[go: up one dir, main page]

JPH04146763A - Gelatinous material sticking method to medical substrate - Google Patents

Gelatinous material sticking method to medical substrate

Info

Publication number
JPH04146763A
JPH04146763A JP2270421A JP27042190A JPH04146763A JP H04146763 A JPH04146763 A JP H04146763A JP 2270421 A JP2270421 A JP 2270421A JP 27042190 A JP27042190 A JP 27042190A JP H04146763 A JPH04146763 A JP H04146763A
Authority
JP
Japan
Prior art keywords
gel
substance
medical
substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2270421A
Other languages
Japanese (ja)
Inventor
Yoshihito Takano
高野 良仁
Masaki Nishihara
勝紀 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2270421A priority Critical patent/JPH04146763A/en
Publication of JPH04146763A publication Critical patent/JPH04146763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To stick a gelatinous material on the surface of a medical substrate to a uniform thickness without requiring a high-concentration or large-quantity reaction solution by reacting multiple Liquids on the surface of the medical substrate to form the gelatinous material, and pressing and sticking the obtained gelatinous material on the surface of the medical substrate. CONSTITUTION:A substrate is dipped in a gel-active material solution and lifted, it is then dipped in a gel precursor solution, and a gel-active material and a gel precursor are reacted to form a gelatinous material on the surface of a substrate. The order of the solutions to be dipped is not restricted in particular. The gelatinous material is formed to sandwich the substrate, if the substrate is tubular, the solutions may be injected and reacted into the tubular substrate, thus the gelatinous material can be formed only on the inner face. The obtained gelatinous material may be pressed and stuck to the surface of a medical substrate with a member inactive to the solutions to be reacted and the substrate and matching the shape of the medical substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、医療用基材へのゲル状物質の付着方法に関す
る。さらに詳しくは、本発明は、人工血管用管状体の内
腔面に、フィブリン、コラーゲン等のゲル状物質を付着
させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for attaching a gel-like substance to a medical substrate. More specifically, the present invention relates to a method for attaching a gel-like substance such as fibrin or collagen to the lumen surface of a tubular body for an artificial blood vessel.

(従来の技術) 近年、医療のめざましい進歩とともに、直接血液と接触
する箇所に、各種の医用器具、例えば、人工血管、血管
カテーテル、体外循環血液回路、人工臓器等が広(用い
られるようになってきた。
(Prior Art) In recent years, with the remarkable progress of medical care, various medical devices such as artificial blood vessels, vascular catheters, extracorporeal blood circulation circuits, and artificial organs have become widespread (and increasingly used) in areas that come into direct contact with blood. It's here.

これらの医用器具には、耐久性等の物理的性質が良好で
あるのはもちろんのこと、さらに、優れた抗血栓性、組
織適合性等が要求される。
These medical devices are required not only to have good physical properties such as durability, but also to have excellent antithrombotic properties, tissue compatibility, and the like.

医用器具に抗血栓性を付与する手法としては、医用器具
を構成する素材自体の構造、物性を変化させて抗血栓性
を発揮させる方法と、抗凝固剤等の抗血栓性を有する物
質を当該医用器具の血液と接触する箇所に付与して抗血
栓性を発揮させる方法に大別できる。
There are two methods for imparting antithrombotic properties to medical devices: one is to change the structure and physical properties of the materials that make up the medical device to exhibit antithrombotic properties, and the other is to add antithrombotic substances such as anticoagulants to the material. It can be broadly divided into methods to exert antithrombotic properties by applying it to the parts of medical instruments that come into contact with blood.

特に、後者の方法に用いられる物質としては、コラーゲ
ン、フィブリン等の生体組織由来蛋白質、あるいはヘパ
リン等のトロンビン活性抑制因子が知られている。
Particularly, as substances used in the latter method, biological tissue-derived proteins such as collagen and fibrin, and thrombin activity inhibitors such as heparin are known.

特に、フィブリンは、血液線溶系に作用する酵素である
組織プラスミノーゲン活性化因子を活性化することが知
られている [Co11en、 D、 :Thrombos、 Tl
aemostas、 43ニア7、1980]本発明者
等は、先に、フィブリンを人工血管用管状体の内腔面に
付与するに際し、当該管状体内腔にトロンビン溶液、フ
ィブリノーゲン溶液を順次注入するか、あるいは当該管
状体をトロンビン溶液、フィブリノーゲン溶液に順次浸
漬することにより、トロンビンとフィブリノーゲンを反
応させ、当該管状体の内腔面(浸漬する場合は外表面に
も)に、実質的に血球を含まず、優れた抗血栓性を発揮
するフィブリンゲルを付与する方法を開示した。[特願
昭63−270788号]また、本発明者等は、先に、
可溶性エラスチン配合フィブリンを人工血管用管状体の
内腔面に付与するに際し、当該管状体内腔にトロンビン
溶液、エラスチン含有フィブリノーゲン溶液を順次注入
するか、あるいは当該管状体を、トロンビン溶液、エラ
スチン含有フィブリノーゲン溶液に順次浸漬することに
より、トロンビンとフィブリノーゲンを反応させ、当該
管状体の内腔面に、エラスチン配合フィブリンを付与す
る方法を開示した。[特願昭2−53410号] これらの方法でも、人工血管用管状体の内腔面に優れた
抗血栓性を発揮するフィブリン層を付与することができ
るが、フィブリン層の厚みを均一に制御することが困難
なため、得られた人工血管を移植した際に、部分的では
あるが血栓の付着が認められることがあった。また、移
植時の生体適合性(細胞誘導性)を高めるために、当該
人工血管用管状体は多孔質素材で形成されていることが
一般的であるが、上記の方法により多孔質素材表面にフ
ィブリン層を形成すると、孔内にフィブリンが十分侵入
しないので、血液の漏出する虞れが高くなったり、ある
いは基材へのフィブリンの付着力が不十分なので剥離し
やすいという問題があった。さらに、浸漬によりゲル状
物質を形成させる方法においては、基材をサンドイッチ
するようにしてゲル状物質が形成されるが、基材の孔内
に空気が残留し、このため移植時に血液の漏出する虞れ
が高くなったり、基材の物性も低下してしまう虞れがあ
った。
In particular, fibrin is known to activate tissue plasminogen activator, an enzyme that acts on the blood fibrinolytic system [Co11en, D.: Thrombos, Tl.
amostas, 43 Near 7, 1980] The present inventors first applied fibrin to the lumen surface of a tubular body for an artificial blood vessel, by sequentially injecting a thrombin solution and a fibrinogen solution into the lumen of the tubular body, or By sequentially immersing the tubular body in a thrombin solution and a fibrinogen solution, thrombin and fibrinogen are allowed to react, and the lumen surface (or outer surface when immersed) of the tubular body is substantially free of blood cells. A method for providing fibrin gel that exhibits excellent antithrombotic properties has been disclosed. [Patent Application No. 63-270788] Also, the present inventors previously
When applying fibrin containing soluble elastin to the lumen surface of a tubular body for an artificial blood vessel, a thrombin solution and an elastin-containing fibrinogen solution are sequentially injected into the lumen of the tubular body, or a thrombin solution and an elastin-containing fibrinogen solution are applied to the tubular body. Disclosed is a method of applying elastin-containing fibrin to the lumen surface of the tubular body by reacting thrombin and fibrinogen by sequentially immersing the tubular body in water. [Japanese Patent Application No. 53410/1989] Although these methods can also provide a fibrin layer that exhibits excellent antithrombotic properties to the lumen surface of a tubular body for an artificial blood vessel, it is difficult to uniformly control the thickness of the fibrin layer. Because it is difficult to do so, when the obtained artificial blood vessel was transplanted, thrombus adhesion was sometimes observed, albeit partially. In addition, in order to improve biocompatibility (cell conductivity) during transplantation, the tubular body for artificial blood vessels is generally made of a porous material. When a fibrin layer is formed, there is a problem that the fibrin does not sufficiently penetrate into the pores, increasing the risk of blood leakage, or that the fibrin has insufficient adhesion to the base material, making it easy to peel off. Furthermore, in the method of forming a gel-like substance by immersion, the gel-like substance is formed by sandwiching the base materials, but air remains in the pores of the base material, resulting in blood leakage during transplantation. There was a risk that the risk would increase and the physical properties of the base material would also deteriorate.

なお、血液の漏出を防止するために、フィブリン層を厚
く形成させることも考えられるが、高濃度かつ多量のフ
ィブリノーゲン溶液を必要とするため、経済性が悪く、
また細径の人工血管には適用し難いという問題があった
It is possible to form a thick fibrin layer to prevent blood leakage, but this requires a high concentration and large amount of fibrinogen solution, which is not economical.
Another problem was that it was difficult to apply to small-diameter artificial blood vessels.

(発明が解決しようとする課題) 従って、本発明は、高濃度または多量の反応溶液を必要
とすることなく、医療用基材の表面にゲル状物質を均一
な厚さに付着させることができ、しかも医療用基材とし
て多孔質素材を用いた場合でも、孔内にゲル状物質が十
分侵入し、従って血液の漏出する虞れのな(、しかもゲ
ル状物質が剥離する虞れのない医療用基材へのゲル状物
質の付着方法を提供することを目的とする。
(Problems to be Solved by the Invention) Therefore, the present invention enables a gel-like substance to be deposited to a uniform thickness on the surface of a medical substrate without requiring a high concentration or large amount of reaction solution. Moreover, even when a porous material is used as a medical base material, the gel-like substance can sufficiently penetrate into the pores, so there is no risk of blood leaking (in addition, there is no risk of the gel-like substance peeling off). An object of the present invention is to provide a method for attaching a gel-like substance to a substrate for use.

(課題を解決するための手段) 上記目的は、医療用基材の表面にて複数の液体を反応さ
せてゲル状物質を形成させ、 得られたゲル状物質を前記医療用基材の表面に圧着して
付着させることを特徴とする医療用基材へのゲル状物質
付着方法によって達成される。
(Means for solving the problem) The above object is to form a gel-like substance by reacting a plurality of liquids on the surface of a medical base material, and apply the obtained gel-like substance to the surface of the medical base material. This is achieved by a method of attaching a gel-like substance to a medical substrate, which is characterized by adhesion by pressure bonding.

前記医療用基材は、多孔質素材により形成されてなるこ
とが好ましい。
The medical base material is preferably formed of a porous material.

また、本発明は、前記医療用基材が、人工血管用管状体
であるゲル状物質付着方法を示すものである。
The present invention also provides a method for adhering a gel-like substance, wherein the medical substrate is a tubular body for an artificial blood vessel.

また、本発明は、前記ゲル状物質が、フィブリノーゲン
溶液と、トロンビン様作用を有する酵素を含有する溶液
との反応により形成されるフィブリンであるゲル状物質
付着方法を示すものである。
The present invention also provides a method for attaching a gel-like substance, wherein the gel-like substance is fibrin formed by a reaction between a fibrinogen solution and a solution containing an enzyme having a thrombin-like action.

また、本発明は、前記ゲル状物質が、可溶性エラスチン
を含有するフィブリノーゲン溶液と、トロンビン様作用
を有する酵素を含有する溶液との反応で形成される可溶
性エラスチン配合フィブリンであるゲル状物質付着方法
を示すものである。
The present invention also provides a method for attaching a gel-like substance, wherein the gel-like substance is fibrin containing soluble elastin formed by a reaction between a fibrinogen solution containing soluble elastin and a solution containing an enzyme having a thrombin-like action. It shows.

また、本発明は、前記ゲル状物質が、コラーゲン溶液酸
性溶液と、アルカリ性中和剤もしくはアルカリ性緩衝液
との反応により形成されるコラーゲンゲルであるゲル状
物質付着方法を示すものである。
The present invention also provides a method for attaching a gel-like substance, wherein the gel-like substance is a collagen gel formed by a reaction between an acidic collagen solution and an alkaline neutralizing agent or an alkaline buffer.

また、本発明は、前記のいずれかの付着方法にて血液と
接触すべき部位がゲル状物質に被覆されたことを特徴と
する医療用器具を示すものである。
Further, the present invention provides a medical device characterized in that a region to be brought into contact with blood by any of the above-mentioned attachment methods is coated with a gel-like substance.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における医療用基材としては、種々のものが使用
可能であり、例えば、人工器官、特に人工血管に用いら
れる素材としては、ポリウレタン系ポリマー、ウレタン
−尿素コポリマーまたはこれらとシリコーン系ポリマー
とのブレンド物、ポリエステル、ポリテトラフルオロエ
チレン等の高分子材料、または、その他公知の人工血管
用材料があげられる。この場合、ポリウレタン系ポリマ
ーやウレタン−尿素コポリマーとしては、生体内での耐
久性の点から、ポリエーテル型のものが好ましく、特に
、ポリエーテルセグメント化ポリウレタンまたはポリエ
ーテルセグメント化ポリウレタンウレア等が好ましい。
Various materials can be used as the medical base material in the present invention. For example, materials used for artificial organs, especially artificial blood vessels, include polyurethane polymers, urethane-urea copolymers, or combinations of these and silicone polymers. Blends, polymeric materials such as polyester, polytetrafluoroethylene, and other known materials for artificial blood vessels may be used. In this case, the polyurethane-based polymer or urethane-urea copolymer is preferably a polyether type polymer from the viewpoint of durability in vivo, and polyether segmented polyurethane or polyether segmented polyurethane urea is particularly preferred.

なお、これらの高分子材料には、必要に応じ、安定剤、
可塑剤、滑剤等がブレンドされていてもよい。
In addition, these polymer materials may contain stabilizers and
A plasticizer, lubricant, etc. may be blended.

また、医療用器具の用途、種類に応じ、基材としてポリ
塩化ビニル、ポリエチレン、ポリプロピレン、ナイロン
、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル−ポ
リウレタン共重合体、ポリ塩化ビニル−(エチレン−酢
酸ビニル共重合体)共重合体、シリコーンゴム、ポリプ
ロピレン、ポリカーボネート、高密度ポリエチレン、ア
クリル樹脂等を用いることができる。
Depending on the purpose and type of medical equipment, we also use polyvinyl chloride, polyethylene, polypropylene, nylon, ethylene-vinyl acetate copolymer, polyvinyl chloride-polyurethane copolymer, polyvinyl chloride (ethylene-acetic acid) as base materials. Vinyl copolymers) copolymers, silicone rubber, polypropylene, polycarbonate, high density polyethylene, acrylic resins, etc. can be used.

このような基材は、生体適合性(細胞侵入性)の点から
、多孔質素材から形成されてなることが望ましい。この
ような多孔質素材としては、編物、織物等の繊維構造体
、あるいは樹脂発泡体等があげられる。
From the viewpoint of biocompatibility (cell penetration), it is desirable that such a base material be formed from a porous material. Examples of such porous materials include fibrous structures such as knitted fabrics and woven fabrics, and resin foams.

このような基材の表面において、複数の液体を反応させ
てゲル状物質を形成させるものである。
A plurality of liquids are reacted on the surface of such a base material to form a gel-like substance.

複数の液体の組み合わせとしては、フィブリンを形成す
るものと・して、フィブリノーゲン溶液(ゲル前駆物質
)と、トロンビン様作用を有する酵素(ゲル作用物質)
を含有する溶液との組み合わせ、可溶性エラスチンを含
有するフィブリノーゲン溶液(ゲル前駆物質)と、トロ
ンビン様作用を有する酵素を含有する溶液(ゲル作用物
質)との組み合わせ、コラーゲンゲルを形成するものと
して、コラーゲン溶液酸性溶液(ゲル前駆物質)と、ア
ルカリ性中和剤もしくはアルカリ性緩衝液(ゲル作用物
質)との組み合わせ等があげられるが、反応してゲル状
物質を形成するものならばこれらに限定されるものでは
ない。また、これらの溶液の添加比も、基材表面に付着
されるゲル状物質の厚みに応じて適宜決定すればよい。
As a combination of multiple liquids, fibrinogen solution (gel precursor) and an enzyme with thrombin-like action (gel action substance) are used to form fibrin.
A combination of a fibrinogen solution containing soluble elastin (gel precursor) and a solution containing an enzyme with thrombin-like action (gel acting substance) to form a collagen gel. Examples include combinations of acidic solutions (gel precursors) and alkaline neutralizers or alkaline buffers (gel-acting substances), but are limited to those that react to form gel-like substances. isn't it. Further, the addition ratio of these solutions may be appropriately determined depending on the thickness of the gel-like substance to be attached to the surface of the base material.

さらに、必要に応じ、これらの溶液には、pH調整剤、
保湿剤、あるいは糖類等の安定化剤等を添加することも
できる 基材表面においてゲル状物質を形成するには、当該基材
を、前述のごときゲル作用物質の溶液に浸漬して引き上
げ、次いでゲル前駆物質の溶液に浸漬して、前記ゲル作
用物質とゲル前駆物質とを反応させることにより行うこ
とができる。なお、浸漬させる溶液の順は特に限定され
るものではない。
Furthermore, if necessary, these solutions may contain a pH adjuster,
To form a gel-like substance on the surface of a substrate to which a humectant or a stabilizer such as a sugar can be added, the substrate is immersed in a solution of a gel-acting substance as described above and pulled up, and then This can be carried out by immersing the gel precursor in a solution and causing the gel acting substance and the gel precursor to react. Note that the order of the solutions to be immersed is not particularly limited.

また、このような浸漬操作によっては、基材をサンドイ
ッチするようにしてゲル状物質が形成されるが、基材が
管状を呈する場合は、当該管状体内に溶液を注入して反
応させることにより、ゲル状物質を内腔面にのみ形成さ
せることも可能である。
In addition, by such dipping operation, a gel-like substance is formed by sandwiching the base material, but if the base material has a tubular shape, by injecting the solution into the tubular body and causing a reaction, It is also possible to form a gel-like substance only on the lumen surface.

また、基材表面へのゲル状物質層の密着性を良好にする
ために、基材表面を酸、プラズマ、オゾン等の処理によ
って親水化しておくことが好ましい。
Furthermore, in order to improve the adhesion of the gel-like substance layer to the surface of the substrate, it is preferable to make the surface of the substrate hydrophilic by treatment with acid, plasma, ozone, or the like.

得られたゲル状物質を前記医療用基材の表面に付着させ
るには、反応させる溶液および基材に対して不活性であ
って、前記医療用基材の形状にあった部材を用いて圧着
すればよい。例えば、医療用基材が管状を呈する場合に
は、当該管状体内腔面において溶液を反応させてゲル状
物質を形成した後、前記管状体にテフロン製等の心棒を
挿入して、当該心棒表面を管状体腔面に押圧することに
より、前記ゲル状物質を内腔面に付着させることができ
る。この際、心棒の全体に均一な負荷がかかるようにし
て、押圧することが好ましい。このようにすることによ
り、管状体内腔面に付着されるゲル状物質層の厚みを均
一にすることができる。また、あらかじめ心棒を挿入し
た管状体を溶液に浸漬させるかあるいは内腔に溶液を注
入し、反応させてゲル状物質を形成させた後、心棒を押
圧することによりゲル状物質を内腔面に付着させてもよ
い。
In order to attach the obtained gel-like substance to the surface of the medical base material, pressure bonding is performed using a member that is inert to the solution to be reacted and the base material and that matches the shape of the medical base material. do it. For example, when the medical base material has a tubular shape, a solution is reacted on the inner surface of the tubular body to form a gel-like substance, and then a mandrel made of Teflon or the like is inserted into the tubular body, and the mandrel surface is The gel-like substance can be attached to the lumen surface by pressing the gel material against the lumen surface of the tubular body. At this time, it is preferable to press the mandrel so that a uniform load is applied to the entire mandrel. By doing so, the thickness of the gel-like material layer attached to the inner surface of the tubular body can be made uniform. Alternatively, the tubular body into which the mandrel is inserted in advance is immersed in a solution or the solution is injected into the lumen to cause a reaction to form a gel-like substance, and then the gel-like substance is applied to the lumen surface by pressing the mandrel. It may also be attached.

この際、挿入する心棒の径を変化させたり、あるいは心
棒の押圧力を調整することにより、管状体内腔面に付着
されるゲル状物質の厚みを調整することが可能である。
At this time, it is possible to adjust the thickness of the gel-like substance adhered to the inner surface of the tubular body by changing the diameter of the inserted mandrel or adjusting the pressing force of the mandrel.

医療用基材が多孔質素材で形成されてなる場合には、液
体を反応させてゲル状物質を形成させる際に、脱気等の
真空操作を加えることにより、容易に孔内にゲル状物質
を侵入させることができる。
When the medical base material is made of a porous material, by applying a vacuum operation such as degassing when reacting a liquid to form a gel-like substance, the gel-like substance can be easily inserted into the pores. can be invaded.

このようにすることにより、基材へのゲルの付着力が高
められるとともに、孔内に気泡の残留することがなく、
従って血液の漏出の虞れがない安全性および抗血栓性に
優れた医療用器具を製造することができるものである。
By doing this, the adhesion of the gel to the base material is increased, and no air bubbles remain in the pores.
Therefore, it is possible to manufacture a medical device with excellent safety and antithrombotic properties without the risk of blood leakage.

本発明に係る医療器具の具体例としては、人工血管や人
工心臓、人工腎臓、人工肺等の人工臓器等の各種人工器
官があげられ、さらには、これらの器具の本体またはこ
れらの器具の一部であるガス交換膜、透析膜等に個別に
適用することができる。
Specific examples of the medical device according to the present invention include various artificial organs such as artificial blood vessels, artificial hearts, artificial kidneys, artificial lungs, etc., and furthermore, the main bodies of these devices or parts of these devices. It can be applied individually to gas exchange membranes, dialysis membranes, etc.

特に、人工血管については、その内径が比較的大きいも
のについてはもちろんのこと、内径が小さいもの、すな
わち、内径が5mm以下のものについても優れた抗血栓
性を得ることができる。
In particular, excellent antithrombotic properties can be obtained not only for artificial blood vessels with a relatively large inner diameter, but also for those with a small inner diameter, that is, those with an inner diameter of 5 mm or less.

また、本発明の医療用器具は、血液体外循環回路を構成
する各種チューブ、チューブを接続するコネクタ、静・
動脈挿入カテーテル、バブルトラップ、血液バッグ、チ
ャンバー、遠心ポンプ等にも適用することができる。
In addition, the medical device of the present invention includes various tubes constituting the extracorporeal blood circulation circuit, connectors for connecting the tubes, and static and
It can also be applied to arterial insertion catheters, bubble traps, blood bags, chambers, centrifugal pumps, etc.

また、本発明の医療用器具は、血管内留室カテーテルや
、シリンジ、採血管、血液バッグおよびそれらの付属品
等の輸血または採血用器具にも適用することができる。
The medical device of the present invention can also be applied to blood transfusion or blood collection devices such as intravascular indwelling catheters, syringes, blood collection tubes, blood bags, and their accessories.

本発明者等は、本発明の効果を確認するため、以下のよ
うな実験を行った。
The present inventors conducted the following experiments in order to confirm the effects of the present invention.

(実施例1) 30mg/mlのヒトフィブリノーゲン溶液(Kabi
社製Vitrum、  グレードし)を試験管に入れ、
当該試験管内に、予め内径3.釦m1および38闘のス
テンレス製心棒を挿入しておいた内径3.釦mのポリエ
ステル製編み管状体を投入し、浸漬する。次に当該試験
管をガラス製真空チャンバーに収容し、4IIIInF
1gになるまで脱気操作を行った。次いで、脱気操作を
終えた管状体を、予め50 unit/1Illのトロ
ンビン溶液(持田製薬社製)を収容した試験管に投入し
て、心棒を挿入したまま浸漬操作を行った。
(Example 1) 30 mg/ml human fibrinogen solution (Kabi
Put Vitrum, graded) into a test tube,
In the test tube, prepare an inner diameter of 3. Inner diameter 3. into which the button m1 and 38 mm stainless steel mandrel have been inserted. The polyester knitted tubular body of button m is put in and immersed. Next, the test tube was placed in a glass vacuum chamber, and 4IIIInF
Degassing operation was performed until the weight became 1 g. Next, the tubular body that had been degassed was placed in a test tube containing 50 units/1 Ill of thrombin solution (manufactured by Mochida Pharmaceutical Co., Ltd.), and a dipping operation was performed with the mandrel inserted.

フィブリンゲルが管状体表面に全体的に形成されたこと
を確認してから管状体を取り出し、次いで心棒を抜き取
り、管状体1および2を作成した。
After confirming that fibrin gel was completely formed on the surface of the tubular body, the tubular body was taken out, and then the mandrel was pulled out to create tubular bodies 1 and 2.

(実施例2) 39mg/m/のヒトフィブリノーゲン溶液(Kabi
社製Vitrum、 グレードし)を試験管に入れ、当
該試験管内に、内径3.3mmのポリエステル製編み管
状体を投入し、浸漬する。次に当該試験管をガラス製真
空チャンバーに収容し、4 wingになるまで脱気操
作を行った。次いで、脱気操作を終えた管状体を、予め
50 unit/ilのトロンビン(持田製薬社製)を
収容した試験管に投入して、浸漬操作を行った。フィブ
リンゲルが管状体表面に全体的に形成されたことを確認
してから、管状体を取り出し、内腔に内径3.釦m1お
よび3.釦mのステンレス製心棒を通過させ、管状体3
および4を作成した(比較例) 内径3.8111のポリエステル製編み管状体の一端に
コネクターを固定し、当該コネクターより、50uni
t//のトロンビン溶液(持田製薬社製)をシリンジを
用いて注入し、次いで、同コネクターより30IIg/
Illのフィブリノーゲン溶液(kabi社製Vi t
rum、  グレードし)をシリンジを用いて注入する
。次いで、コネクターと反対側に開口を鉗子で閉塞し、
さらに同フィブリノーゲン溶液を圧入する。管状体表面
にフィブリンゲルが形成されたら、鉗子をはずし、次に
、シリンジを用いて、管状体内腔に生理食塩水を注入し
て、血管表面に付着されなかったフィブリンゲルを洗い
流し、管状体5を得た。
(Example 2) 39 mg/m/human fibrinogen solution (Kabi
A polyester knitted tubular body having an inner diameter of 3.3 mm is placed in a test tube and immersed in the test tube. Next, the test tube was placed in a glass vacuum chamber and degassed until it became 4 wings. Next, the tubular body that had been degassed was placed in a test tube containing 50 units/il of thrombin (manufactured by Mochida Pharmaceutical Co., Ltd.) in advance, and an immersion operation was performed. After confirming that fibrin gel has been completely formed on the surface of the tubular body, take out the tubular body and fill the inner lumen with an inner diameter of 3. Buttons m1 and 3. Pass through the stainless steel mandrel of button m, and insert the tubular body 3
and 4 (comparative example) A connector was fixed to one end of a polyester knitted tubular body with an inner diameter of 3.8111 mm, and from the connector, 50 uni
t// thrombin solution (manufactured by Mochida Pharmaceutical Co., Ltd.) was injected using a syringe, and then 30IIg// was injected from the same connector.
Ill's fibrinogen solution (Kabi Vit
rum, graded) using a syringe. Next, close the opening on the opposite side of the connector with forceps,
Furthermore, the same fibrinogen solution is injected under pressure. When fibrin gel is formed on the surface of the tubular body, remove the forceps, and then use a syringe to inject physiological saline into the lumen of the tubular body to wash away the fibrin gel that is not attached to the blood vessel surface. I got it.

得られた管状体1〜5を、長袖方向より裁断し、その断
面の様子を光学顕微鏡にて観察したところ、実施例に係
る管状体1〜4では、形成されたフィブリンゲルの厚さ
がほぼ均一で、しかも孔内に残留した気泡はほとんど存
在しなかった。特に、心棒を圧入した例(管状体2およ
び4)では、フィブリンゲルが完全に孔内に侵入し、気
泡は全く存在しなかった。これに対し、比較例の管状体
5では、部分的に孔内にフィブリンゲルが侵入している
部分もあるが、はとんどフィブリンゲルが存在せず気泡
が残留している部分もあり、また厚さも不均一であった
The obtained tubular bodies 1 to 5 were cut from the long sleeve direction, and the cross-section was observed under an optical microscope, and it was found that in the tubular bodies 1 to 4 according to Examples, the thickness of the fibrin gel formed was approximately It was uniform, and there were almost no air bubbles remaining in the pores. In particular, in the cases where the mandrel was press-fitted (tubular bodies 2 and 4), the fibrin gel completely penetrated into the pores, and no air bubbles were present. On the other hand, in the tubular body 5 of the comparative example, although there are some parts where fibrin gel has penetrated into the pores, there are also parts where there is almost no fibrin gel and air bubbles remain. Moreover, the thickness was also non-uniform.

(抗血栓性評価生体外循環実験) 臨床所見で異常を認めない健康な日本白色家兎にベンド
パルビタールを耳静脈より注射し、全身麻酔を施した。
(Antithrombotic evaluation in vitro circulation experiment) Bendoparbital was injected into the ear vein of a healthy Japanese white rabbit with no clinical abnormalities, and general anesthesia was administered.

次いで、一般外科手術に準じた手法でけい動静脈を露出
させた。内径4.0mmの塩化ビニル製チューブに管状
体1〜5を挿入したものを用いて、A−Vシャント回路
を構成し、生理食塩水でプライミングした後、露出した
けい動静脈に留置針を介して接続し、循環実験を開始し
た。
Next, the arteriovenous artery and vein were exposed using a technique similar to general surgery. An A-V shunt circuit was constructed using a vinyl chloride tube with an inner diameter of 4.0 mm in which tubular bodies 1 to 5 were inserted, and after priming with physiological saline, an indwelling needle was inserted into the exposed arterial artery and vein. I connected it and started the circulation experiment.

24時間循環させた後、管状体1〜5を回路より摘出し
、その表面状態を目視にて観察したところ、管状体1〜
4のいずれもが血液の漏出が全(認められなかったのに
対し、管状体5では外表面に血液が漏出しているのが認
められた。
After circulating for 24 hours, tubular bodies 1 to 5 were removed from the circuit and their surface conditions were visually observed.
No leakage of blood was observed in any of the tube-shaped bodies 4, whereas blood leakage was observed on the outer surface of the tubular body 5.

(発明の効果) 以上、詳述したように本発明に係る医療用基材へのゲル
状物質付着方法は、医療用基材の表面にて複数の液体を
反応させてゲル状物質を形成させ、得られたゲル状物質
を前記医療用基材の表面に圧着して付着させることを特
徴とするので、高濃度または多量の反応溶液を必要とす
ることなく、医療用基材の表面にゲル状物質を均一に付
着することができ、しかも医療用基材として多孔質素材
を用いた場合でも、孔内にゲル状物質が十分侵入し、従
って血液の漏出する虞れのなく、しかもゲル状物質が剥
離する虞れのない効果を奏する。
(Effects of the Invention) As detailed above, the method for attaching a gel-like substance to a medical base material according to the present invention involves forming a gel-like substance by causing a plurality of liquids to react on the surface of a medical base material. The method is characterized in that the obtained gel-like substance is adhered to the surface of the medical base material by pressure bonding, so that the gel-like substance is attached to the surface of the medical base material without requiring a high concentration or large amount of reaction solution. Furthermore, even when a porous material is used as a medical base material, the gel-like substance can sufficiently penetrate into the pores, so there is no risk of blood leakage, and the gel-like substance can be adhered evenly. The effect is achieved without the risk of the substance peeling off.

Claims (1)

【特許請求の範囲】 (1)医療用基材の表面にて複数の液体を反応させてゲ
ル状物質を形成させ、 得られたゲル状物質を前記医療用基材の表面に圧着して
付着させることを特徴とする医療用基材へのゲル状物質
付着方法。 (2)前記医療用基材は、多孔質素材により形成されて
なる請求項1記載のゲル状物質付着方法。 (3)前記医療用基材は、人工血管用管状体である請求
項2記載のゲル状物質付着方法。(4)前記ゲル状物質
は、フィブリノーゲン溶液と、トロンビン様作用を有す
る酵素を含有する溶液との反応により形成されるフィブ
リンである請求項1ないし3のいずれかに記載のゲル状
物質付着方法。 (5)前記ゲル状物質は、可溶性エラスチンを含有する
フィブリノーゲン溶液と、トロンビン様作用を有する酵
素を含有する溶液との反応で形成される可溶性エラスチ
ン配合フィブリンである請求項1ないし3のいずれかに
記載のゲル状物質付着方法。 (6)前記ゲル状物質は、コラーゲン溶液酸性溶液と、
アルカリ性中和剤もしくはアルカリ性緩衝液との反応に
より形成されるコラーゲンゲルである請求項1ないし3
のいずれかに記載のゲル状物質付着方法。 (7)請求項1ないし6のいずれかの付着方法にて、血
液と接触すべき部位がゲル状物質に被覆されたことを特
徴とする医療用器具。
[Claims] (1) A plurality of liquids are reacted on the surface of a medical base material to form a gel-like substance, and the resulting gel-like substance is pressed and attached to the surface of the medical base material. A method for attaching a gel-like substance to a medical base material, the method comprising: (2) The method for adhering a gel-like substance according to claim 1, wherein the medical substrate is formed of a porous material. (3) The method for adhering a gel-like substance according to claim 2, wherein the medical base material is a tubular body for an artificial blood vessel. (4) The gel-like substance attachment method according to any one of claims 1 to 3, wherein the gel-like substance is fibrin formed by a reaction between a fibrinogen solution and a solution containing an enzyme having a thrombin-like action. (5) The gel-like substance is fibrin containing soluble elastin formed by a reaction between a fibrinogen solution containing soluble elastin and a solution containing an enzyme having a thrombin-like action. The described gel-like substance adhesion method. (6) The gel-like substance includes an acidic collagen solution;
Claims 1 to 3 are collagen gels formed by reaction with alkaline neutralizers or alkaline buffers.
The method for adhering a gel-like substance according to any one of the above. (7) A medical device characterized in that a region to be contacted with blood is coated with a gel-like substance using the attachment method according to any one of claims 1 to 6.
JP2270421A 1990-10-11 1990-10-11 Gelatinous material sticking method to medical substrate Pending JPH04146763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270421A JPH04146763A (en) 1990-10-11 1990-10-11 Gelatinous material sticking method to medical substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270421A JPH04146763A (en) 1990-10-11 1990-10-11 Gelatinous material sticking method to medical substrate

Publications (1)

Publication Number Publication Date
JPH04146763A true JPH04146763A (en) 1992-05-20

Family

ID=17486039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270421A Pending JPH04146763A (en) 1990-10-11 1990-10-11 Gelatinous material sticking method to medical substrate

Country Status (1)

Country Link
JP (1) JPH04146763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866468A (en) * 1994-08-12 1996-03-12 Meadox Medicals Inc Implantable tubular prosthesis made of polytetrafluoroethylene
WO1998024385A1 (en) * 1996-12-06 1998-06-11 Tapic International Co., Ltd. Artificial blood vessel
JP2008518743A (en) * 2004-11-05 2008-06-05 アクセスクロージャー,インク. Vascular puncture sealing device
JP2019037303A (en) * 2017-08-22 2019-03-14 多木化学株式会社 Collagen tubular body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866468A (en) * 1994-08-12 1996-03-12 Meadox Medicals Inc Implantable tubular prosthesis made of polytetrafluoroethylene
WO1998024385A1 (en) * 1996-12-06 1998-06-11 Tapic International Co., Ltd. Artificial blood vessel
US6136024A (en) * 1996-12-06 2000-10-24 Yasuhiko Shimizu Artificial blood vessel
JP2008518743A (en) * 2004-11-05 2008-06-05 アクセスクロージャー,インク. Vascular puncture sealing device
JP2019037303A (en) * 2017-08-22 2019-03-14 多木化学株式会社 Collagen tubular body

Similar Documents

Publication Publication Date Title
JP4976632B2 (en) Biologically compatible medical substance and method for producing the same
US6303179B1 (en) Method for attachment of biomolecules to surfaces through amine-functional groups
US6143354A (en) One-step method for attachment of biomolecules to substrate surfaces
US5298255A (en) Antithrombic medical material, artificial internal organ, and method for production of antithrombic medical material
EP0941740B1 (en) Attachment of biomolecules to surfaces of medical devices
US8114465B2 (en) Process for preparing a substrate coated with a biomolecule
EP0366564A2 (en) Antithrombic medical material, artificial internal organ, and method for production of antithrombic medical material
US7118546B2 (en) Apparatus and methods for facilitating repeated vascular access
EP2518100B1 (en) Hydrophilic polymer compound having anticoagulation effect
EP2724735A1 (en) Medical supply
Nakabayashi et al. Copolymers of 2‐methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials
EP0246638A2 (en) Biologically modified synthetic grafts
JPH04146763A (en) Gelatinous material sticking method to medical substrate
JPH06502087A (en) Non-thrombogenic surfaces
JPH04285561A (en) Sterilization method for medical material and manufacture of medical instrument
Eberhart et al. Cardiovascular materials
JPH0678940A (en) Adhesion of covering material to medical base member
JP3043096B2 (en) Antithrombotic medical material, medical device, and method for producing antithrombotic medical material
WO2000018321A1 (en) Hydrophilic synthetic blood vessels
JP4143900B2 (en) Manufacturing method of medical device
JPS62240066A (en) Medical tubular organ and its production
JPH04146766A (en) Anti-thrombogenic medical material and medical apparatus
JPH06114107A (en) Method for imparting covering material to porous medical tubular body
JPH03254753A (en) Therapeutic material, equipment for therapy, and manufacture of therapeutic material
JPH11299880A (en) Catheter