[go: up one dir, main page]

JPH04154602A - Adiabatic reformer reactor - Google Patents

Adiabatic reformer reactor

Info

Publication number
JPH04154602A
JPH04154602A JP27788390A JP27788390A JPH04154602A JP H04154602 A JPH04154602 A JP H04154602A JP 27788390 A JP27788390 A JP 27788390A JP 27788390 A JP27788390 A JP 27788390A JP H04154602 A JPH04154602 A JP H04154602A
Authority
JP
Japan
Prior art keywords
reactor
reforming
gas
reaction
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27788390A
Other languages
Japanese (ja)
Other versions
JP3094435B2 (en
Inventor
Katsutoshi Murayama
村山 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP02277883A priority Critical patent/JP3094435B2/en
Publication of JPH04154602A publication Critical patent/JPH04154602A/en
Application granted granted Critical
Publication of JP3094435B2 publication Critical patent/JP3094435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To facilitate the enlargement of a device for preparing hydrogen, methanol, etc., by dividing into the first reforming reactor and the second reforming reactor, disposing a floating style heat exchange device in the first reforming reactor and absorbing the thermal expansion of the first reforming reactor with a bellow. CONSTITUTION:A hydrocarbon and water as raw materials are fed into the reactor 3 of the first reforming reactor 1 from a passage 2 and brought into countercurrent contact with a high temperature second reformed gas fed from the outside of the reactor 3 to the first reforming reaction ion order to carryout the first reforming reaction by heat exchange. The first reformed gas discharged from the reactor 3 is collected in the lower floating section 5 and subsequently fed into the combustion chamber 9 of the second reforming reactor through a passage 7 from an outlet 6. A bellow 11 is disposed between a floating head 10 and an outlet nozzle 6 in order to avoid a thermal stress caused by difference of the thermal expansion of the reactor 3. The first reformed gas is mixed with an oxygen-containing gas fed from a passage 12 for the partial oxidation reaction and passed through a second reforming catalyst layer 13. The second reformed gas is fed into the shell side section of the first reforming reactor through a passage 14 from the bottom of the second reactor, subjected to a heat exchange and discharged from a passage 15 as a synthetic gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大型の水素製造装置、メタノール製造装置、或
いはアンモニア製造装置において用いられ、改質ガスを
製造する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for producing reformed gas, which is used in a large-scale hydrogen production device, methanol production device, or ammonia production device.

(従来の技術) 水素は将来のクリーンエネルギーとして、またメタノー
ルは低公害で輸送が容易な安価な燃料として大量に使用
するために、大型装置の開発が要請されている。
(Prior Art) The development of large-scale equipment is required in order to use large quantities of hydrogen as future clean energy and methanol as a low-pollution, easy-to-transport, inexpensive fuel.

このような大型の水素装置やメタノール製造装置等の開
発において最も問題となるのは天然ガスより改質ガスを
製造するガス改質装置の大型化であり、従来の水蒸気改
質装置では改質炉で反応管を外熱する方式であるため、
例えばメタノール製造装置においては1500〜200
0T/Dが大型装置の限界となっている。
The biggest problem in the development of such large-scale hydrogen equipment and methanol production equipment is the increase in the size of the gas reformer that produces reformed gas from natural gas. Since the reaction tube is heated externally,
For example, in methanol production equipment, 1500 to 200
0T/D is the limit for large equipment.

大型装置におけるガス改質装置として、水蒸気改質と部
分酸化を組み合わせる方式が最近注目されている。これ
は天然ガスと水蒸気を混合して一次改質反応を行った後
、酸素を加えて部分酸化と二次改質反応を行い、得られ
た高温のガスを一次改質反応の加熱源とするものである
。この方式は特公昭50−20959号に記載されてい
る如く、単一反応器を用い、他から熱を供給することな
く高圧の改質ガスを得ることができ、従ってこれより高
圧の水素を容易に製造することができる。またメタノー
ルやアンモニアを製造する場合には改質ガスの圧縮機を
用いて昇圧することなしに、いきなり合成反応を行うこ
とができる。更に反応管を外熱する改質炉を用いる必要
が無く、高圧下で改質反応が行われるので装置の大型化
が容易である。
Recently, a system that combines steam reforming and partial oxidation has been attracting attention as a gas reformer in large-scale equipment. This involves mixing natural gas and steam to perform a primary reforming reaction, then adding oxygen to perform partial oxidation and secondary reforming reactions, and using the resulting high-temperature gas as the heating source for the primary reforming reaction. It is something. As described in Japanese Patent Publication No. 50-20959, this method uses a single reactor and can obtain high-pressure reformed gas without supplying heat from other sources, making it easier to produce higher-pressure hydrogen. can be manufactured. Furthermore, when producing methanol or ammonia, the synthesis reaction can be carried out immediately without using a reformed gas compressor to increase the pressure. Furthermore, there is no need to use a reforming furnace that externally heats the reaction tube, and since the reforming reaction is carried out under high pressure, it is easy to increase the size of the apparatus.

このように−次数質反応と二次改質反応を行う自己熱交
換型反応装置(以下、断熱リホーマ−装置と称する)に
ついては、特開昭60−186401号、特開平1−2
61201号、特開平2−18303号等に具体的な構
造が示されており、また特開平2−3614号には断熱
リホーマ−装置を用いたメタノール製造プロセスが示さ
れている。
Regarding the self-heat exchange type reactor (hereinafter referred to as an adiabatic reformer apparatus) that performs the -order qualitative reaction and the secondary reformer reaction in this way, JP-A-60-186401 and JP-A-1-2
Specific structures are shown in JP-A No. 61201, JP-A-2-18303, etc., and JP-A-2-3614 shows a methanol production process using an adiabatic reformer device.

(発明か解決しようとする課題) 特開昭60−1864旧号は、反応器の上部に一次改質
反応を行う熱交換室、中部に二次改質触媒層、下部に燃
焼室を有し、−次数質ガスは二次改質触媒層の中心部に
ある配管を通過して燃焼室に入り、反応器の底部より供
給される酸素含有ガスと混合して部分酸化が行われたの
ち二次改質触媒との接触し、得られた高温の二次改質ガ
スが熱交換室で反応管の加熱を行うものである。この反
応器は、■燃焼室において耐火アーチで二次改質触媒層
の重量を支える構造となっているが、燃焼室の温度は1
300℃以上となるので耐火材の強度とアーチ構造との
設計上の整合性をとりにくいこと、■二次改質触媒層の
ガスの流れが上向きであるので、ガス流速を上げた場合
に触媒の流動化現象が懸念されること等の課題がある。
(Problem to be solved by the invention) The old Japanese Patent Application Publication No. 1864/1986 has a heat exchange chamber for performing the primary reforming reaction in the upper part of the reactor, a secondary reforming catalyst layer in the middle part, and a combustion chamber in the lower part. The -order quality gas passes through the pipe in the center of the secondary reforming catalyst layer, enters the combustion chamber, mixes with the oxygen-containing gas supplied from the bottom of the reactor, undergoes partial oxidation, and then undergoes secondary reforming. The resulting high-temperature secondary reformed gas that comes into contact with the secondary reforming catalyst heats the reaction tube in the heat exchange chamber. This reactor has a structure that supports the weight of the secondary reforming catalyst layer with a refractory arch in the combustion chamber, but the temperature of the combustion chamber is 1.
Since the temperature exceeds 300℃, it is difficult to maintain consistency between the strength of the refractory material and the design of the arch structure; ■The gas flow in the secondary reforming catalyst layer is upward, so if the gas flow rate is increased, the catalyst There are issues such as concerns about the phenomenon of fluidization.

また特開平1−261201号は改質反応管を二重管と
し内管に酸素含有ガスを通して反応管の下部で部分酸化
と二次改質反応を行うものである。この反応器は多数の
反応管に均一に改質ガスと酸素含有ガスを通過させる必
要があることから大型装置での採用が困難である。
Further, in JP-A-1-261201, the reforming reaction tube is a double tube, and oxygen-containing gas is passed through the inner tube to perform partial oxidation and secondary reforming reaction in the lower part of the reaction tube. This reactor is difficult to employ in large-scale equipment because it is necessary to uniformly pass the reformed gas and oxygen-containing gas through a large number of reaction tubes.

更に特開平2−18303号は一次改質反応管群の下部
に燃焼室と二次改質触媒層の容器を吊り下げる反応器で
ある。この反応器においては燃焼室が高温となるので耐
火性のキャスタブルで内張する必要があり、相当の重量
を有することから大型化が難しい。
Further, JP-A-2-18303 discloses a reactor in which a combustion chamber and a container for a secondary reforming catalyst layer are suspended below a group of primary reforming reaction tubes. In this reactor, the combustion chamber reaches a high temperature, so it needs to be lined with fire-resistant castable, and it is difficult to increase the size of the reactor because it is quite heavy.

特開平2−3614号には一次改質反応管を二重管とし
、−次数質ガスが内管を通過して二次改質反応器に導入
するフローが示されている。この方式では一次改質反応
器と二次改質反応器を別個に設けるものであり、−次改
質反応器の内管を通過することにより二次改質反応器に
導入される温度が低下するので酸素含有ガスの使用量が
増大し、またこれにより一次改質反応管の上部の温度が
上昇することから熱回収量が減少することが問題点とし
て挙げられる。更に二重管を有する管板を用い、その部
分で高温ガスをシールする必要があるので装置か複雑と
なり、大型化が困難である。
JP-A-2-3614 discloses a flow in which the primary reforming reaction tube is a double tube, and the -order material gas passes through the inner tube and is introduced into the secondary reforming reactor. In this method, a primary reforming reactor and a secondary reforming reactor are provided separately, and the temperature introduced into the secondary reforming reactor is lowered by passing through the inner tube of the -second reforming reactor. Therefore, the amount of oxygen-containing gas used increases, and the temperature at the upper part of the primary reforming reaction tube increases, resulting in a decrease in the amount of heat recovery, which is a problem. Furthermore, since a tube sheet with double tubes is used and it is necessary to seal off the high temperature gas at that portion, the device becomes complicated and it is difficult to increase the size of the device.

(課題を解決するための手段) 発明者は上記の如き課題を有し大型化が困難な断熱リホ
ーマ−装置について鋭意検討した結果、−次改質反応器
と二次改質反応器に分け、−次改質反応器にフローティ
ング式熱交換器の構造を用い、ベローにより一次改質反
応管の熱膨張を吸収させれば大型装置にも対応できる優
れた反応器が得られることを見出し、本発明に至った。
(Means for Solving the Problems) As a result of intensive study of the adiabatic reformer equipment, which has the above-mentioned problems and is difficult to scale up, the inventor divided it into a secondary reforming reactor and a secondary reforming reactor. -We discovered that if a floating heat exchanger structure was used in the secondary reforming reactor and a bellows was used to absorb the thermal expansion of the primary reforming reaction tube, an excellent reactor that could be used in large-scale equipment could be obtained. This led to the invention.

すなわち本発明は、炭化水素と水蒸気の混合ガスより一
次改質反応を行い、次に酸素含有ガスを加えて部分酸化
の後二次改質反応を行い、得られた高温ガスを一次改質
反応の加熱源に用いる反応器において、 (al−次改質反応器は、竪型フローティイブ成熱交換
器を用い、伝熱管を内部に改質触媒を充填した反応管と
し、ベローにより反応管の熱膨張を吸収するようにした
反応器、 (b)二次改質反応器は、上部に燃焼室、下部に断熱触
媒層を有する別個の反応器とし、 原料の炭化水素と水蒸気の混合ガスを−次改質反応熱の
上部から改質触媒を充填した反応管に導入して一次改質
反応を行った後、フローティング部を通過して二次改質
反応器に導き、燃焼室で酸素含有ガスとを混合して部分
酸化を行い、次に断熱触媒層で二次改質反応行って、得
られた高温ガスを一次改質反応器のシェル側下部より一
次改質ガスと向流に熱交換させることを特徴とする断熱
リホーマ−装置である。
That is, the present invention performs a primary reforming reaction using a mixed gas of hydrocarbons and steam, then adds an oxygen-containing gas to perform partial oxidation, and then performs a secondary reforming reaction, and the resulting high-temperature gas is subjected to the primary reforming reaction. In the reactor used as a heat source for Reactor designed to absorb thermal expansion (b) The secondary reforming reactor is a separate reactor with a combustion chamber in the upper part and an adiabatic catalyst layer in the lower part. - After the heat of the secondary reforming reaction is introduced from the top into a reaction tube filled with a reforming catalyst to perform a primary reforming reaction, it passes through a floating section and is led to a secondary reforming reactor, where it is introduced into a combustion chamber containing oxygen. Partial oxidation is performed by mixing with gas, and then a secondary reforming reaction is performed in the adiabatic catalyst layer, and the resulting high-temperature gas is heated countercurrently to the primary reformed gas from the lower part of the shell side of the primary reforming reactor. This is a heat insulating reformer device that is characterized by being able to be replaced.

本発明の装置において一次改質反応器の一次改質ガスの
出口ノズルを下部に設置する場合と、中心管を用いてこ
のノズルを一次改質反応器の上部に設置する場合がある
。次にそれぞれの場合について図面を用いて説明する。
In the apparatus of the present invention, there are cases where the outlet nozzle for the primary reformed gas of the primary reforming reactor is installed at the bottom, and cases where this nozzle is installed at the top of the primary reforming reactor using a central pipe. Next, each case will be explained using the drawings.

第1図は本発明の断熱リホーマ−装置で一次改質反応器
の一次改質ガスの出口ノズルを下部に設置する場合の構
造を示す図面である。一次改質反応器lにおいて、原料
の炭化水素と水蒸気は流路2より導入され、反応管3に
入る。この反応管内には改質触媒が充填されており、管
内のガスは管外で高温の二次改質ガスと向流に接触する
ことにより炭化水素の一次改質反応が行われる。なおこ
の熱交換室はその効率を高めるためにバッフル4を設け
ることが好ましい。反応管を出た一次改質ガスは下部の
フローティング部5に集められた後、出口ノズル6に至
り、流路7から二次改質反応器8の燃焼室9に入る。な
お反応管の熱膨張の差による熱応力を回避するためにフ
ローティンクヘツトIOと出口ノズルの間にヘロ−11
を設けてシールされる。
FIG. 1 is a drawing showing the structure of the adiabatic reformer apparatus of the present invention in which the outlet nozzle for the primary reformed gas of the primary reforming reactor is installed at the bottom. In the primary reforming reactor 1, raw material hydrocarbons and steam are introduced through a flow path 2 and enter a reaction tube 3. This reaction tube is filled with a reforming catalyst, and the gas inside the tube contacts the high temperature secondary reformed gas outside the tube in a countercurrent manner, thereby carrying out a primary reforming reaction of hydrocarbons. Note that this heat exchange chamber is preferably provided with a baffle 4 in order to increase its efficiency. The primary reformed gas leaving the reaction tube is collected in the lower floating part 5, reaches the outlet nozzle 6, and enters the combustion chamber 9 of the secondary reforming reactor 8 through the flow path 7. In order to avoid thermal stress caused by the difference in thermal expansion of the reaction tube, Hero-11 is installed between the floating head IO and the outlet nozzle.
It is sealed with a

燃焼室においては流路12から導入される酸素含有ガス
と混合して部分酸化反応が行われる。次に部分酸化ガス
は二次改質触媒層■3を通過して二次改質反応が行われ
た後、二次反応器の底部から流路14を通過して一次改
質反応器のシェル側の下部に入り、次数質反応管内を加
熱し、流路15より排出され合成ガスとなる。
In the combustion chamber, the gas is mixed with oxygen-containing gas introduced from the flow path 12, and a partial oxidation reaction is performed. Next, the partially oxidized gas passes through the secondary reforming catalyst layer 3 to undergo a secondary reforming reaction, and then passes through the flow path 14 from the bottom of the secondary reactor to the shell of the primary reforming reactor. The gas enters the lower part of the side, heats the inside of the reaction tube, and is discharged from the flow path 15 to become synthesis gas.

なお一次改質反応器および二次改質反応器には触媒を充
填するためのマンウェイ16や点検孔17が設けられて
おり、触媒換装や反応器の点検を容易に行うことができ
る。
Note that the primary reforming reactor and the secondary reforming reactor are provided with a manway 16 for filling the catalyst and an inspection hole 17, so that catalyst replacement and reactor inspection can be easily performed.

第2図は本発明の反応装置において一次改質反応器に中
心管を用いて出口ノズルを反応器の上部に設置する場合
の図面である。この図においてはフローティング部5よ
りのガスが中心管18を通過して反応器の上部の出口ノ
ズル6に至る。また下部管板19と中心管の先端の間に
ヘロー20が設置される。
FIG. 2 is a diagram of the reaction apparatus of the present invention in which a central tube is used in the primary reforming reactor and an outlet nozzle is installed in the upper part of the reactor. In this figure, gas from the floating section 5 passes through the central tube 18 to the outlet nozzle 6 at the top of the reactor. Further, a hero 20 is installed between the lower tube plate 19 and the tip of the central tube.

なお第1図および第2図において、一次改質反応器およ
び二次改質反応器の内面や各マンウェイ及び各ガスノズ
ルの内側には150〜25001111程度の厚さの断
熱材が施工されるっまたベローは鏡板と出口ノズル、或
いは管板と中心管に溶接して固定される。
In Figures 1 and 2, a heat insulating material with a thickness of about 150 to 25001111 mm is installed on the inner surfaces of the primary reforming reactor and secondary reforming reactor, and on the inside of each manway and each gas nozzle. Further, the bellows is fixed by welding to the end plate and the outlet nozzle, or to the tube plate and the center tube.

以上の如き反応装置において原料の炭化水素には通常メ
タンを主成分とする天然ガスが用いられるが、立地条件
によりLPGやナフサ等も用いられる。
In the above reactor, natural gas containing methane as a main component is usually used as the raw material hydrocarbon, but LPG, naphtha, etc. may also be used depending on the location conditions.

又原料の原単位を改善するために炭化水素と共に合成系
よりのバー7ガスを混合することが行われる。
Also, in order to improve the raw material consumption rate, bar 7 gas from the synthesis system is mixed with hydrocarbons.

改質触媒には通常ニッケル系触媒が用いられるが、改質
触媒の活性低下を避けるために原料の炭化水素は予め脱
硫しておく必要がある。炭化水素とスチームの混合ガス
のスチーム/カーホン比が通常2.5〜3.5となるよ
うに水蒸気が使用され、400〜600°Cに予熱して
反応器に供給する。
A nickel-based catalyst is usually used as a reforming catalyst, but the raw material hydrocarbon must be desulfurized in advance to avoid a decrease in the activity of the reforming catalyst. Steam is used so that the steam/carphone ratio of the hydrocarbon and steam mixture is usually 2.5 to 3.5, and is preheated to 400 to 600°C before being fed to the reactor.

本発明の断熱リホーマ−装置における一次改質反応は、
圧力50〜120 kg/cm2G 、温度500〜8
00°Cで反応が行われ、−次数質反応管出口で700
〜800°Cとなる。断熱リホーマ−装置では反応管内
と管外の圧力差が小さいので改質反応圧を高めることが
でき、前述の如く高圧の水素が得られ、改質ガスの圧縮
機を使用せずにメタノールやアンモニア合成反応ニ供す
ることができる。また大型化が容易である。
The primary reforming reaction in the adiabatic reformer apparatus of the present invention is
Pressure 50-120 kg/cm2G, temperature 500-8
The reaction was carried out at 00°C, and the temperature was 700°C at the outlet of the reaction tube.
~800°C. In an adiabatic reformer, the pressure difference between the inside and outside of the reaction tube is small, so the reforming reaction pressure can be increased, and as mentioned above, high-pressure hydrogen can be obtained, and methanol and ammonia can be produced without using a reformed gas compressor. It can be used for synthetic reactions. Moreover, it is easy to increase the size.

−次数質反応管を出たガスは、次に燃焼室において酸素
含有ガスと混合され、部分酸化反応が行われる。酸素含
有ガスとしては水素製造やメタノール製造の場合には高
純度の酸素ガスが通常用いられ、アンモニア製造の場合
には空気が用いられる。酸素含有ガスの使用量は原料炭
化水素の組成や供給温度等により異なり、断熱リホーマ
−装置の熱収支により決定される。
The gas exiting the -order reaction tube is then mixed with oxygen-containing gas in a combustion chamber, where a partial oxidation reaction takes place. As the oxygen-containing gas, high-purity oxygen gas is usually used in the case of hydrogen production or methanol production, and air is used in the case of ammonia production. The amount of oxygen-containing gas used varies depending on the composition of the hydrocarbon feedstock, the supply temperature, etc., and is determined by the heat balance of the adiabatic reformer equipment.

なお必要に応じて、酸素含有ガスと共に原料の炭化水素
の一部を燃焼室に導入することや、燃焼室の温度を制御
するために水蒸気の一部を燃焼室に導入することが行わ
れ、−次数質ガスや酸素含有ガス己混合して、或いは二
重管等を用いて別個に供給すイことができる。これらの
燃焼室に導入されるガス1:、断熱リホーマ−装置の熱
収支上できるだけ予熱して供給することが好ましく、通
常300〜500℃でせ給される。
If necessary, a portion of the raw material hydrocarbons may be introduced into the combustion chamber together with the oxygen-containing gas, or a portion of water vapor may be introduced into the combustion chamber to control the temperature of the combustion chamber. The -order gas and oxygen-containing gas can be mixed together or supplied separately using a double pipe or the like. Gas introduced into these combustion chambers 1: It is preferable to preheat the gas before supplying it as much as possible in view of the heat balance of the adiabatic reformer apparatus, and the gas is normally supplied at a temperature of 300 to 500°C.

燃焼室の温度はこれらの供給温度や酸素含有が2の供給
量等により異なるが、通常1300−1600℃でよる
。この燃焼室の下には二次改質触媒が充填されており、
二次改質反応が行われる。二次改質触媒に(=通常ニッ
ケル系、或いは白金系触媒が用いられ、00〜1100
’cで反応が行われる。
The temperature of the combustion chamber varies depending on the supply temperature, the oxygen content, the supply amount, etc., but is usually 1300-1600°C. A secondary reforming catalyst is packed below this combustion chamber.
A secondary reforming reaction takes place. For the secondary reforming catalyst (= usually a nickel-based or platinum-based catalyst is used,
The reaction takes place at 'c.

(発明の効果) 本発明の断熱リホーマ−装置では、■フローティ2フ式
構造を用いることにより一次改質反応器でCシールが不
要で、反応器の構造が簡単であることや、■ベローを用
いることにより、反応管等の熱膨弘か容易に吸収される
こと等の特徴があり、従来の!交換器の技術で容易に製
作することができ、また大型化も容易である。
(Effects of the Invention) The adiabatic reformer device of the present invention has two advantages: (1) By using a floaty two-flat structure, a C seal is not required in the primary reforming reactor, and the structure of the reactor is simple; (2) a bellows structure is used; By using it, it has the characteristics that thermal expansion of reaction tubes etc. can be easily absorbed, and conventional! It can be easily manufactured using exchanger technology, and it is also easy to increase its size.

これにより大型の水素製造装置やメタノール装置等にお
いて改質ガス発生装置の大型化が促進され、産業上の意
義が大きい。
This facilitates the enlargement of reformed gas generators in large-scale hydrogen production equipment, methanol equipment, etc., and has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の断熱リホーマ−装置で一次改質ガスの
出口ノズルを下部に設置する場合、第2図は一次改質ガ
スの出口ノズルを下部に設置する場合の構造を示す図面
である。 第1図および第2図において、 1゛一次改質反応器、3ニ一次改質反応管、5:フロー
ティング部、8.二次改質反応器、9:燃焼室lI:ベ
ロー ■3:二次改質触媒層を示す。 特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文 ? 第 図 第 図
Fig. 1 is a diagram showing the structure of the adiabatic reformer device of the present invention in which the primary reformed gas outlet nozzle is installed at the bottom, and Fig. 2 is a diagram showing the structure in which the primary reformed gas outlet nozzle is installed at the bottom. . In FIG. 1 and FIG. 2, 1. primary reforming reactor, 3. primary reforming reaction tube, 5: floating section, 8. Secondary reforming reactor, 9: Combustion chamber lI: Bellow ■3: Shows the secondary reforming catalyst layer. Patent applicant Mitsubishi Gas Chemical Co., Ltd. Agent Patent attorney Sadafumi Kobori? Figure Figure

Claims (1)

【特許請求の範囲】 炭化水素と水蒸気の混合ガスより一次改質反応を行い、
次に酸素含有ガスを加えて部分酸化の後二次改質反応を
行い、得られた高温ガスを一次改質反応の加熱源に用い
る断熱リホーマー装置において、 (a)一次改質反応器は、竪型フローティング式熱交換
器を用い、伝熱管を内部に改質触媒を充填した反応管と
し、ベローにより反応管の熱膨張を吸収するようにした
反応器、 (b)二次改質反応器は、上部に燃焼室、下部に断熱触
媒層を有する別個の反応器とし、原料の炭化水素と水蒸
気の混合ガスを一次改質反応器の上部から改質触媒を充
填した反応管に導入して一次改質反応を行った後、フロ
ーティング部を通過して二次改質反応器に導き、燃焼室
で酸素含有ガスとを混合して部分酸化を行い、次に断熱
触媒層で二次改質反応行って、得られた高温ガスを一次
改質反応器の胴側下部より一次改質ガスと向流に熱交換
させることを特徴とする断熱リホーマー装置
[Claims] Performing a primary reforming reaction from a mixed gas of hydrocarbons and steam,
Next, in an adiabatic reformer device in which an oxygen-containing gas is added to perform partial oxidation and then a secondary reforming reaction, and the resulting high-temperature gas is used as a heating source for the primary reforming reaction, (a) the primary reforming reactor is A reactor in which a vertical floating heat exchanger is used, the heat transfer tube is a reaction tube filled with a reforming catalyst, and the thermal expansion of the reaction tube is absorbed by a bellows. (b) Secondary reforming reactor The reactor is a separate reactor with a combustion chamber in the upper part and an adiabatic catalyst layer in the lower part, and a mixed gas of raw material hydrocarbon and steam is introduced from the upper part of the primary reforming reactor into a reaction tube filled with a reforming catalyst. After performing the primary reforming reaction, it passes through a floating section and is guided to the secondary reforming reactor, where it is mixed with oxygen-containing gas in the combustion chamber to perform partial oxidation, and then secondary reforming occurs in the adiabatic catalyst layer. An adiabatic reformer device characterized by carrying out a reaction and exchanging heat of the obtained high-temperature gas with the primary reformed gas in a countercurrent flow from the lower part of the body side of the primary reforming reactor.
JP02277883A 1990-10-18 1990-10-18 Insulated reformer Expired - Fee Related JP3094435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02277883A JP3094435B2 (en) 1990-10-18 1990-10-18 Insulated reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02277883A JP3094435B2 (en) 1990-10-18 1990-10-18 Insulated reformer

Publications (2)

Publication Number Publication Date
JPH04154602A true JPH04154602A (en) 1992-05-27
JP3094435B2 JP3094435B2 (en) 2000-10-03

Family

ID=17589620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02277883A Expired - Fee Related JP3094435B2 (en) 1990-10-18 1990-10-18 Insulated reformer

Country Status (1)

Country Link
JP (1) JP3094435B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841301A1 (en) * 1996-11-12 1998-05-13 Ammonia Casale S.A. Reforming apparatus
JP2002080203A (en) * 2000-07-07 2002-03-19 Nippon Soken Inc Reformer
JP2004224690A (en) * 2003-01-23 2004-08-12 Inst Fr Petrole New partial oxidation reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841301A1 (en) * 1996-11-12 1998-05-13 Ammonia Casale S.A. Reforming apparatus
AU735457B2 (en) * 1996-11-12 2001-07-12 Ammonia Casale S.A. Reforming apparatus
US6426054B1 (en) 1996-11-12 2002-07-30 Amonia Casale S.A. Reforming apparatus
JP2002080203A (en) * 2000-07-07 2002-03-19 Nippon Soken Inc Reformer
JP2004224690A (en) * 2003-01-23 2004-08-12 Inst Fr Petrole New partial oxidation reactor

Also Published As

Publication number Publication date
JP3094435B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US5112578A (en) Reactor for reforming hydrocarbon and process for reforming hydrocarbon
CA2165449C (en) Endothermic reaction apparatus and method
US5156821A (en) Reactor for reforming hydrocarbon
AU728728B2 (en) Synthesis gas production by steam reforming using catalyzed hardware
EP0440258B1 (en) Heat exchange reforming process and reactor system
JP4073960B2 (en) Hydrocarbon steam reforming method
JPH0522641B2 (en)
US5565009A (en) Endothermic reaction process
EP0450872A1 (en) Endothermic reaction apparatus
JPH04214001A (en) Manufacture of hydrogen-containing gas stream
JPS6158801A (en) Method of improving hydrocarbon and reactor
JP7473532B2 (en) Steam or dry reforming of hydrocarbons
JPS6261521B2 (en)
US6153152A (en) Endothermic reaction apparatus and method
JPS59107901A (en) Manufacture of product gas containing hydrogen and carbon oxide and apparatus therefor
EA000777B1 (en) Process and process unit for the preparation of ammonia synthesis gas
JP5190162B2 (en) Method and reactor for performing non-adiabatic catalytic reaction
CN100361890C (en) A device and method for converting hydrocarbons to produce synthesis gas
US3595628A (en) Apparatus for reforming hydrocarbons
CN217972598U (en) Tube type reactor for steam reforming reaction of hydrocarbon
JPH06219706A (en) Adiabatic reformer reactor
JPH04154602A (en) Adiabatic reformer reactor
CN115465837A (en) A tubular reactor for steam reforming of hydrocarbons
JPH04154601A (en) Adiabatic reformer reactor
JPH10273304A (en) Heat exchange reforming reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees