JPH04147957A - Heat insulating aluminum-based member - Google Patents
Heat insulating aluminum-based memberInfo
- Publication number
- JPH04147957A JPH04147957A JP27137390A JP27137390A JPH04147957A JP H04147957 A JPH04147957 A JP H04147957A JP 27137390 A JP27137390 A JP 27137390A JP 27137390 A JP27137390 A JP 27137390A JP H04147957 A JPH04147957 A JP H04147957A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- film
- thermal
- ceramic coating
- sprayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は断熱アルミニウム系部材に関する。この断熱ア
ルミニウム系部材は、アルミニウム系合金を母材とし、
高温加熱される部位を有する部材、例えば、自動車用エ
ンジンのピストン等に利用することができる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat insulating aluminum member. This heat-insulating aluminum-based member uses an aluminum-based alloy as a base material,
It can be used for members having parts that are heated to high temperatures, such as the pistons of automobile engines.
[従来の技術]
断熱アルミニウム系部材のうち、例えば自動車用エンジ
ンのピストンを例にとり以下詳述する。[Prior Art] Among heat-insulating aluminum-based members, a piston for an automobile engine, for example, will be described in detail below.
近年、エンジンに使用されるピストンとしては、エンジ
ンにおける往復運動の慣性力を低減させるための軽量化
を主眼として、アルミニウム系合金により鋳造成形され
たピストンを使用することが多くなってきている。しか
し、アルミニウム系合金は熱伝導率が大きな材料である
ため、アルミニウム系合金のみからなるピストンを用い
たエンジンでは、燃焼室における燃料の燃焼によって発
生した燃焼熱がピストンを介して燃焼室外へ伝達されや
すく、その分だけエンジンの熱効率を悪化させ、エンジ
ンの出力及び燃費を低下させる傾向があった。そこで、
燃焼室外へ伝達される熱損失を低減するため、アルミニ
ウム系合金からなるピストン本体と、このピストン本体
の頂面(ピストンヘッド)等に形成された溶射セラミッ
ク皮膜とからなるピストンが提案されている(例えば、
「Cumm+ns/TACOM AdVarlded
Adiabatic Engin、JR,Kamo
et at、 SAE Paper No
。In recent years, as pistons used in engines, pistons cast from aluminum-based alloys have been increasingly used, with a focus on weight reduction in order to reduce the inertia of reciprocating motion in the engine. However, since aluminum alloy is a material with high thermal conductivity, in engines using pistons made only of aluminum alloy, the combustion heat generated by combustion of fuel in the combustion chamber is transferred to the outside of the combustion chamber through the piston. This tends to worsen the thermal efficiency of the engine and reduce the output and fuel efficiency of the engine. Therefore,
In order to reduce heat loss transferred to the outside of the combustion chamber, a piston has been proposed that consists of a piston body made of an aluminum alloy and a thermally sprayed ceramic coating formed on the top surface (piston head) of this piston body ( for example,
“Cumm+ns/TACOM AdVarlded
Adiabatic Engine, JR, Kamo
et at, SAE Paper No.
.
840428等〉。このピストンでは、溶射セラミック
皮膜が小さな熱伝導率であってかつ耐熱性に優れたセラ
ミック材料を溶射することにより形成されるものである
ため、断熱性や耐熱性が改善される。840428 etc.>. In this piston, the thermally sprayed ceramic coating is formed by thermally spraying a ceramic material with low thermal conductivity and excellent heat resistance, so that the heat insulation and heat resistance are improved.
[発明が解決しようとする課題]
しかし、上記アルミニウム系合金のピストン本体と溶射
セラミック皮膜とからなるピストンであっても、アルミ
ニム系合金の熱膨張係数と溶射セラミック皮膜の熱膨張
係数との間に大きな差があるため、エンジンの作動に伴
う加熱・冷却の繰返しの間にピストン本体と溶射セラミ
ック皮膜との界面に熱応力から亀裂を生じやすく、遂に
はピストン本体から溶射セラミック皮膜が剥離・脱落し
てしまうおそれがあった。[Problems to be Solved by the Invention] However, even with a piston made of the piston body made of an aluminum alloy and a thermally sprayed ceramic coating, there is a difference between the thermal expansion coefficient of the aluminum alloy and that of the thermally sprayed ceramic coating. Because of the large difference, cracks tend to occur at the interface between the piston body and the sprayed ceramic coating due to thermal stress during repeated heating and cooling during engine operation, and eventually the sprayed ceramic coating peels off and falls off from the piston body. There was a risk that the
このため、最近では、溶射セラミック皮膜として用いら
れる各種のセラミック材料のうち、熱膨張係数が最もア
ルミニウム系合金に近いものの一つであるジルコニア(
Zr02 )を選択することが多くなってきている。し
かしながら、ジルコニアで溶射セラミック皮膜を形成し
たピストンにおいても、わずかな熱膨張係数の相違から
、やはり溶射セラミック皮膜の剥離・脱落を確実に防止
することが困雌であった。For this reason, among the various ceramic materials used for thermal sprayed ceramic coatings, zirconia (zirconia), which has a coefficient of thermal expansion closest to that of aluminum alloys, has recently been used.
Zr02) is increasingly being selected. However, even in pistons on which a thermally sprayed ceramic coating is formed using zirconia, it is still difficult to reliably prevent the thermally sprayed ceramic coating from peeling off or falling off due to slight differences in thermal expansion coefficients.
また、熱膨張係数の差による溶射セラミック皮膜の剥離
を防止する手段として、予め母材の表面にボンド層又は
中間層と称される下地溶射層を溶射によって薄く形成し
ておき、その下地溶射層の上に溶射セラミック皮膜を形
成する手段も検討されてはいる(例えば、前掲刊行物)
。ここで使用される下地溶射層は、熱膨張係数が母材と
溶射セラミック皮膜との間の中間の金属であり、しかも
溶射セラミック皮膜との密着性が良好なもの、例えばN
i−0r−A1合金、Ni −0r−AY金合金N i
−Co−Cr −A I −Y合金等が採用される。In addition, as a means to prevent the thermal sprayed ceramic coating from peeling off due to differences in thermal expansion coefficients, a thin base thermal sprayed layer called a bond layer or intermediate layer is formed on the surface of the base material in advance by thermal spraying, and the base thermal sprayed layer is Methods of forming a thermally sprayed ceramic film on the surface of the material have also been considered (for example, the above-mentioned publication).
. The base thermal sprayed layer used here is a metal whose thermal expansion coefficient is intermediate between that of the base material and the thermal sprayed ceramic coating, and which has good adhesion to the thermal sprayed ceramic coating, such as N.
i-0r-A1 alloy, Ni-0r-AY gold alloy Ni
-Co-Cr-AI-Y alloy etc. are adopted.
しかしながら、下地溶射層を形成した場合であっても、
ヤはり熱膨脹差に起因する溶射セラミック皮膜の剥離・
脱落を防止するには未だ充分でなかった。However, even when a base thermal spray layer is formed,
Peeling of the sprayed ceramic coating due to the difference in thermal expansion
It was still not sufficient to prevent falling off.
一方、近年のエンジンの高出力化のため、エンジンの燃
斌室の高温化が進んでおり、溶射セラミック皮膜をもつ
ピストンでは従来以上の断熱性が要求されるようになっ
ている。On the other hand, due to the increase in engine output in recent years, the temperature of the combustion chamber of the engine is increasing, and pistons having a thermally sprayed ceramic coating are required to have better heat insulation than before.
高断熱性化の一つの手段として、溶射セラミック皮膜の
厚膜化が一般に考えられる。ここで、断熱度と膜厚との
関係は、同一の熱流束の場合、ノーリエの法則から式(
1)に示すように、比例関係を示す。Increasing the thickness of the thermally sprayed ceramic coating is generally considered as one means of achieving high thermal insulation properties. Here, for the same heat flux, the relationship between the degree of insulation and the film thickness is expressed by the formula (
1) shows a proportional relationship.
ΔT=Q−j!/λ・・・・・・式(1)%式%:
この断熱性向上のために溶射セラミック皮膜を厚膜にす
るとして、溶射セラミック皮膜の厚さ(am)と断熱度
(’C)の関係を第7図に示す。第7図では、セラミッ
ク材料として8重量(wt)%イツトリア安定化ジルコ
ニア(ZrO2・8Y203〉、下地溶射層として0.
1snのニッケルアルミクロム合金(Ni−20wt%
Qr−5wt%A+>を採用し、これらをディーゼルエ
ンジンのアルミニウム製のピストン本体の頂面に被覆し
て使用した場合を示す。また、この時のエンジン馬力(
ps)と溶射セラミック皮膜の表面温度(”C)との関
係を第8図に示す。ざらに、この時の溶射セラミック皮
膜の表面内に発生する熱応力をFEM計算によって締出
し、溶射セラミック皮膜の厚さ(III!I)と溶射セ
ラミック皮膜の強度に対する熱応力の割合との関係を第
9図に示す。縦軸が割合を示しており、これが1.0以
上になると損傷が予想される。第9図より、現状までの
溶射セラミック皮膜では、0.7amが使用に絶えられ
る限界厚さであることがわかる。また、第7図及び第8
図より、この時の溶射セラミック皮膜の表面温度は90
0℃(断熱度550℃)であり、可能な最大エンジン馬
力は120馬力であることがわかる。ΔT=Q−j! /λ...Formula (1) % Formula %: If the thermal sprayed ceramic coating is made thicker to improve the thermal insulation, the thickness (am) and thermal insulation degree ('C) of the thermal sprayed ceramic coating are The relationship is shown in FIG. In FIG. 7, 8% by weight (wt) yttria-stabilized zirconia (ZrO2.8Y203) is used as the ceramic material, and 0.0% is used as the base sprayed layer.
1sn nickel aluminum chromium alloy (Ni-20wt%
Qr-5wt%A+> is employed and used by coating the top surface of an aluminum piston body of a diesel engine. Also, the engine horsepower at this time (
Figure 8 shows the relationship between the thermal sprayed ceramic coating's surface temperature ("C") and the thermally sprayed ceramic coating's surface temperature. Figure 9 shows the relationship between the thickness (III!I) and the ratio of thermal stress to the strength of the sprayed ceramic coating.The vertical axis shows the ratio, and damage is expected when this is 1.0 or more. From Figure 9, it can be seen that 0.7 am is the limit thickness at which the current thermal sprayed ceramic coatings can no longer be used.Also, Figures 7 and 8
From the figure, the surface temperature of the sprayed ceramic coating at this time is 90
It can be seen that the temperature is 0°C (insulation degree 550°C), and the maximum possible engine horsepower is 120 horsepower.
しかし、エンジンの高出力化の傾向から、エンジンは1
20馬力以上の高出力になり、溶射セラミック皮膜の表
面温度が900℃を超えることも充分前えられ、この場
合には、溶射セラミック皮膜の厚膜化による高断熱性化
には限界があるためピストン本体に溶射セラミック皮膜
を形成した従来のピストンでは、皮膜が損傷しやすく、
かつ充分な断熱性をすることができない。However, due to the trend toward higher engine output, the engine
It is well predicted that the output will be as high as 20 horsepower or more, and the surface temperature of the sprayed ceramic coating will exceed 900℃.In this case, there is a limit to the ability to increase the thermal insulation properties by increasing the thickness of the sprayed ceramic coating. With conventional pistons that have a thermally sprayed ceramic coating on the piston body, the coating is easily damaged.
Moreover, it cannot provide sufficient insulation.
また、厚膜化以外の高断熱性化の二つめの手段として、
上記式(1)から明らかなように、熱伝導率を小さくす
ることも考えられる。ここで、例えば、Zroz・8Y
203を溶射する場合、気孔率(%)と熱伝導率(W/
m−K>との常温での関係は、第10図に示すように、
溶射セラミック皮膜内の気孔を増加させれば、熱伝導率
が小さくなる。また、多くの気孔を含む溶射セラミック
皮膜は、熱伝導率が焼結によって作製した焼結セラミッ
ク皮膜と比べて小さくなる。このため、溶射セラミック
皮膜の気孔を増やせば熱伝導率を小さくできることがわ
かる。In addition, as a second means of achieving high thermal insulation other than thickening the film,
As is clear from the above equation (1), it is also possible to reduce the thermal conductivity. Here, for example, Zroz・8Y
When spraying 203, the porosity (%) and thermal conductivity (W/
The relationship with m-K> at room temperature is as shown in Figure 10.
Increasing the porosity within the sprayed ceramic coating reduces thermal conductivity. Further, a thermally sprayed ceramic film containing many pores has a lower thermal conductivity than a sintered ceramic film produced by sintering. Therefore, it can be seen that the thermal conductivity can be lowered by increasing the pores of the thermally sprayed ceramic coating.
しかし、減圧溶射等の従来技術による溶射で溶射セラミ
ック皮膜の気孔を増やさんとしても、これにより粒子間
の密着力が低下してしまうため、第10図に破線で示す
ように、溶射セラミック皮膜の形成が不可能になり、一
定値以上に気孔を含ませることが不可能となる。このた
め、現状までは溶射セラミック皮膜の断熱性向上の手段
として、前記厚膜化に頼らざるを得なかった。However, even if the number of pores in the sprayed ceramic coating is increased by thermal spraying using conventional techniques such as low-pressure spraying, this will reduce the adhesion between the particles. formation becomes impossible, and it becomes impossible to include pores beyond a certain value. For this reason, until now, as a means of improving the thermal insulation properties of thermally sprayed ceramic coatings, it has been necessary to rely on increasing the thickness.
さらに、断熱性向上の三つめの手段として、第11図に
示すように、気孔91aを多く含むセラミックスラリ−
91を母材90に塗布することにより、塗布セラミック
皮膜を形成することも考えられる。セラミックスラリ−
91としては、塗布セラミック皮膜内に気孔91aを形
成させるため、炭化珪素(SiC)系の中空バルーンと
、炭化珪素系セラミック材料とからなる、つまりシリカ
(SiO2)系の材料が主として採用される。こうして
形成される塗布セラミック皮膜の気孔率は、30〜50
%であり、ZrO2・8Y203を用いた溶射セラミッ
ク皮膜と比較して、3倍以上となっている。よって、熱
伝導率も常温で約0.4W/m−K(W:ワット、K:
絶対温度)と小さく、ZrO2・8Y203の溶射セラ
ミック皮膜の1/2以下となっている。つまり、上記(
1)式によると、同一膜厚の溶射セラミック皮膜と塗布
セラミック皮膜とを比較すると、断熱度は後者が前者の
倍以上であるといえる。Furthermore, as a third means of improving heat insulation, ceramic slurry containing many pores 91a is used as shown in FIG.
It is also conceivable to form a coated ceramic film by applying 91 to the base material 90. ceramic slurry
As the material 91, in order to form pores 91a in the applied ceramic film, a silicon carbide (SiC)-based hollow balloon and a silicon carbide-based ceramic material, that is, a silica (SiO2)-based material is mainly employed. The porosity of the applied ceramic film thus formed is 30 to 50.
%, which is more than three times that of the thermal sprayed ceramic coating using ZrO2.8Y203. Therefore, the thermal conductivity is also approximately 0.4 W/m-K (W: Watt, K:
(absolute temperature), which is less than 1/2 that of the ZrO2.8Y203 thermal sprayed ceramic coating. In other words, the above (
According to equation 1), when comparing a thermally sprayed ceramic film and a coated ceramic film of the same film thickness, it can be said that the latter has a thermal insulation degree that is more than twice that of the former.
しかし、断熱性に優れた塗布セラミック皮膜ではあって
も、セラミックスラリ−の主成分が3i02で競って、
熱膨脹率が5X10−6/”Cと小さいため、アルミニ
ウム系合金からなる燃焼部品(A l : 23x10
−6 /’C)やNi基系耐熱鋼(Ni基系:15〜1
8X10−6 /’C)等の熱膨脹率の大きな母材へ適
用すると、損傷が考えられ、耐久性の面で問題がある。However, even though the coated ceramic film has excellent heat insulation properties, the main component of the ceramic slurry is 3i02.
Since the coefficient of thermal expansion is as small as 5X10-6/"C, combustion parts made of aluminum alloy (Al: 23x10
-6/'C) and Ni-based heat-resistant steel (Ni-based: 15 to 1
When applied to a base material with a large coefficient of thermal expansion such as 8X10-6/'C), damage may occur and there is a problem in terms of durability.
このため、現状までは、母材との熱膨脹差によって剥離
が生じないよう、鋳鉄等の熱膨脹率の小さな母材にしか
使用されていなかった。また、アルミニウム系合金から
なるピストン本体の頂面への被覆のように、900℃以
上になると予想される環境での使用は、熱膨脹差が低温
時以上に大きくなることから不可能であり、使用環境温
度も制限される。したがって、現状の塗布セラミック皮
膜は高い断熱性能を有していながら、より断熱性が要求
される高温域では使用できない材料であつ・た。For this reason, until now, it has only been used for base materials with a small coefficient of thermal expansion, such as cast iron, to prevent peeling due to the difference in thermal expansion with the base material. In addition, it is impossible to use the coating on the top surface of the piston body made of aluminum alloy in an environment where the temperature is expected to exceed 900℃ because the difference in thermal expansion will be greater than at low temperatures. Environmental temperature is also limited. Therefore, although the current coated ceramic coatings have high heat insulating properties, they cannot be used in high temperature ranges where higher heat insulating properties are required.
本発明は、上記従来の不具合に鑑みなされたものであっ
て、より高温条件下であっても、皮膜損傷がなく、かつ
充分に耐久性を有して断熱性を示す断熱アルミニウム系
部材を提供することを目的とする。The present invention was made in view of the above-mentioned conventional problems, and provides a heat-insulating aluminum-based member that exhibits heat-insulating properties with sufficient durability and without film damage even under higher-temperature conditions. The purpose is to
[課題を解決するための手段]
本発明の断熱アルミニウム系部材は、アルミニウム系合
金からなる母材と、該母材上に形成された溶射セラミッ
ク皮膜と、該溶射セラミック皮膜上に形成された塗布セ
ラミック皮膜とからなる断熱アルミニウム系部材であっ
て、
前記塗布セラミック皮膜は、中空バルーンを含んだ気孔
率が30〜50%、熱伝導率が0.2〜0.8W/m・
Kであることを特徴とするものである。[Means for Solving the Problems] The heat insulating aluminum member of the present invention comprises a base material made of an aluminum alloy, a sprayed ceramic coating formed on the base material, and a coating formed on the sprayed ceramic coating. A heat insulating aluminum member comprising a ceramic film, the applied ceramic film having a porosity including hollow balloons of 30 to 50% and a thermal conductivity of 0.2 to 0.8 W/m.
K.
母材はアルミニウム系合金からなる。この母材上の高温
加熱される部位には、ショツトブラスト等により凹凸状
態の処理面を設けることが好ましい。また、母材上の高
温加熱される部位又はこの部位の処理面には、Ni−C
r−Al合金、N−Cr−AI−Y合金、N i −C
o−Cr −A I−Y合金等により下地溶射層を形成
することが好ましい。この母材は、例えば自動車用エン
ジンのピストン本体として採用される。The base material is made of an aluminum alloy. It is preferable to provide an uneven treated surface by shot blasting or the like at a portion of the base material to be heated at a high temperature. In addition, Ni-C
r-Al alloy, N-Cr-AI-Y alloy, Ni-C
It is preferable to form the base sprayed layer using an o-Cr-A I-Y alloy or the like. This base material is used, for example, as a piston body for an automobile engine.
溶射セラミック皮膜は、母材上の高温加熱される部位に
、例えばジルコニア、イツトリア安定化ジルコニア等の
セラミック材料をプラズマ溶射等することにより形成さ
れる。The sprayed ceramic coating is formed by plasma spraying a ceramic material such as zirconia or ittria-stabilized zirconia onto a portion of the base material that is heated to a high temperature.
塗布セラミック皮膜は、溶射セラミック皮膜上に形成さ
れる。この塗布セラミック皮膜は、中空バルーンを含ん
だ気孔率が30〜50%であり、熱伝導率が0.2〜0
.8W/m−にである。気孔率が30%未満であれば上
記(1)式より断熱度が充分でなく、気孔率が50%を
超えると強度が充分でない。熱伝導率が0.2W/m−
に未満であれば強度が充分でなく、熱伝導率が0.8W
/m−Kを超えると断熱度が充分でない。この塗布セラ
ミック皮膜は、例えば5i02からなるセラミックバル
ーンと、5i02セラミツクからなるマトリックスとか
らなるシリカ系等のセラミック材料を塗布し、乾燥、焼
成することにより形成することができる。セラミック材
料には、例えば炭化珪素(SiC)系ファイバ等のセラ
ミック繊維を添加することが好ましい。The applied ceramic coating is formed on the thermally sprayed ceramic coating. This coated ceramic film has a porosity of 30 to 50% including hollow balloons, and a thermal conductivity of 0.2 to 0.
.. It is 8W/m-. If the porosity is less than 30%, the heat insulation degree is insufficient according to the above equation (1), and if the porosity exceeds 50%, the strength is insufficient. Thermal conductivity is 0.2W/m-
If it is less than , the strength is not sufficient and the thermal conductivity is 0.8W.
/m-K, the degree of insulation is insufficient. This coated ceramic film can be formed by applying, for example, a silica-based ceramic material consisting of a ceramic balloon made of 5i02 and a matrix made of 5i02 ceramic, followed by drying and firing. It is preferable to add ceramic fibers such as silicon carbide (SiC) fibers to the ceramic material.
溶射セラミック皮膜と塗布セラミック皮膜との間には、
両者の混合層である拡散層を設けることが好ましい。There is a gap between the thermal sprayed ceramic coating and the applied ceramic coating.
It is preferable to provide a diffusion layer that is a mixed layer of both.
[作用]
本発明の断熱アルミニウム系部材では、母材上に溶射セ
ラミック皮膜を介して中空バルーンを含んだ気孔率が3
0〜50%、熱伝導率が0.2〜0.8W/m−にの塗
布セラミック皮膜を形成している。このため、溶射セラ
ミック皮膜から塗布セラミック皮膜まで順次熱膨張率を
変化させることができる。また、同一程度の断熱性の下
で溶射セラミック皮膜及び塗布セラミック皮膜それぞれ
の膜厚を薄くできる。したがって母材と溶射セラミック
皮膜との熱膨張差による熱応力及び溶射セラミック皮膜
と塗布セラミック皮膜との熱膨張差による熱応力が緩和
され、剥離、脱落が防止される。なお、塗布セラミック
皮膜は気孔率が高いため、高い被削性が得られる。[Function] The insulating aluminum member of the present invention has a porosity of 3 including hollow balloons on the base material through a thermally sprayed ceramic coating.
A coated ceramic film having a thermal conductivity of 0 to 50% and a thermal conductivity of 0.2 to 0.8 W/m- is formed. Therefore, it is possible to sequentially change the coefficient of thermal expansion from the thermally sprayed ceramic coating to the coated ceramic coating. Furthermore, the thicknesses of the thermally sprayed ceramic coating and the coated ceramic coating can be reduced while maintaining the same degree of heat insulation. Therefore, the thermal stress due to the difference in thermal expansion between the base material and the sprayed ceramic coating and the thermal stress due to the difference in thermal expansion between the sprayed ceramic coating and the coated ceramic coating are alleviated, and peeling and falling off are prevented. In addition, since the applied ceramic film has a high porosity, high machinability can be obtained.
溶射セラミック皮膜と塗布セラミック皮膜との間に拡散
層を設けた場合には、両者の密着性が向上し、より一層
溶射セラミック皮膜から塗布セラミック皮膜まで順次熱
膨張率を変化させることができ、溶射セラミック皮膜と
塗布セラミック皮膜との熱膨張差による熱応力が一層緩
和され、剥離、脱落がより有効に防止される。When a diffusion layer is provided between the thermally sprayed ceramic film and the coated ceramic film, the adhesion between the two is improved, and the coefficient of thermal expansion can be changed sequentially from the sprayed ceramic film to the coated ceramic film. Thermal stress due to the difference in thermal expansion between the ceramic film and the applied ceramic film is further relaxed, and peeling and falling off are more effectively prevented.
また、母材上の高温加熱される部位にショツトブラスト
等により凹凸状態の処理面を設けた場合には、溶射セラ
ミック皮膜の密着性が向上する。In addition, when an uneven treated surface is provided by shot blasting or the like on a portion of the base material that is heated to a high temperature, the adhesion of the thermally sprayed ceramic coating is improved.
ざらに、母材上の高温加熱される部位又はこの部位の処
理面に下地溶射層を形成した場合にも、溶射セラミック
皮膜の密着性が向上し、熱膨張差による熱応力が緩和さ
れる。In general, when a base thermal sprayed layer is formed on a portion of the base material that is heated to a high temperature or on the treated surface of this portion, the adhesion of the thermally sprayed ceramic coating is improved and thermal stress due to the difference in thermal expansion is alleviated.
加えて、塗布セラミック皮膜を形成するセラミック材料
にセラミック繊維を添加した場合には、塗布セラミック
皮膜の強度が向上する。In addition, when ceramic fibers are added to the ceramic material forming the applied ceramic coating, the strength of the applied ceramic coating is improved.
[実施例、比較例]
以下、本発明を具体化した実施例1〜5を比較例1.2
とともに図面を参照しつつ説明する。[Examples, Comparative Examples] Examples 1 to 5 embodying the present invention will be described below as Comparative Examples 1.2.
This will be explained with reference to the drawings.
(実施例1)
母材1としてのアルミニウム合金(A112%Si)製
平板上にショツトブラスト処理を施す。(Example 1) A shot blasting treatment is performed on a flat plate made of aluminum alloy (A112%Si) as the base material 1.
この母材1は、常温で熱膨張率が23.4X10−6、
熱伝導率が105 (W/m−K)である。This base material 1 has a coefficient of thermal expansion of 23.4X10-6 at room temperature.
Thermal conductivity is 105 (W/m-K).
ブラスト材は焼成アルミナ、1200〜1400μmを
用いる。この処理面にN i CrA 1合金(N+−
20%Cr−5%AI>粉末(50〜100μm)をプ
ラズマ溶射によって厚さ0.11Nr1形成し、これを
下地溶射層2とする。この下地溶射−層2は、常温で熱
膨張率が15.0X10−6熱伝導率が6.0 (W/
m−K)である。The blasting material used is calcined alumina, 1200 to 1400 μm. NiCrA 1 alloy (N+-
20%Cr-5%AI> powder (50 to 100 μm) was formed to a thickness of 0.11Nr1 by plasma spraying, and this was used as the base sprayed layer 2. This base sprayed layer 2 has a thermal expansion coefficient of 15.0 x 10-6 and a thermal conductivity of 6.0 (W/
m-K).
下地溶射層2上にZrO2・8Y203粉末(44〜7
4μm)をプラズマ溶射し、厚さ0゜2IIIInの溶
射セラミック皮膜3を形成する。この溶射セラミック皮
膜3は、常温で熱膨張率が10゜0XIO−6、熱伝導
率が1.0 (W/m−K)である。ZrO2.8Y203 powder (44-7
4 μm) to form a thermal sprayed ceramic coating 3 having a thickness of 0°2IIIn. This thermal sprayed ceramic coating 3 has a thermal expansion coefficient of 10°0XIO-6 and a thermal conductivity of 1.0 (W/m-K) at room temperature.
SiO2からなるセラミックバルーン40〜60体積(
vol)%と、SICファイバからなるセラミック繊維
5〜20VO1%と、SiO2系セラミックからなるマ
トリックス残部とでセラミックスラリ−を調整し、この
セラミックスラリ−を溶射セラミック皮膜3上に0.2
履塗布し、1時間乾燥放置した後、400℃で30分間
保持して焼成する。これを塗布セラミック皮膜4とする
。Ceramic balloon consisting of SiO2 40-60 volume (
vol)%, 5 to 20 VO 1% of ceramic fibers made of SIC fibers, and the remainder of the matrix made of SiO2-based ceramic to prepare a ceramic slurry, and apply 0.2% of this ceramic slurry onto the thermal sprayed ceramic coating 3.
After applying the coating and leaving it to dry for 1 hour, it was held at 400°C for 30 minutes and fired. This is referred to as a coated ceramic film 4.
この塗布セラミック皮膜4は、常温で熱膨張率が5.0
X10−6、熱伝導率が0.4 (W/m−K)、気孔
率が40〜60%である。This coated ceramic film 4 has a coefficient of thermal expansion of 5.0 at room temperature.
X10-6, thermal conductivity is 0.4 (W/m-K), and porosity is 40 to 60%.
以上の手順で作成した断熱アルミニウム系部材の模式断
面図、50倍の断面写真、100倍の断面写真を第1図
、第2図、第3図に示す。A schematic sectional view, a 50x cross-sectional photograph, and a 100x cross-sectional photograph of the heat-insulating aluminum-based member produced by the above procedure are shown in FIGS. 1, 2, and 3.
(実施例2)
溶射セラミック皮膜3の膜厚を0.5IrImとした以
外は実施例1と基本的に同一の断熱アルミニウム系部材
を作成する。(Example 2) A heat-insulating aluminum-based member is produced which is basically the same as in Example 1 except that the thickness of the thermally sprayed ceramic coating 3 is 0.5 IrIm.
(実施例3)
溶射セラミック皮膜3と塗布セラミック皮[14との密
着力を上げるために次に述べる処理を行った以外は実施
例1と基本的に同一の断熱アルミニウム系部材を作成す
る。(Example 3) A heat-insulating aluminum-based member basically the same as in Example 1 was prepared except that the following treatment was performed to increase the adhesion between the thermal sprayed ceramic coating 3 and the coated ceramic coating [14].
すなわち、塗布セラミック皮膜の下部0.1amをセラ
ミックスラリ−とジルコニアとの混合組織とするため、
溶射セラミック皮膜上にあらかじめセラミックスラリ−
とZr’02・8Y203粉末(粒度44〜74μm)
を体積比で50%混合したものを0.1m1l+塗布し
、その上にセラミックスラリ−を0.1m塗布、形成さ
せた。この混合組織を拡散層51とする。That is, in order to make the lower 0.1 am of the applied ceramic film a mixed structure of ceramic slurry and zirconia,
Ceramic slurry is applied on the thermal sprayed ceramic coating in advance.
and Zr'02.8Y203 powder (particle size 44-74μm)
0.1 ml+ of a mixture of 50% by volume was applied, and 0.1 m of ceramic slurry was applied thereon to form a ceramic slurry. This mixed structure is used as the diffusion layer 51.
以上の手順で作成した断熱アルミニウム系部材の模式断
面図を第4図に示す。FIG. 4 shows a schematic cross-sectional view of the heat-insulating aluminum-based member produced by the above procedure.
(実施例4)
溶射セラミック皮膜3と塗布セラミック皮膜4との密着
力を上げるために次に述べる処理を行った以外は実施例
1と基本的に同一の断熱アルミニウム系部材を作成する
。(Example 4) A heat-insulating aluminum-based member basically the same as in Example 1 was prepared except that the following treatment was performed to increase the adhesion between the thermally sprayed ceramic coating 3 and the coated ceramic coating 4.
すなわち、溶射セラミック皮膜3の上部0.1MにAI
粉末(粒度44〜74μTrL)を体積比で50%含有
させる。その後、溶射セラミック皮膜4の上部から水酸
化ナトリウム溶液等の強アルカリ溶液を含浸させ、A1
粉末を化学的に溶解させる。その表面を中和、洗浄した
後、前記セラミックスラリ−を塗布し、真空チャンバ内
にこれを設置し、溶射セラミック皮膜4内の気孔部分(
AI粉末除去部分:拡散層52)に強制的にセラミック
スラリ−を含浸させる。That is, AI is applied to the upper 0.1M of the thermal sprayed ceramic coating 3.
Powder (particle size 44 to 74 μTrL) is contained in a volume ratio of 50%. After that, a strong alkaline solution such as a sodium hydroxide solution is impregnated from the upper part of the thermal sprayed ceramic coating 4, and A1
Chemically dissolve the powder. After neutralizing and cleaning the surface, the ceramic slurry is applied and placed in a vacuum chamber.
The portion from which the AI powder has been removed: the diffusion layer 52) is forcibly impregnated with ceramic slurry.
以上の手順で作成した断熱アルミニウム系部材の模式断
面図を第5図に示す。FIG. 5 shows a schematic cross-sectional view of the heat-insulating aluminum-based member produced by the above procedure.
(実施例5)
溶射セラミック皮膜3と塗布セラミック皮膜4との密着
力を上げるために次に述べる処理を行った以外は実施例
1と基本的に同一の断熱アルミニウム系部材を作成する
。(Example 5) A heat-insulating aluminum-based member basically the same as Example 1 was prepared except that the following treatment was performed to increase the adhesion between the thermally sprayed ceramic coating 3 and the coated ceramic coating 4.
すなわち、実施例4と同様に、溶射セラミック皮膜4内
にセラミックスラリ−を含浸させるが、この際、A1粉
末に代えてポリエステル樹脂粉末(粒度44〜74μm
)を用い、セラミックスラリ−塗布前にこれを火炎によ
って焼失させ、溶射セラミック皮膜内に気孔をもつ拡散
層53を設ける。That is, as in Example 4, the thermal sprayed ceramic coating 4 is impregnated with ceramic slurry, but at this time, polyester resin powder (particle size 44 to 74 μm) is used instead of A1 powder.
), and before applying the ceramic slurry, it is burnt out with flame to provide a diffusion layer 53 with pores in the sprayed ceramic coating.
以上の手順で作成した断熱アルミニウム系部材の模式断
面図も第5図に示す。A schematic cross-sectional view of the heat insulating aluminum member produced by the above procedure is also shown in FIG.
(比較例1)
従来の断熱アルミニウム系部材として、下地溶射層2に
溶射セラミック皮膜3を形成し、塗布セラミック皮膜4
を形成しない以外は実施例1と基本的に同一の断熱アル
ミニウム系部材を作成する。(Comparative Example 1) As a conventional heat insulating aluminum member, a thermal sprayed ceramic coating 3 was formed on a base thermal sprayed layer 2, and a coated ceramic coating 4 was formed on the base thermal sprayed layer 2.
A heat-insulating aluminum-based member that is basically the same as in Example 1 except that it is not formed is produced.
(比較例2)
従来の断熱アルミニウム系部材として、母材1に塗布セ
ラミック皮膜4を形成したのみである以外は実施例1と
基本的に同一の断熱アルミニウム系部材を作成する。(Comparative Example 2) As a conventional heat-insulating aluminum-based member, a heat-insulating aluminum-based member that is basically the same as in Example 1 except that a coated ceramic film 4 is only formed on the base material 1 is created.
[熱サイクル試験評価]
熱サイクル試験によって、実施例1〜5の断熱アルミニ
ウム系部材が比較例1.2のものと比較してどの程度の
耐久性の向上を示すかを確認した。[Heat Cycle Test Evaluation] A heat cycle test was conducted to confirm how much improvement in durability the heat insulating aluminum members of Examples 1 to 5 exhibited compared to those of Comparative Example 1.2.
調査対象を以下に示す。The survey targets are shown below.
サンプルNo、1・・・比較例1の断熱アルミニウム系
部材
サンプルNo、2.3・・・実施例2.1の断熱アルミ
ニウム系部材
サンプルN004・・・比較例2の断熱アルミニウム系
部材
サンプルNo、5〜7・・・実施例2〜4の断熱アルミ
ニウム系部材
なお、これら調査対象の断熱度は同一になるように計算
しである。Sample No. 1...Insulating aluminum member sample No. of Comparative Example 1, 2.3...Insulating aluminum member sample No. 004 of Example 2.1...Insulating aluminum member sample No. of Comparative Example 2, 5 to 7...Insulating aluminum-based members of Examples 2 to 4 The degrees of insulation of these objects to be investigated were calculated to be the same.
試験条件は、水冷とバーナ火炎(最表面温度900℃)
の熱サイクル評価である。この試験結果を第6図に示す
。Test conditions were water cooling and burner flame (top surface temperature 900℃)
This is a thermal cycle evaluation. The test results are shown in FIG.
比較例1(サンプルN0.1>、つまり塗布セラミック
皮膜4を形成しない従来の断熱アルミニウム系部材では
、表面温度900℃を断熱するのに0.7j1mの皮膜
厚さを必要とすることは前述した通りであるが、150
サイクルで剥離が生じた。As mentioned above, Comparative Example 1 (Sample No. 1>, that is, a conventional heat-insulating aluminum-based member without coating ceramic film 4, requires a film thickness of 0.7 m to insulate a surface temperature of 900°C. As expected, 150
Peeling occurred during cycling.
また、比較例2(サンプルNo、4)、つまり下地溶射
層2に塗布セラミック皮膜4を形成した従来の断熱アル
ミニウム系部材では、皮膜厚さが0、281111で同
等の断熱性を示すが、60サイクルで剥離が生じた。Comparative Example 2 (Sample No. 4), that is, a conventional heat-insulating aluminum-based member in which a coated ceramic film 4 was formed on the base thermal sprayed layer 2, showed the same heat insulation properties with a film thickness of 0.281111, but 60. Peeling occurred during cycling.
一方、実施例2(サンプルNo、2>、つまり下地溶射
層2に0.5#Iの溶射セラミック皮膜3と0.087
11111の塗布セラミック皮膜4とを形成した断熱ア
ルミニウム系部材では、700サイクルで剥離を生じた
。On the other hand, Example 2 (sample No. 2>, that is, the base thermal sprayed layer 2 has a thermally sprayed ceramic coating 3 of 0.5#I and a thermally sprayed ceramic coating 3 of 0.087
In the heat insulating aluminum member formed with the coated ceramic film 4 of No. 11111, peeling occurred after 700 cycles.
また、実施例1(サンプルNo、3)、つまり下地溶射
層2に0.2mの溶射セラミック皮膜3と0.2mの塗
布セラミック皮膜4とを形成した断熱アルミニウム系部
材では、1700サイクルで剥離が生じた。In addition, in Example 1 (sample No. 3), that is, in a heat-insulating aluminum member in which a 0.2 m long thermal sprayed ceramic film 3 and a 0.2 m long applied ceramic film 4 were formed on the base thermal sprayed layer 2, peeling occurred after 1700 cycles. occured.
この結果より、この試験条件の場合、実施例1の断熱ア
ルミニウム系部材が耐久性に有利であるといえるが、使
用環境によって、最適組合せは変ると考えられる。From this result, it can be said that the heat insulating aluminum member of Example 1 is advantageous in terms of durability under these test conditions, but it is thought that the optimal combination will vary depending on the usage environment.
また、実施例3〜5(サンプルNO,5〜7)、つまり
溶射セラミック皮膜3と塗布セラミック皮膜4との間に
拡散層51〜53を設けた断熱アルミニウム系部材は、
2000サイクルでも剥離を生じなかった。In addition, Examples 3 to 5 (Samples Nos. 5 to 7), that is, heat-insulating aluminum-based members in which diffusion layers 51 to 53 were provided between the thermally sprayed ceramic film 3 and the applied ceramic film 4,
No peeling occurred even after 2000 cycles.
このため、これらの断熱アルミニウム系部材は、単に溶
射セラミック皮膜3上に塗布セラミック皮膜4を形成し
た実施例1.2(サンプルN003.2)のものに比べ
、耐久性が向上していることが明らかである。Therefore, the durability of these heat-insulating aluminum-based members is improved compared to that of Example 1.2 (sample N003.2), in which the coated ceramic film 4 was simply formed on the thermally sprayed ceramic film 3. it is obvious.
以上の評価より、溶射セラミック皮膜3と塗布セラミッ
ク皮膜4とをもつ断熱アルミニウム系部材は、従来の溶
射セラミック皮膜3又は塗布セラミック皮膜4のみをも
つ断熱アルミニウム系部材よりも耐久性が向上すること
がわかる。From the above evaluation, the durability of a heat-insulating aluminum-based member having a thermally sprayed ceramic film 3 and a coated ceramic film 4 is improved compared to a heat-insulating aluminum-based member having only a conventional thermally sprayed ceramic film 3 or a coated ceramic film 4. Recognize.
また、溶射セラミック皮膜3と塗布セラミック皮膜4と
をもつものであっても、両者間に拡散層51〜53を形
成することにより、より耐久性が向上することもわかる
。It can also be seen that even in the case of having the thermally sprayed ceramic coating 3 and the coated ceramic coating 4, the durability is further improved by forming the diffusion layers 51 to 53 between them.
[実機試験評価]
ここでは、実際にピストン本体を母材とし、このピスト
ン本体の頂面に溶射セラミック皮膜等を被覆した場合の
実機試験を行った。調査対象を以下にボす。[Actual machine test evaluation] Here, an actual machine test was conducted in which the piston body was actually used as the base material and the top surface of the piston body was coated with a thermally sprayed ceramic coating or the like. The survey targets are listed below.
サンプルNo、1・・・比較例1の断熱アルミニウム系
部材と同様に形成したピストン
サンプルNo、3・・・実施例1の断熱アルミニウム系
部材と同様に形成したピストン
サンプルNo、4・・・比較例2の断熱アルミニウム系
部材と同様に形成したピストン
サンプルN005・・・実施例5の断熱アルミニウム系
部材と同様に形成したピストン
これらをディーゼルエンジンに組付け、50馬力、95
馬力、120馬力、150馬力でそれぞれ500時間連
続運転を行ない、皮膜損傷の有無を確認した。この結果
を第1表に示す。Sample No. 1... Piston sample No. 3, formed in the same manner as the heat insulating aluminum member of Comparative Example 1. Piston sample No. 4, formed in the same manner as the heat insulating aluminum member of Example 1. Comparison Piston sample No. 005 formed in the same manner as the heat insulating aluminum member of Example 2...Piston formed in the same manner as the heat insulating aluminum member of Example 5 These were assembled into a diesel engine, 50 horsepower, 95
Continuous operation was performed for 500 hours at horsepower, 120 horsepower, and 150 horsepower, respectively, and the presence or absence of film damage was confirmed. The results are shown in Table 1.
比較例1(サンプルN001>のピストンでは95馬力
で亀裂が認められ、120馬力では完全に皮膜剥離が生
じた。In the piston of Comparative Example 1 (Sample No. 001), cracks were observed at 95 horsepower, and complete peeling of the coating occurred at 120 horsepower.
また、比較例2(サンプルNo、4>のピストンでは5
0馬力ですら剥離が生じた。In addition, the piston of Comparative Example 2 (Sample No. 4>
Even at 0 horsepower, peeling occurred.
一方、実施例1(サンプルNo、3>のピストンでは1
20馬力まで良好な結果を示したが、1第1表
○:皮皮膜損傷的られず良好
△::膜内に亀裂が認められ、今後剥離の可能性X:皮
膜剥離、亀裂が認められた。On the other hand, in the piston of Example 1 (sample No. 3), 1
Good results were shown up to 20 horsepower, but Table 1: ○: No damage to the coating, good condition △:: Cracks were observed in the membrane, and there is a possibility of peeling in the future.X: Peeling and cracks of the coating were observed. .
50馬力では皮膜内に若干亀裂が認められた。At 50 horsepower, some cracks were observed in the film.
また、実施例5(サンプルNo、5>のピストンでは1
50馬力の耐久試験後でも皮膜亀裂等の不具合は認めら
れなかった。In addition, in the piston of Example 5 (sample No. 5>), 1
Even after a 50 horsepower durability test, no defects such as film cracks were observed.
以上の評価によって、実施例1.5のピストンは、従来
のピストンで耐久が不可能な高馬力であっても充分使用
可能であることがわかる。The above evaluation shows that the piston of Example 1.5 can be used satisfactorily even at high horsepower, which conventional pistons cannot withstand.
また、実施例1.5のピストンでは、頂面の表面が多く
の気孔をもちかつ被削性に優れた塗布セラミック皮膜と
なっている。このため、実施例1.5のピストンでは、
後加工が従来のピストンより容易となり、切削トルクが
従来の1/10以下になるとともに、工具野命(摩耗)
が10倍以上向上した。したがって、従来よりも加工に
要する時間が短縮でき、かつ刃具コストが低減できた。Further, in the piston of Example 1.5, the top surface is a coated ceramic film having many pores and excellent machinability. Therefore, in the piston of Example 1.5,
Post-processing is easier than with conventional pistons, cutting torque is less than 1/10 of conventional pistons, and tool life (wear) is reduced.
improved by more than 10 times. Therefore, the time required for machining can be reduced compared to the conventional method, and the cost of cutting tools can be reduced.
[発明の効果]
以上詳述したように、本発明の断熱アルミニウム系部材
は、アルミニウム系合金からなる母材に溶射セラミック
皮膜と塗布セラミック皮膜とを形成し、塗布セラミック
皮膜は中空バルーンを含んで気孔率が30〜50%、熱
伝導率が0.2〜0゜8W/m−にであるため、より高
温条件下であっても、皮膜損傷がなく、かつ充分に断熱
性を示すことができる。[Effects of the Invention] As detailed above, the heat-insulating aluminum member of the present invention has a thermally sprayed ceramic film and a coated ceramic film formed on a base material made of an aluminum alloy, and the coated ceramic film includes a hollow balloon. Since the porosity is 30 to 50% and the thermal conductivity is 0.2 to 0.8 W/m-, the film will not be damaged and will exhibit sufficient heat insulation even under higher temperature conditions. can.
したがって、この断熱アルミニウム系部材を自動車用エ
ンジンのピストンに採用すれば、そのエンジンが120
馬力を超える高出力のものであっても、充分な耐久性を
発揮することができる。Therefore, if this heat-insulating aluminum-based member is adopted for the piston of an automobile engine, the engine will be
Even with high output that exceeds horsepower, it can exhibit sufficient durability.
また、この断熱アルミニウム系部材は、表面が塗布セラ
ミック皮膜であるため、加工に要する時間が短縮でき、
かつ刃具コストを低減することもできる。
\Additionally, since the surface of this heat-insulating aluminum-based member is coated with a ceramic coating, the time required for processing can be shortened.
Moreover, the cutting tool cost can also be reduced.
\
第1〜3図は実施例1の断熱アルミニウム系部材に係り
、第1図は模式断面図、第2図は粒子構造を示す50倍
の顕微鏡写真、第3図は粒子構造を示1100倍の顕微
鏡写真である。第4図は実施例2の断熱アルミニウム系
部材を示す模式断面図である。第5図は実施例3.4の
断熱アルミニウム系部材を示す模式断面図である。第6
図は実施例及び比較例の熱サイクル試験の結果を示すグ
ラフである。第7〜11図は従来の断熱アルミニウム系
部材に係り、第7図は溶射セラミック皮膜の膜厚と断熱
度との関係を示すグラフ、第8図はエンジン馬力と温度
との関係を示すグラフ、第9図は溶射セラミック皮膜と
強度弁の熱応力との関係を示すグラフ、第10図は気孔
率と熱伝導率との関係を示すグラフ、第11図は模式断
面図である。
1・・・母材 2・・・下地溶射層3・・・溶
射セラミック皮膜
4・・・塗布セラミック皮膜
51.52.53・・・拡散層Figures 1 to 3 relate to the heat insulating aluminum member of Example 1. Figure 1 is a schematic cross-sectional view, Figure 2 is a 50x photomicrograph showing the particle structure, and Figure 3 is a 1100x photomicrograph showing the particle structure. This is a microscopic photograph. FIG. 4 is a schematic sectional view showing a heat insulating aluminum member of Example 2. FIG. 5 is a schematic sectional view showing the heat insulating aluminum member of Example 3.4. 6th
The figure is a graph showing the results of thermal cycle tests of Examples and Comparative Examples. Figures 7 to 11 relate to conventional heat-insulating aluminum members, Figure 7 is a graph showing the relationship between the thickness of the thermally sprayed ceramic coating and the degree of insulation, Figure 8 is a graph showing the relationship between engine horsepower and temperature; FIG. 9 is a graph showing the relationship between the thermal sprayed ceramic coating and the thermal stress of the strength valve, FIG. 10 is a graph showing the relationship between porosity and thermal conductivity, and FIG. 11 is a schematic cross-sectional view. 1... Base material 2... Base sprayed layer 3... Thermal sprayed ceramic coating 4... Coated ceramic coating 51.52.53... Diffusion layer
Claims (1)
形成された溶射セラミック皮膜と、該溶射セラミック皮
膜上に形成された塗布セラミック皮膜とからなる断熱ア
ルミニウム系部材であつて、前記塗布セラミック皮膜は
、中空バルーンを含んだ気孔率が30〜50%、熱伝導
率が0.2〜0.8W/m・Kであることを特徴とする
断熱アルミニウム系部材。(1) A heat insulating aluminum member comprising a base material made of an aluminum alloy, a thermally sprayed ceramic film formed on the base material, and a coated ceramic film formed on the sprayed ceramic film, wherein the The ceramic film is a heat insulating aluminum member characterized by having a porosity of 30 to 50% including hollow balloons and a thermal conductivity of 0.2 to 0.8 W/m·K.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27137390A JPH04147957A (en) | 1990-10-09 | 1990-10-09 | Heat insulating aluminum-based member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27137390A JPH04147957A (en) | 1990-10-09 | 1990-10-09 | Heat insulating aluminum-based member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04147957A true JPH04147957A (en) | 1992-05-21 |
Family
ID=17499168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27137390A Pending JPH04147957A (en) | 1990-10-09 | 1990-10-09 | Heat insulating aluminum-based member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04147957A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004515649A (en) * | 2000-12-08 | 2004-05-27 | サルツァー・メトコ(ユーエス)・インコーポレーテッド | Pre-alloy stabilized zirconia powder and improved thermal barrier coating |
JP2006097042A (en) * | 2004-09-28 | 2006-04-13 | Hitachi Ltd | Heat resistant member having a thermal barrier coating and gas turbine |
JP2006275499A (en) * | 2005-03-01 | 2006-10-12 | Ngk Insulators Ltd | Continuous heat treatment furnace and heat treatment method |
JP2013185200A (en) * | 2012-03-07 | 2013-09-19 | Mazda Motor Corp | Thermal insulation coating structure and method for producing the same |
JP2016180157A (en) * | 2015-03-24 | 2016-10-13 | いすゞ自動車株式会社 | Formation method of porous thermal-sprayed film, and internal combustion engine |
JP2016183065A (en) * | 2015-03-26 | 2016-10-20 | 太平洋セメント株式会社 | Composite hollow particle |
JP2018168836A (en) * | 2017-03-30 | 2018-11-01 | 三菱重工業株式会社 | Heat shielding film layer formation method and engine component including heat shielding film layer |
-
1990
- 1990-10-09 JP JP27137390A patent/JPH04147957A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004515649A (en) * | 2000-12-08 | 2004-05-27 | サルツァー・メトコ(ユーエス)・インコーポレーテッド | Pre-alloy stabilized zirconia powder and improved thermal barrier coating |
JP2006097042A (en) * | 2004-09-28 | 2006-04-13 | Hitachi Ltd | Heat resistant member having a thermal barrier coating and gas turbine |
JP4607530B2 (en) * | 2004-09-28 | 2011-01-05 | 株式会社日立製作所 | Heat resistant member having a thermal barrier coating and gas turbine |
US7901790B2 (en) | 2004-09-28 | 2011-03-08 | Hitachi, Ltd. | High temperature component with thermal barrier coating and gas turbine using the same |
EP1640477B2 (en) † | 2004-09-28 | 2018-11-07 | Mitsubishi Hitachi Power Systems, Ltd. | High temperature component with thermal barrier coating and gas turbine using the same |
JP2006275499A (en) * | 2005-03-01 | 2006-10-12 | Ngk Insulators Ltd | Continuous heat treatment furnace and heat treatment method |
JP2013185200A (en) * | 2012-03-07 | 2013-09-19 | Mazda Motor Corp | Thermal insulation coating structure and method for producing the same |
JP2016180157A (en) * | 2015-03-24 | 2016-10-13 | いすゞ自動車株式会社 | Formation method of porous thermal-sprayed film, and internal combustion engine |
JP2016183065A (en) * | 2015-03-26 | 2016-10-20 | 太平洋セメント株式会社 | Composite hollow particle |
JP2018168836A (en) * | 2017-03-30 | 2018-11-01 | 三菱重工業株式会社 | Heat shielding film layer formation method and engine component including heat shielding film layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5384200A (en) | Thermal barrier coating and method of depositing the same on combustion chamber component surfaces | |
KR840001683B1 (en) | Manufacturing method of metal products coated with durable ceramic thermal barrier coating | |
US4942732A (en) | Refractory metal composite coated article | |
US4889776A (en) | Refractory metal composite coated article | |
US5223045A (en) | Refractory metal composite coated article | |
WO1993024672A1 (en) | Ceramic thermal barrier coating for rapid thermal cycling applications | |
JPH0333428B2 (en) | ||
JPS61207566A (en) | Formation of thermally sprayed ceramic film | |
CN111279008A (en) | Internal combustion engine component with dynamic thermal barrier coating and methods of making and using such coating | |
US4927714A (en) | Refractory metal composite coated article | |
EP0508731A2 (en) | Use of an oxide coating to enhance the resistance to oxidation and corrosion of a silicon nitride based gas turbine blade | |
JPH04147957A (en) | Heat insulating aluminum-based member | |
GB2130244A (en) | Forming coatings by hot isostatic compaction | |
JPS63274751A (en) | Ceramic thermally sprayed member | |
JPH0688197A (en) | Surface layer of dynamic and static vanes | |
JPS62210329A (en) | Ceramic coated heat resistant member and its manufacturing method | |
JPS61174385A (en) | Ceramic coated heat resistant member and its manufacturing method | |
RU2260071C1 (en) | Method of application of heat-insulating erosion-resistant coat | |
JPS6155589B2 (en) | ||
Velusamy et al. | Evaluation of mechanical, tribological, and thermal characterization of GZ TBCs for heavy duty diesel engine application | |
Abbas et al. | Enhancement of the hardness and wear-resistance of aluminum-silicon alloy using atmospheric plasma-sprayed ZrO2, Al2O3-ZrO2 multilayer, and Al2O3/ZrO2 composite coatings | |
RU2586376C2 (en) | High-temperature heat-resistant coating | |
Majeed et al. | Review of ceramic materials that used as a thermal barrier in diesel engine pistons | |
JPH0465143B2 (en) | ||
JPS5811796A (en) | Heat protective heat resistant alloy structure and coating of surface of heat resistant alloy |