JPH04154498A - Estimating method for control motion using controllability index - Google Patents
Estimating method for control motion using controllability indexInfo
- Publication number
- JPH04154498A JPH04154498A JP27799590A JP27799590A JPH04154498A JP H04154498 A JPH04154498 A JP H04154498A JP 27799590 A JP27799590 A JP 27799590A JP 27799590 A JP27799590 A JP 27799590A JP H04154498 A JPH04154498 A JP H04154498A
- Authority
- JP
- Japan
- Prior art keywords
- ship
- index
- turning
- test
- response model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims description 14
- 238000012360 testing method Methods 0.000 claims abstract description 39
- 230000004044 response Effects 0.000 claims abstract description 31
- 230000009467 reduction Effects 0.000 claims description 21
- 238000004088 simulation Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 11
- 238000011160 research Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 208000008589 Obesity Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 102220096721 rs876660131 Human genes 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、各造船所において蓄積されている実船の操縦
性指数K、■を活用して、新造船の操縦運動を推定する
方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for estimating the maneuvering motion of a new ship by utilizing the maneuverability index K, ■ of actual ships accumulated at each shipyard. .
応答モデルを用いた船の操縦運動の解析に関する研究は
、1960年初めから1970年代後半にかけて多くの
研究者により顕著に進展され、操縦性指数K、Tを用い
て船の操縦運動を記述した簡潔な応答モデルは、船の操
縦運動の推定に対し実用に供されるまてになった。しか
しなから、船型要素による操縦性能の変化をより合理的
に求めるには、船体に働く流体力の成因に立ち戻って、
数学モデルを組み立てるのか良いとの認識から、その後
は流力モデルによる研究か主流となり、現状では流力モ
デルを用いた操縦運動のシミュレーションか深水域たけ
てなく浅水域に対しても実施され、仕速時や外乱の作用
下における操縦運動についズも、シミュレーションなら
ひにその検証か多くσ研究機関で行われている。Research on the analysis of ship maneuvering motion using response models was significantly advanced by many researchers from the early 1960s to the late 1970s. A response model that can be used practically for estimating the maneuvering motion of a ship has become a reality. However, in order to more rationally determine changes in maneuverability due to hull form factors, we must return to the origins of the fluid force acting on the hull.
Since it was recognized that it would be better to assemble a mathematical model, research using hydrodynamic models became mainstream, and currently, simulations of maneuvering motion using hydrodynamic models are carried out not only in deep water but also in shallow water. Many σ research institutes are conducting simulations to verify maneuvering motion at high speeds and under the influence of external disturbances.
〔発明か解決しようとする問題点)
船舶の航行の安全性を確保することを目的にIMO(国
際海事機関)ては操船者か自船の操鐘性能を十分に把握
てきるよう、新造船に対して抽船フックレットを用意す
べきことを提案してしる。しかしなから、基本となる新
造船の操縦性樽を流力モデルを適用して推定するには、
その組型に対する多くの操縦微係数を、拘束模型試験に
よって得なければならないと言う問題を克服しなければ
ならない。その理由は、操縦微係数のデータへンクの整
備はこれからであり、実用に供するにはまたまたデータ
ネ足であること、操縦微係数の理論的推定法も提案され
ているか、現状では推定値の精度は今一つの状態にある
ことから、波浪中における船体運動の推定のようK、計
算たけて実用に供し得るようになっていないためである
。さらK、IMOてt、1象としているl [1、11
旧f DWT貝1の船舶を建造している各造船所で、新
造船の操縦全係数を得ることは甚だ困難である。このよ
うな状況の下て操船フックレットを用意することを推進
するためには、既存データを活用して実用的な精度て操
縦運動の推定を行い得る手法を確ケすることか望まれる
。[Problem to be solved by the invention] In order to ensure the safety of ship navigation, the IMO (International Maritime Organization) recommends that new ships be constructed so that ship operators can fully understand the bell operation performance of their own ship. He suggested that a hooklet should be prepared for the ship. However, in order to estimate the basic maneuverability of a new ship by applying a hydrodynamic model,
The problem must be overcome that many steering derivatives for the set must be obtained by restrained model testing. The reason for this is that the data on the steering derivative has not yet been prepared, and there is still too much data to put it into practical use.Are there any theoretical estimation methods for the steering derivative that have been proposed?At present, the accuracy of the estimated value is This is because the calculations for estimating the motion of a ship in waves have not yet been calculated and put to practical use, since the current situation is still unsatisfactory. Sarak, IMO, one elephant [1, 11
It is extremely difficult for each shipyard that builds old f DWT Shell 1 ships to obtain all the maneuvering coefficients for new ships. In order to promote the preparation of ship maneuvering hooklets under such circumstances, it is desirable to establish a method that can estimate maneuvering motion with practical accuracy by utilizing existing data.
(課題を解決するための手段)
上記した従来の問題点を解決する本発明の手段は旋回角
速度の応答モデルと船速低下の応答モデルをベースとし
、定常旋回特性から得られるに指数は舵角によって変わ
るとして、非線形性を含めた等価に指数を定義し、既存
実船データの各舵角に対する等価に指数ならびにZ操縦
試験で得られたK、T指数の比を、船の肥俗度と舵面積
比の比に対して整理し、船速低下率は旋回角速度の2乗
に関係するとして整理する。さらK、既存データの旋回
試験で得られた等価に指数とZ操縦試験て得られたに指
数の関係を求めておく。ます、既存データから新造船の
最大舵角の定常旋回角速度を推定し、整理されたデータ
を用いて新造船の定常旋回特性を求め、次K、新造船の
2操縦運動に対するK、T指数を設定し、旋回運動では
旋回の発達とともに等価に指数に移って行くものとする
。(Means for Solving the Problems) The means of the present invention for solving the above-mentioned conventional problems is based on a turning angular velocity response model and a ship speed reduction response model. The index is defined equivalently including non-linearity, and the ratio of the index of existing actual ship data for each rudder angle and the ratio of the K and T index obtained in the Z maneuver test is calculated based on the ship's degree of obesity. This is organized based on the rudder area ratio, and the ship speed reduction rate is related to the square of the turning angular velocity. Furthermore, let us find the relationship between the equivalent index obtained from the turning test using existing data and the equivalent index obtained from the Z maneuver test. First, estimate the steady turning angular velocity at the maximum rudder angle of the new ship from existing data, use the organized data to find the steady turning characteristics of the new ship, and then calculate the K and T indices for the two maneuvering movements of the new ship. It is assumed that the turning motion equivalently shifts to an index as the turning develops.
最後K、新造船の公試運転時に実施された操縦性試験結
果を参照し、設定された応答モデルを同定する方法であ
る。Finally, there is a method of identifying the set response model by referring to the maneuverability test results conducted during the trial run of the newly built ship.
(作用) 以下、本発明の推定方法について説明する。(effect) The estimation method of the present invention will be explained below.
1−1 提案する推定法の考え実
船の操縦運動を実用的な精度て推定し得るようにするた
め、旋回角速度の応答モデルと船速低下の応答モデルを
ベースとして、次のような考え方て推定法を構築する。1-1 Concept of the proposed estimation method In order to be able to estimate the maneuvering motion of an actual ship with practical accuracy, the following concept is used based on the response model of turning angular velocity and the response model of ship speed reduction. Build an estimation method.
1)操縦性能に関する実船・模型の相関か確立していな
いのて、実船試験データを用いることとし、既存データ
を整理して有効に活用する。1) Since the correlation between actual ships and models regarding maneuverability has not been established, actual ship test data will be used, and existing data will be organized and used effectively.
2)簡単な応答モデルを採用することとし、旋回角速度
rの応答モデルと前進速度の変化U(船速低下量)の応
答モデルを連立させ
Tr+r+yr’ =K (δ+δ r )
(])Tu u+u=Kt+ r2
(2)を用いる。たたし、Kとr
は時々刻々の船速Uを用いて無次元化する。2) A simple response model is adopted, and the response model of the turning angular velocity r and the response model of the change in forward speed U (vessel speed reduction amount) are combined, and Tr+r+yr' = K (δ+δ r )
(]) Tu u+u=Kt+ r2
Use (2). Tatami, K and r
is made dimensionless using the momentary ship speed U.
3)K′、T’積指数舵角δによって変わるとして、角
舵角に対する等価に指数を定義し、この中に非線形性を
含め、T′積指数舵角か同してあれば旋回運動、Z操縦
運動て同しであると仮定する。3) Assuming that K', T' product index varies depending on the rudder angle δ, define the index equivalent to the angle rudder angle, include nonlinearity in this, and if the T' product index rudder angle is the same, turning motion, Assume that the Z-steering motion is the same.
4)実船の定常旋回特性、r′−6曲線、と船速低下率
ならびに旋回試験、Z操縦試験て得られるに’ 、T’
指数データの関連を整理する。任意の操船に対して同一
の応答モデルを用い、K′T′指数に直接数値データを
与えて操縦運動をシミュレートする。4) Steady turning characteristics of the actual ship, r'-6 curve, ship speed reduction rate, and ', T' obtained from turning test and Z maneuvering test
Organize the relationship of index data. The same response model is used for any given ship maneuver, and the maneuver motion is simulated by directly giving numerical data to the K'T' index.
上記の考え方を、さらに詳細に説明する。The above idea will be explained in more detail.
I−2操縦性指数に’ 、T’のデータ船の操縦性能と
しては保針、変針、緊急回避の各性能が調べられるか、
それぞれの性能を調べるに適した試験法 舵角か穫用さ
れてぃス−に′T′指数の値は運動の周期に依存するの
て、同一の舵角て行われた2操縦試験と旋回試験(逆ス
y<。I-2 Maneuverability index ', T' data As for the ship's maneuverability, can each performance of course keeping, course change, and emergency avoidance be investigated?
Test method suitable for examining each performance Since the value of the 'T' index depends on the period of motion depending on the rudder angle, two maneuver tests and a turning test performed at the same rudder angle are used. Test (reverse y<.
イラル試験を含む)ても、得られるに′、T′指数の値
か異なる。2操作試験ては方位角か設定された値に達す
ると反対舷に舵を切り返すのて、その時の旋回角速度は
旋回試験における定常旋回速度とは異なっているためで
ある。このような差異は、肥大船の方向安定性を調べる
のに適した変形Z操縦試験で大きく現れるように考えら
れる。Even if the results are different (including the Iral test), the values of the ' and T' indexes obtained are different. This is because in the two-maneuver test, when the azimuth reaches a set value, the rudder is turned to the opposite side, and the turning angular speed at that time is different from the steady turning speed in the turning test. It is thought that such a difference will be greatly apparent in the modified Z-steering test, which is suitable for investigating the directional stability of enlarged ships.
船の操縦性能は船種によって異なるか、一般に浴せ型組
は針路安定性かよく、肥大船は針路安定性かあまりよく
ないのか普通である。船の操縦性能には多くの組型要素
、すなわち、読解係数CB長さ幅比L/B、幅喫水比B
/d、舵面積比AR/Ldなどが影響する。実船の操縦
性試験データを解析して、K′/2T′て定義されるp
指数は、船の長さ舵面積の積と船の排水容積の比、LA
。The maneuverability of a ship differs depending on the type of ship.In general, bathing type ships have good course stability, while enlarged ships have not-so-good course stability. There are many structural factors involved in the maneuverability of a ship, including reading coefficient CB, length-width ratio L/B, and width-draft ratio B.
/d, rudder area ratio AR/Ld, etc. By analyzing the maneuverability test data of the actual ship, p is defined as K'/2T'.
The index is the ratio of the product of the ship's length and rudder area to the ship's displacement volume, LA
.
/、線形関数であることか報告されている。この考え方
を参照して、T′指数の値は肥浴度CB/(L、/B)
と、に′指数の値は舵面積AR/Ldと相関か強いと考
え、CR7/ (L 、、−’ B )とAR2Ldと
の比をとって
Δ□= (C,/ (L、、’B)) ′(AR,/
Ld )=/ L A R(3)
を定義する。Z操縦試験て得られたに′、T′指数の値
の比、K ′R/ T ′z、をΔF8に対してプロ・
ントした一例を第1図に示す。K ′、/ T ′2の
値は船種によってかなりよく纏まり、八FHの値か犬き
くなるにつれK ’ z/ T ′zの値は小さくなる
。/, it is reported that it is a linear function. Referring to this idea, the value of T' index is calculated as fertilizer bath degree CB/(L,/B)
Considering that the value of Ni' index has a strong correlation with the rudder area AR/Ld, we take the ratio of CR7/ (L,, -' B ) and AR2Ld and get Δ□= (C,/ (L,,' B)) ′(AR,/
Define Ld)=/L A R (3). The ratio of the values of N′ and T′ index values obtained from the Z maneuver test, K′R/T′z, is calculated by profiling against ΔF8.
An example of this is shown in Figure 1. The values of K',/T'2 are fairly consistent depending on the type of ship, and the value of K'z/T'z becomes smaller as the value of 8FH becomes more severe.
I−3旋回角速度の応答モデル係数
(1)旋回試験結果から得られるに′指数の値肥大船の
定常旋回特性を表すr′−6曲線の典型的な形を第2図
に示すか、非線形1次系旋回角速度応答モデル(1)式
において、定常旋回中はr=0となるから
r′+ y r”=K (δ′+δ’r) (
4)となり、δ′、=0(あるいは既知)としてに′指
数と非線形係数νの値を求めることかできる。しかしな
から、舵角毎にに′指数とνの値か異なるのて、K′指
数の値か各舵角に対して変わるとし、νr3の非線形影
響も含めた等価なに′指数を考え、これをに′、とする
と
1・=3・E6・ (5)第
2図に示すようにr′−6曲線のδ= 35’における
に′1の値を求めこれをに′E:+5とし、同様にしδ
=5°、too、20″におけるに−,の値をに′Eδ
とする。K′E8の値はr′−6曲線の形状から、針路
安定性のよい船てはほぼK ’E3Sの値と同しになる
が、針路安定性の劣る船ては小舵角のK ′E aの値
はK ’E3Sの値よりも大きくなり、針路安定性のよ
すざる船てはに E3gの値よりも小さくなる傾向かあ
る。既存のr −6曲線から各舵角に対するK、の値を
求め、K ’EffSとの比をξ6と定義し、ξ =
K ′E 5 / K ′E35(6)δ
とする。δ=5’ 、 10’ 、 20°としてξ8
の値を求め、Δ、に対してプロットした一例を第3図に
示す。ξ2oの値はほぼlであるか、八FRか大きな組
型では1.3程度になる場合かある。これに対しξ、の
値はAPRが小さい場合ても1.3程度てあり、Δ、か
大きくなるとその値は2〜3と大きくなり、K′指数に
は非線形性か大きく現れている。I-3 Turning angular velocity response model coefficients (1) Value of the r' index obtained from the turning test results Figure 2 shows the typical shape of the r'-6 curve representing the steady turning characteristics of an enlarged ship. In the first-order turning angular velocity response model (1), r=0 during steady turning, so r'+ y r''=K (δ'+δ'r) (
4), and the values of the ' index and the nonlinear coefficient ν can be obtained by setting δ' = 0 (or known). However, since the values of 'index and ν differ for each steering angle, we assume that the value of K' index also changes for each steering angle, and we consider the equivalent 'index' that includes the nonlinear influence of νr3. Let this be ′, then 1・=3・E6・ (5) As shown in Figure 2, find the value of ′1 at δ=35′ of the r′-6 curve and set this as ′E: +5. , similarly, δ
= 5°, too, the value of −, at 20″ is ′Eδ
shall be. From the shape of the r'-6 curve, the value of K'E8 is approximately the same as the value of K'E3S for a ship with good course stability, but for a ship with poor course stability, the value of K'E8 is approximately the same as the value of K'E3S at the small rudder angle. The value of Ea tends to be larger than the value of K'E3S, and smaller than the value of E3g for ships with poor course stability. Find the value of K for each steering angle from the existing r-6 curve, define the ratio to K'EffS as ξ6, and ξ =
Let K ′E 5 / K ′E35 (6) δ. ξ8 with δ=5', 10', 20°
An example in which the value of is calculated and plotted against Δ is shown in FIG. The value of ξ2o is approximately l, or may be about 1.3 for eight FR or large set types. On the other hand, the value of ξ is about 1.3 even when the APR is small, and as Δ increases, the value increases to 2 to 3, and nonlinearity appears in the K' index.
APRに対するξ5、ξ1o、ξ2oの値はかなりよく
纒まっているのて、新造船の八FRを求めに′F13゜
の値あるいはr′3.の値をベースにして、第3図から
ξ の値を求めるr′ の値か4点得られるδ
δのてr′−6曲線を簡単に
描くことかてきる。第4図はに′l:35の値を八FH
に対して示した例であるか、r ’+5の値は多くの
既存船の旋回試験データの船の長さ、舵面積比などにつ
いて整理されてし・るのて、容易に推定することかてき
る。δ=0″におけるr′の値、すなわち、不安定ルー
プの高さ 10の概略値はr′、とr′IOの値から直
線外挿して推定することかできる。The values of ξ5, ξ1o, and ξ2o for APR are quite well organized, so to find the 8FR of a newly built ship, we use the value of 'F13° or r'3. Based on the value of ξ, find the value of ξ from Figure 3.
It is possible to easily draw an r'-6 curve for δ. Figure 4 shows the value of 'l:35 as 8FH
Is it easy to estimate the value of r'+5, since the turning test data of many existing ships has been organized in terms of ship length, rudder area ratio, etc.? I'll come. The value of r' at δ=0'', that is, the approximate value of the unstable loop height 10, can be estimated by linear extrapolation from the values of r' and r'IO.
(2)Z操縦試験結果から得られたに′指数の値旋回運
動の操舵直後の旋回角速度の発達状態はZ操縦運動の最
初の段階と同しであり、旋回運動ではT′指数の影響時
間と共に消失するのて、舵角か同してあれば旋回運動て
もZ操縦運動てもT′指数の値は同しであると仮定する
。定常旋回特性を表すに′6の値か推定されているのて
同一舵角に対する2操縦試験て得られるに′2の値との
対応か分かれば、第1図からT′7指数の値を推定する
ことかできる。旋回運動に対する旋回角速度の応答モデ
ルのに″指数は、旋回連動初期にはに′zを用い、旋回
運動か発達すると時間の経過とともにに′えに移行して
、定常旋回に入ると考える。舵角δにおけるに′7とに
′Eの値の比をη6と定義し、
ηδ=に’Z/に′ (7)
とする。既存船て旋回試験とZ操縦試験か実施された例
からに′2とに′6の値を抽出し、得られたηδの値を
Δ□に対しプロットした一例を、δ=5°、 10’
、20°として第5図に示す。(2) The value of the T' index obtained from the Z maneuver test results. It is assumed that the value of T' index is the same for turning motion and Z steering motion if the steering angle is the same. Since the value of '6 is estimated to represent the steady turning characteristics, if we know whether it corresponds to the value of '2 obtained by two maneuver tests for the same steering angle, we can calculate the value of the T'7 index from Figure 1. It is possible to estimate. In the response model of the turning angular velocity to the turning motion, the index is assumed to be z at the beginning of the turning motion, and as the turning motion develops, it shifts to the index over time and enters a steady rudder turn. The ratio of the values of '7 and 'E at angle δ is defined as η6, and ηδ='Z/' (7)
shall be. An example in which the values of '2 and '6 were extracted from an example where a turning test and a Z maneuver test were conducted on an existing ship, and the obtained value of ηδ was plotted against Δ□ is as follows: δ=5°, 10 '
, 20° as shown in FIG.
実船Z操縦試験の解析て得られるに′z8の値にばらつ
きか大きいのて、この図から確定的なことは言えないか
、ηδの値はδ=10°、20°の場合にはほぼ0.7
のまわりにあると見ることかてきるか、δ=5°の場合
にはΔ、Rか大きくなるに従って小さな値となっている
。ここでは一応次のように!jえることにする。Since there is a large variation in the value of ′z8 obtained from the analysis of the actual ship Z maneuvering test, it is difficult to say anything definite from this figure, and the value of ηδ is almost the same when δ = 10° and 20°. 0.7
It can be seen that when δ=5°, the value becomes smaller as Δ and R become larger. Here it is as follows! I decided to go to school.
APR≧5の場合
ηδ=0.7 6= 10’ 、 2F1°、35
゜ηδ=0.5 : δ=5゜
ΔFll≦5の場合
η、、=0.7(舵角によらず一定)
I−4船速低下の応答モデルの係数
旋回運動中の船速低下か旋回角速度の2乗に比例すると
仮定した応答モデルを、実船データによって確認する。When APR≧5, ηδ=0.7 6=10', 2F1°, 35
゜ηδ = 0.5: When δ = 5゜ΔFll≦5, η,, = 0.7 (constant regardless of rudder angle) I-4 Coefficient of response model for ship speed reduction Is it ship speed reduction during turning motion? The response model, which is assumed to be proportional to the square of the turning angular velocity, is confirmed using actual ship data.
旋回前の船速をU。定常旋回運動中の船速をuByとし
て、
定常旋回中の船速低下率=
1− U、t、y/UO” ujty/uo (
8)を定義し、既存データからδ=35°における定常
旋回運動中の船速低下率を求めて、定常旋回角速度r′
*tvの2乗に対してプロットした一例を第6図に示す
。新造船では公試運転においてδ−土35゜の旋回試験
を実施しているのて、その時の船速変化の記録を用いる
ことかでき、実線試験における計測精度を考えると比較
的よく纒まっていて、δ=35°て定常旋回速度中の船
速低下率は、r′2gjvに比例すると言える。δ−3
5°て定常旋回運動中の等価に′指数の値に′E35あ
るいは”−35Mtvか分かれば、定常旋回運動中の船
速低下率は第6図を用いて推定てき、K′1か求められ
る。(2)式よりK ′u−11′gk、V/ ((l
u ++tv)2r ′Ztv )T′oの値は
、船速低下の過度状態を解析して求められるか、旋回角
速度と連成した非線形な形を取り扱っているのて、更に
多くのデータを収集しないと精度良い値か得られない。The ship's speed before turning is U. When the ship speed during steady turning motion is uBy, the ship speed reduction rate during steady turning = 1- U, t, y/UO'' ujty/uo (
8), find the ship speed reduction rate during steady turning motion at δ = 35° from existing data, and calculate the steady turning angular velocity r'
An example plotted against the square of *tv is shown in FIG. Newly built ships undergo a 35° δ-earth turning test during public trials, so we can use the record of changes in ship speed at that time, and considering the measurement accuracy in the actual line test, it is relatively well-organized. , δ=35°, the rate of decrease in ship speed during steady turning speed can be said to be proportional to r'2gjv. δ−3
If we know that the equivalent value of the index during steady turning motion at 5° is E35 or -35Mtv, we can estimate the rate of decrease in ship speed during steady turning motion using Figure 6, and find K'1. From equation (2), K ′u-11′gk, V/ ((l
The value of T'o can be obtained by analyzing the transient state of ship speed reduction, or by collecting more data since we are dealing with a nonlinear form coupled with turning angular velocity. Otherwise, you will not be able to obtain accurate values.
旋回角速度の応答モデルに対して設定された値と、定常
旋回運動中の船速低下率から求めたに′oの値を用い、
旋回運動のシミュレーションを行いなから、K′u/T
′の値を試行錯誤的に求めた結果は、八FHには余り関
係なくほぼ0.77となった。K−EISの値は八FH
に対して示されているのて、定常旋回中の船速低下率は
各組型について求めることはてきるか、ある組型て舵角
かδ= 10”、 20°となったときの船速低下率の
イめは、データ数も少なくさらに調査、検討をしなけれ
ばならない。Using the value set for the turning angular velocity response model and the value of ′o determined from the ship speed reduction rate during steady turning motion,
Since the turning motion is not simulated, K′u/T
The value of ' was determined by trial and error and was approximately 0.77, which had little to do with the 8FH. K-EIS value is 8FH
Is it possible to find the rate of ship speed reduction during a steady turn for each type of ship as shown in the figure below? As there is only a small amount of data regarding the speed reduction rate, further investigation and consideration must be conducted.
(実施例)
11、fi縦運動のシミュレーション
組型主要目か与えられると、旋回角速度の応答モデルと
船速低下の応答モデルをベースとし、既存データを用い
てその船の操縦運動のシミュレーションを行って、提案
した推定法の適用性を検討する。(Example) 11. Fi Longitudinal motion simulation set When a main objective is given, the ship's maneuvering motion is simulated using existing data based on a response model of turning angular velocity and a response model of ship speed reduction. Then, we examine the applicability of the proposed estimation method.
浅水域を含め操縦性能の研究によく用いられた278.
000 DWT タンカーεsso 0sakaの操
縦性試験結果を例として、提案した手法と整理したデー
タを用いて、δ;35°の旋回運動とδ= 20’のZ
操縦運動を推定する。本船の主要目などは次の通りとす
る。278, which was often used in research on maneuverability, including in shallow water.
Taking the maneuverability test results of the 000 DWT tanker εsso 0saka as an example, using the proposed method and the organized data, we can calculate the turning motion of δ; 35° and the Z of δ = 20'.
Estimate the maneuvering motion. The main features of the vessel are as follows.
L ppm :125.00IIB = 53.00m
d = 21.73sΔ= 319.040t
C、= 0.8293 L / B = 6.1
32A R/ L d=1156.66 U 、=7
.8 Kn=4.Ol m1s(1)定常旋回特性の
推定
本線はAP11=7.563で、この八□に対して第4
図からK ’EI%= 1.:14か得られる。L ppm: 125.00IIB = 53.00m
d = 21.73sΔ= 319.040t
C, = 0.8293 L/B = 6.1
32A R/L d=1156.66 U,=7
.. 8 Kn=4. Ol m1s (1) The estimated main line of the steady turning characteristic is AP11 = 7.563, and the 4th
From the figure, K'EI%=1. :14 can be obtained.
第314からζ−を求めると、ξ とに′1−の仙Oδ
0
は
ξ、=2.2S ξ 、、、=1.60
ξ2o= 1.21K ′E5 = 3.02
K ′EIO= 2.14 K ′E2o= 1.
62と求められる。したかって、r は
δ
r ′5=0.264 r +o=O,:17:l
r 2o=0.555r :I、=0.818
となり、定常旋回特性か得られる。Determining ζ- from the 314th, we find that ξ and '1-'s Oδ
0 is ξ,=2.2S ξ,,,=1.60
ξ2o = 1.21K 'E5 = 3.02
K'EIO=2.14 K'E2o=1.
62 is required. Therefore, r is δ r '5=0.264 r +o=O, :17:l
r2o=0.555r:I,=0.818, and a steady turning characteristic can be obtained.
推定値を実船て得られるr′−6曲線と比較して第7図
に示す。Fig. 7 shows a comparison of the estimated values with the r'-6 curve obtained from the actual ship.
(2)δ=35°の旋回運動航跡の推定旋回初期はに′
2、T”zの値を用いてシミュレーションを開始し、旋
回運動か発達して定常旋回に入ればに=、の値を用いる
。K′2からに′6に移行させる時間は、旋回角速度か
最大値に達した時点とし、それから時間に比例させて徐
々に移行させるか、に′の値かに′Eに達したら移行の
操作を打ち切る。η、5= 0.7としてに’E35の
値からに′Z:15=0.938となり、第1図よりに
′z/ T ′z= 0.58、したかってT’z”1
.62か得られる。U 、tVの値は’ −:I ’
+ N l、= 0.084からu、(−= 11.[
i3.1となりK ′、、= 1[1,2T ′、=
13.2とする。(2) Estimated early stage of turning trajectory of δ=35°
2. Start the simulation using the value of T''z, and when the turning motion develops and enters a steady turning, use the value of =.The time to transition from K'2 to '6 is determined by the turning angular velocity Either the maximum value is reached, and then the transition is carried out gradually in proportion to time, or the transition operation is stopped when the value of 'E' is reached.If η, 5 = 0.7, the value of 'E35 is set. Therefore, 'Z: 15 = 0.938, and from Figure 1, 'z/ T 'z = 0.58, so T'z"1
.. You can get 62. The values of U and tV are '-:I'
+ N l, = 0.084 to u, (-= 11.[
i3.1 becomes K ′,,= 1[1,2T ′,=
13.2.
実際には既存のデータを活用して係数を1没定した応答
モデルに対して、実船における旋回運動の計測値を参照
して同定を行い、最終的な係数を設定することになるか
、この手法では最初に設定した係数の値か最終的な係数
の値に近いので、評価関数の極小値を見出すことは簡単
である。ここては最初に設定した係数の値をそのまま用
いて旋回)M動航跡を計算し、実船て得られた旋回運動
航跡の縦路、横圧との差異を見ながら、T′7の値を調
整して数回計算を繰り返し、最終的に次のように応答モ
デルの係数を設定した。In reality, for a response model in which the coefficient is set to 1 using existing data, identification is performed with reference to the measured values of the turning motion of the actual ship, and the final coefficients are set. In this method, it is easy to find the minimum value of the evaluation function because it is close to the initially set coefficient value or the final coefficient value. Here, we calculate the turning (M) wake using the initially set coefficient value as is, and while looking at the difference between the longitudinal path and lateral pressure of the turning wake obtained from the actual ship, we calculate the value of T'7. After adjusting and repeating the calculation several times, we finally set the coefficients of the response model as follows.
K ′E35= IJ4 K ′、= 0.9:18
T ′z= 1.34Ku−】1.6 T’、
=]5.0旋回運動航跡、旋回角速度、船速低下の推定
結果を、(Hydronautics Inc、 :
Conparison ofResults betw
een Comput、er Simulat、1on
s andFull−scaleTrials for
ESSO03AKA、 submittedto 1
6th ITTCManeuverability C
ol1m1t、ee。K′E35=IJ4K′,=0.9:18
T'z= 1.34Ku-]1.6 T',
=] 5.0 Estimated results of turning motion wake, turning angular velocity, and ship speed reduction, (Hydronautics Inc.:
Comparison of Results between
een Compute, er Simulat, 1 on
s and Full-scale Trials for
ESSO03AKA, submitted to 1
6th ITTC Maneuverability C
ol1mlt,ee.
Working Paper(198[]) )に記載
の実船で得られた計算値と比較して第8図に示す。応答
モデルの係数を同定して求めなくてもかなりの近似度か
得られていて、実用的には十分な精度と考えられる。Fig. 8 shows a comparison with calculated values obtained on an actual ship described in Working Paper (198 []). A fairly high degree of approximation was obtained even without identifying and finding the coefficients of the response model, and the accuracy is considered to be sufficient for practical use.
(3)δ=20°のZ操縦振動のシミュレーション旋回
運動航跡の推定て設定したT′2の値はに′):2−0
.7に相当するので、Z操縦運動てもこの値を用いるこ
ととし、最終的に次のように応答モデルの係数を設定し
た。(3) The value of T'2 set by estimating the simulation turning motion wake of Z steering vibration at δ = 20° is 2'): 2-0
.. Since this value corresponds to 7, we decided to use this value also in the Z maneuvering motion, and finally set the coefficients of the response model as follows.
K ′t□o= 1.541 r ′20 : 0.
538 からに′2=1.078 T′、=1.
54 K′、=11.5T′。δ= 15.0
としてZ操縦運動のシミュレーションを行い、方位角、
旋回角速度、船速低下の推定結果を、実船て得られた計
測値と比較して第9図に示す。この図からも実用的には
十分な結果か得られていると考える。K't□o=1.541 r'20: 0.
538 to '2=1.078 T', =1.
54 K', = 11.5T'. We simulated the Z-steering motion with δ = 15.0, and the azimuth,
The estimated results of the turning angular velocity and ship speed reduction are shown in Fig. 9 in comparison with the measured values obtained from the actual ship. We believe that this figure provides sufficient results for practical use.
これまてに蓄積されてきた実船の操縦性に関するデータ
を活用して、模型実験を実施しないて新造船の応答モデ
ルの係数を設定し、操縦性能を推定する−・L法を提案
した。この手法により任意の操船運動のシミュレーショ
ンを舶載のパソコン程度で行うことかでき、しかも実用
的に満足すべき結果か得られる。Utilizing the data on the maneuverability of actual ships that have been accumulated so far, we proposed the L method, which sets the coefficients of the response model of a new ship and estimates its maneuverability without conducting model experiments. Using this method, simulations of arbitrary ship maneuvering motions can be performed using an on-board personal computer, and results that are practically satisfactory can be obtained.
第1図は、Z操縦試験で得られたK、Twi数の値の比
と、肥瘍度と舵面積の比の関係図。
第2図は肥大船の定常旋回特性曲線図(等価に′指数の
定義)。
第3図(a)、 (b)、(c)は、最大舵角の等価指
数に対する各舵角比と、肥瘠度と舵面積の比の関係図。
第4図は、最大舵角の等価指数と、肥解度と舵面積の比
の関係図。
第5図(a)、(b)、 (c)は、旋回試験と、Z操
縦試験から得られた等価指数の比と、肥浴度と舵面積の
比との関係図。
第6図は、定常旋回運動中の船速低下率と旋回速度に2
乗との関係図。
第7図は、肥大船の定常旋回特性曲線図の推定値と実船
で得られた計測値との比較線図。
第8図(a)、 (b)、 (c)は、旋回角速度、船
速低下、旋回運動航跡の推定結果と実船で得られた計測
値との比較線図。
第9図(a)、 (bl (c)は、船速低下、旋回角
速度、方位角の推定結果と実船で得られた計測値との比
較線図。
特許出願人 日本エヤーフレーキ株式会社代 理
人 清 水 哲 ほか2名罰゛
才20
才5図
オq図FIG. 1 is a diagram showing the relationship between the ratio of the K and Twi numbers obtained in the Z steering test and the ratio of the degree of obesity to the rudder area. Figure 2 is a diagram of the steady turning characteristic curve of an enlarged ship (equivalently, the definition of the ' index). FIGS. 3(a), (b), and (c) are relationship diagrams of each rudder angle ratio with respect to the equivalent index of the maximum rudder angle, and the ratio of the degree of fatness to the rudder area. Figure 4 is a diagram showing the relationship between the equivalent index of maximum rudder angle and the ratio of fertility to rudder area. FIGS. 5(a), (b), and (c) are relationship diagrams between the ratio of the equivalent index obtained from the turning test and the Z-steering test, and the ratio of the degree of fattening and the rudder area. Figure 6 shows the relationship between ship speed reduction rate and turning speed during steady turning motion.
Relationship diagram with power. FIG. 7 is a comparison diagram between the estimated value of the steady turning characteristic curve diagram of the enlarged ship and the measured value obtained from the actual ship. FIGS. 8(a), (b), and (c) are diagrams comparing estimated results of turning angular velocity, ship speed reduction, and turning motion track with measured values obtained from an actual ship. Figures 9(a) and 9(c) are diagrams comparing the estimation results of ship speed reduction, turning angular velocity, and azimuth angle with the measured values obtained on the actual ship. Patent applicant: Japan Air Flake Co., Ltd.
Person: Tetsu Shimizu and 2 other people: 20 years old, 5 years old, square diagram
Claims (1)
をベースとし、定常旋回特性から得られるK指数は舵角
によって変わるしとて、非線形性も含めた等価K指数を
定義し、既存実船データの各舵角に対する等価K指数な
らびにZ操縦試験で得られたK、T指数の比を、船の肥
瘠度と舵面積比の比に対して整理し、船速低下率は旋回
角速度の2乗に関係するとして整理する。さらに、既存
データの旋回試験で得られた等価K指数とZ操縦試験で
得られたK指数の関係を求めておく。まず、既存データ
から新造船の最大舵角の定常旋回角速度を推定し、整理
されたデータを用いて新造船の定常旋回特性を求め、次
に、新造船のZ操縦運動に対するK、T指数を設定し、
旋回運動では旋回の発達とともに等価K指数に移って行
くものとする。最後に、新造船の公試運転時に実施され
た操縦性試験結果を参照し、設定された応答モデルを同
定することを特徴とする操縦性指数を用いた操縦運動の
推定方法。(1) Based on the turning angular velocity response model and the ship speed reduction response model, assuming that the K index obtained from steady turning characteristics changes depending on the rudder angle, an equivalent K index including nonlinearity is defined, and the existing The equivalent K index for each rudder angle of the ship data and the ratio of K and T index obtained from the Z maneuver test are arranged against the ratio of the ship's fatness and the rudder area ratio, and the ship speed reduction rate is determined by the turning angular velocity. Let's organize it as being related to the square of . Furthermore, the relationship between the equivalent K index obtained from the turning test and the K index obtained from the Z maneuver test using existing data is determined. First, estimate the steady turning angular velocity at the maximum rudder angle of the new ship from existing data, use the organized data to determine the steady turning characteristics of the new ship, and then calculate the K and T indices for the Z maneuvering motion of the new ship. Set,
In the turning movement, it is assumed that the turning movement progresses to an equivalent K index as the turning progresses. Finally, there is a method for estimating maneuvering motion using a maneuverability index, which is characterized by identifying a set response model by referring to maneuverability test results conducted during a trial run of a new ship.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27799590A JPH04154498A (en) | 1990-10-16 | 1990-10-16 | Estimating method for control motion using controllability index |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27799590A JPH04154498A (en) | 1990-10-16 | 1990-10-16 | Estimating method for control motion using controllability index |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04154498A true JPH04154498A (en) | 1992-05-27 |
Family
ID=17591163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27799590A Pending JPH04154498A (en) | 1990-10-16 | 1990-10-16 | Estimating method for control motion using controllability index |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04154498A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021098497A (en) * | 2019-12-20 | 2021-07-01 | 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 | Automatic navigation vessel simulation system and operation method thereof |
-
1990
- 1990-10-16 JP JP27799590A patent/JPH04154498A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021098497A (en) * | 2019-12-20 | 2021-07-01 | 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 | Automatic navigation vessel simulation system and operation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kijima et al. | On the manoeuvring performance of a ship with theparameter of loading condition | |
CN116245244A (en) | Extremely short-term forecasting method for ship track under influence of ocean currents | |
JPH04154498A (en) | Estimating method for control motion using controllability index | |
CN110716203A (en) | Time-frequency analysis and tracking method of passive sonar target | |
Binns et al. | The development and use of sailing simulation for IACC starting manoeuvre training | |
Aarsæther et al. | Combined maneuvering analysis, ais and full-mission simulation | |
CN118092660A (en) | A virtual interactive system for hull load identification and full-field safety assessment | |
CN111897222B (en) | Ship nonlinear extended state observer based on fractional power function | |
Baty | Effects of display gain on human operator information processing rate in a rate control tracking task | |
Iseki | Real-time estimation of the ship manoeuvrable range in wind | |
Lataire et al. | Systematic techniques for fairway evaluation based on ship manoeuvring simulations | |
Specht et al. | Work efficiency and respiratory response of trained underwater swimmers using a modified self-contained underwater breathing apparatus | |
Curtis | Determination of mariners' reaction times | |
Weiher | Measurement Estimation Accuracy: A Comparison of Different Approaches | |
van Westrenen | Towards a decision making model of river pilots | |
Chun-Ki et al. | Study on the maneuvering characteristics of a fishing vessel in shallow water | |
JP3769269B2 (en) | Navigation safety evaluation method, navigation safety evaluation system, and navigation safety evaluation program | |
CN115031764B (en) | Rapid calibration method for log | |
Gover | FREE-RUNNING MODEL TECHNIQUES FOR THE | |
Artyszuk | Optimisation of Shallow Water Coefficients Based on Sea Trials Manoeuvring | |
Verwilligen et al. | Evaluation of bank effects on a bulk carrier in a confined channel based on towing tank tests and full-scale measurement | |
Hooft | The manoeuvrability of ships as influenced by environment and human behaviour | |
Asinovsky | Approximate Determination of Ship's Hull Hydrodynamic Characteristics from Maneuvering Trials Results | |
BENEDEK | CONTRIBUTION TO THE RELATION BETWEEN THRUST DEDUCTION AND FRICTION | |
JP2007085795A (en) | Wave characteristic measuring method and apparatus |