mn-Zn ferrite single crystal

Publications (2)

Publication Number Publication Date
JPH04154697A true JPH04154697A (en) 1992-05-27
JP2866466B2 JP2866466B2 (en) 1999-03-08

Family

ID=17556723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27552990A Expired - Fee Related JP2866466B2 (en) 1990-10-15 1990-10-15 Method for producing Mn-Zn ferrite single crystal

Country Status (1)

Country Link
JP (1) JP2866466B2 (en)

Also Published As

Publication number Publication date
JP2866466B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JP5273130B2 (en) Method for producing SiC single crystal
JP2012111670A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JPS6021957B2 (en) Manufacturing method of composite oxide single crystal
US4303465A (en) Method of growing monocrystals of corundum from a melt
JPH04154697A (en) Mn-zn ferrite single crystal and its production
JP4144060B2 (en) Method for growing silicon single crystal
JP4817670B2 (en) Crystal growth equipment
JPH07138094A (en) Method for growing single crystal of zinc oxide
JPH10338594A (en) Apparatus for growing single crystal by pulling up method
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JPS5815499Y2 (en) Structure of crucible support
SU495378A1 (en) Cobalt based alloy
JPH04154698A (en) Production of mn-zn ferrite single crystal
JPS5836997A (en) Producing device for single crystal
CS264935B1 (en) Treatment of growth conditions and growth sapphire modified by kyropouls method
JP2719220B2 (en) Mn-Zn ferrite single crystal growing crucible
JPS6046078B2 (en) Single crystal growth method of solid solution composition of inorganic composite oxide
JPH04321585A (en) Growing single crystal
JPH04149098A (en) Production of mn-zn ferrite single crystal
JPH01167295A (en) Crucible for growing single crystal of compound semiconductor
JP3208603B2 (en) How to make a single crystal
JPS5983994A (en) Preparation of single crystal
JPH042687A (en) Crucible for growth of oxide single crystal
JPS61242981A (en) Production of single crystal
JPH03247586A (en) Device for growing oxide single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees