JPH04146679A - Distributed feedback semiconductor laser device - Google Patents
Distributed feedback semiconductor laser deviceInfo
- Publication number
- JPH04146679A JPH04146679A JP26946590A JP26946590A JPH04146679A JP H04146679 A JPH04146679 A JP H04146679A JP 26946590 A JP26946590 A JP 26946590A JP 26946590 A JP26946590 A JP 26946590A JP H04146679 A JPH04146679 A JP H04146679A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor
- active layer
- grow
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 64
- 238000009826 distribution Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 16
- 238000000034 method Methods 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 238000003486 chemical etching Methods 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000012535 impurity Substances 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 21
- 230000010355 oscillation Effects 0.000 description 15
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005253 cladding Methods 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 description 3
- 238000002109 crystal growth method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電気光変換素子として利用する半導体分布帰還
型レーザ装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor distributed feedback laser device used as an electro-optical conversion element.
本発明は、長距離大容量光通信装置、光情報処理装置、
光記録装置、光応用計測装置、その地元電子装置の光源
として利用するに適する。The present invention relates to a long-distance large-capacity optical communication device, an optical information processing device,
Suitable for use as a light source for optical recording devices, optical measurement devices, and local electronic devices.
本発明は、活性層に回折格子を設け、それにより誘起さ
れる利得係数の周期的摂動により光分布帰還を施す半導
体分布帰還型レーザ装置において、回折格子に相応する
凹凸形状を印刻した半導体層の表面に、薄い緩衝層をそ
の凹凸形状を部分的に埋めるように成長させ、さらにそ
の表面に活性層を成長させることにより、
緩衝層の成長条件を緩め、特にInP系の長波長レーザ
に適した構造を提供するものである。The present invention provides a semiconductor distributed feedback laser device in which a diffraction grating is provided in the active layer and distributed light feedback is performed by periodic perturbation of the gain coefficient induced by the grating, in which a semiconductor layer is provided with an uneven shape corresponding to the diffraction grating. By growing a thin buffer layer on the surface so as to partially fill the uneven shape, and then growing an active layer on the surface, the growth conditions for the buffer layer are relaxed, making it particularly suitable for InP-based long wavelength lasers. It provides structure.
活性層の近傍に設けた回折格子により活性層に光の分布
帰還を施して誘導放出光を発生させる半導体分布帰還型
レーザ装置は、一般に、比較的簡単な構成により優れた
発振スペクトル特性の誘導放出光が得られるので、従来
から幾多の研究開発が進められ、長距離大容量光通信、
光情報処理および記録、光応用計測などに用いる好適な
光源装置としてその有用性が期待されている。Semiconductor distributed feedback laser devices, which generate stimulated emission light by performing distributed feedback of light to the active layer using a diffraction grating provided near the active layer, generally have a relatively simple configuration and generate stimulated emission with excellent oscillation spectrum characteristics. Since light can be obtained, a lot of research and development has been carried out in the past, and long-distance, high-capacity optical communication,
It is expected to be useful as a light source device suitable for use in optical information processing and recording, optical applied measurement, and the like.
このような半導体分布帰還型レーザ装置では、活性層を
透明なヘテロ接合半導体層などにより囲み、効率よく誘
導放出光を発生させる光導波路構造が採られている。特
に、活性層にごく近接した透明な導波路層の活性層から
遠い側の界面に例えば三角波状の断面形状をもつ回折格
子を形成し、導波路屈折率を周期的に変化させることに
より光分布帰還を施す方向の研究開発が専ら進められて
いる。Such a semiconductor distributed feedback laser device employs an optical waveguide structure in which the active layer is surrounded by a transparent heterojunction semiconductor layer or the like to efficiently generate stimulated emission light. In particular, a diffraction grating with a triangular wave cross section is formed on the interface of a transparent waveguide layer in close proximity to the active layer on the side far from the active layer, and light distribution is achieved by periodically changing the waveguide refractive index. Research and development toward repatriation is currently underway.
しかし、このような屈折率結合による光分布帰還におい
ては、光導波路層の層厚変化の周期に対応して反射する
ブラッグ波長の光に対して、光位相についての適正な帰
還が行われない。このため、安定なレーザ発振が得られ
ず、ブラッグ波長から上下に対称に離隔した二つの波長
の縦モード発振が同時に生じる可能性が高い。また、こ
のような二つの波長の縦モード発振のうちの一方のみが
生じる場合にも、二つの波長のうちのいずれの波長の縦
モード発振を行わせるかをあらかじめ選定することが困
難であるた於、発振波長設定の精度が著しく損なわれる
ことになる。However, in such optical distribution feedback using refractive index coupling, appropriate feedback regarding the optical phase is not performed for light at the Bragg wavelength that is reflected in accordance with the period of layer thickness change of the optical waveguide layer. For this reason, stable laser oscillation cannot be obtained, and there is a high possibility that longitudinal mode oscillations of two wavelengths symmetrically spaced above and below the Bragg wavelength will occur simultaneously. Furthermore, even when only one of these two wavelengths of longitudinal mode oscillation occurs, it is difficult to select in advance which of the two wavelengths to cause longitudinal mode oscillation. However, the accuracy of setting the oscillation wavelength will be significantly impaired.
すなわち、光導波路層における屈折率の周期的摂動に基
づく屈折率結合を利用した光分布帰還では、原理的に、
二波長縦モード発振縮重の問題が生じてしまい、これを
避けることは困難である。In other words, in optical distributed feedback using refractive index coupling based on periodic perturbation of the refractive index in the optical waveguide layer, in principle,
The problem of dual-wavelength longitudinal mode oscillation degeneracy arises, and it is difficult to avoid this problem.
もちろん、このような困難を解決する手段も従来から種
々検討されている。しかし、例えば回折格子のほぼ中央
で4分の1波長分だけ位相シフトさせる構造など、いず
れも、レーザ装置の構造を複雑化し、縮重解消のだ約の
みの製造工程を付加する必要があり、その上、レーザ素
子端面に反射防止膜を形成する必要があった。Of course, various means for solving such difficulties have been studied in the past. However, in any case, such as a structure in which the phase is shifted by a quarter wavelength at approximately the center of the diffraction grating, the structure of the laser device becomes complicated and a manufacturing process that only requires a reduction in degeneracy is added. Moreover, it was necessary to form an antireflection film on the end face of the laser element.
一方、上述のように屈折率結合により光分布帰還を行う
とブラッグ波長領域に発振阻止帯域が生じるが、利得係
数の周期的摂動に基づく利得結合により光分布帰還を行
うとすれば、発振阻止帯域は現れず完全に単一波長の縦
モード発振が得られるはずであるとの原理的な理論が、
コゲルニック他、「分布帰還レーザの結合波理論」、ア
プライド・フィツクス、1972年、第43巻、第23
27頁ないし第2335頁(”Couplecl−Wa
veTheory of Distributed
Feedback La5ers 。On the other hand, if distributed optical feedback is performed using refractive index coupling as described above, an oscillation stop band will occur in the Bragg wavelength region, but if distributed optical feedback is performed using gain coupling based on periodic perturbations of the gain coefficient, then the oscillation stop band will be generated in the Bragg wavelength region. The fundamental theory that states that complete single-wavelength longitudinal mode oscillation should be obtained without the appearance of any 23rd
Pages 27 to 2335 (“Couplecl-Wa
veTheory of Distributed
Feedback La5ers.
Journal of AppliedPhysic
s、 1972 Vol、43゜pp 2327−23
35)
に示されている。この論文はあくまでも原理的な検討結
果であって、上記の利得結合を実現するための半導体レ
ーザ装置の構造やその製造方法についてはなんら記述が
ない。Journal of Applied Physics
s, 1972 Vol, 43°pp 2327-23
35). This paper is just the result of a theoretical investigation, and there is no description of the structure of a semiconductor laser device or its manufacturing method for realizing the above-mentioned gain coupling.
本願発明者の一部は、上記コゲルニック他の基礎理論を
適用した新しい半導体レーザ装置を発明し、以下の特許
出願をした。Some of the inventors of the present invention invented a new semiconductor laser device applying the basic theory of Kogelnick et al. and filed the following patent application.
特願昭63−189593 、昭和63年7月30日出
願特願平1−168729、平成1年6月30日出願特
願平1−185001〜185005、同年7月18日
出願。Japanese Patent Application No. 1-189593, filed on July 30, 1988, Japanese Patent Application No. 1-168729, filed on June 30, 1999, Japanese Patent Application No. 1-185001 to 185005, filed on July 18 of the same year.
これらの特許出願のうち特に特願平1−168729の
明細書および図面には、活性層を成長形成させる基板と
なる半導体層の表面に回折格子に相応する凹凸形状を印
刻し、その半導体層の表面に、まず薄い半導体緩衝層を
その凹凸形状を保存したまま成長させ、さらにその表面
に今度はその凹凸形状の凹部をできるだけ埋めるように
活性層を成長させる技術を開示した。Among these patent applications, in particular, the specification and drawings of Japanese Patent Application No. 1-168729 disclose that an uneven shape corresponding to a diffraction grating is imprinted on the surface of a semiconductor layer, which is a substrate on which an active layer is grown, and that the semiconductor layer is We have disclosed a technique in which a thin semiconductor buffer layer is first grown on the surface while preserving its uneven shape, and then an active layer is grown on the surface so as to fill in the concave portions of the uneven shape as much as possible.
しかし、特にInP系、すなわちInPに格子定数を一
致させたレーザ装置の場合には、半導体緩衝層の両側の
凹凸形状が平行になるようにその厚さを一様に形成する
ことが困難であった。However, especially in the case of an InP-based laser device, that is, a laser device with a lattice constant matched to InP, it is difficult to form a semiconductor buffer layer with a uniform thickness so that the uneven shapes on both sides are parallel. Ta.
本発明は、このような課題を解決し、製造が容易で特に
InP系の長波長レーザに適した構造の半導体分布帰還
型レーザ装置を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a semiconductor distributed feedback laser device that is easy to manufacture and has a structure particularly suitable for InP-based long wavelength lasers.
本発明の半導体分布帰還型レーザ装置は、活性層に回折
格子として形成された凹凸形状に接して半導体緩衝層を
備え、この緩衝層は基台となる半導体層に印刻された凹
凸形状の凹部を部分的に埋めた形状に形成されたことを
特徴とする。The semiconductor distributed feedback laser device of the present invention includes a semiconductor buffer layer in contact with the uneven shape formed as a diffraction grating in the active layer, and this buffer layer has the uneven shape recesses imprinted on the semiconductor layer serving as a base. It is characterized by being formed in a partially buried shape.
このような半導体分布帰還型レーザ装置を製造するには
、活性層を成長する基板となる半導体層の表面に回折格
子に相応する凹凸形状を印刻し、その半導体層の表面に
、その半導体層の凹凸形状に相応する周期の凹凸が残る
ように緩衝層を成長させ、その後に活性層を成長させる
。In order to manufacture such a semiconductor distributed feedback laser device, an uneven shape corresponding to a diffraction grating is imprinted on the surface of a semiconductor layer, which is a substrate on which an active layer is grown, and the surface of the semiconductor layer is A buffer layer is grown so that irregularities with a period corresponding to the irregular shape remain, and then an active layer is grown.
本発明の構造は特にInP系の長波長レーザでの実施に
適しているが、他の材料系、例えばALGaAs系のレ
ーザ装置でも同様に実施できる。Although the structure of the present invention is particularly suitable for implementation in InP-based long wavelength lasers, it can equally be implemented in laser devices based on other materials, such as ALGaAs.
活性層に光の進行方向に沿った凹凸形状を設けると、活
性層の厚さがこの凹凸形状にしたがって周期的に変化す
るから、上述のコゲルニツタ他による理論における利得
係数の周期的摂動に基づく利得結合により光分布帰還が
行われる。When the active layer is provided with a concavo-convex shape along the direction of light propagation, the thickness of the active layer changes periodically according to the concavo-convex shape, so the gain based on the periodic perturbation of the gain coefficient in the theory by Kogelnitsu et al. The coupling provides light distribution feedback.
活性層に凹凸形状を設けるには、基板となる半導体層の
表面に凹凸形状を印刻し、その半導体層の表面に緩衝層
を形成した後に活性層を成長させる。このとき、材料お
よび成長条件が最適であれば、緩衝層の厚さを一様にで
きる。しかし、特にInP系の場合には、緩衝層を一様
に成長させることは困難である。In order to provide an uneven shape in the active layer, the uneven shape is imprinted on the surface of a semiconductor layer serving as a substrate, a buffer layer is formed on the surface of the semiconductor layer, and then the active layer is grown. At this time, if the material and growth conditions are optimal, the thickness of the buffer layer can be made uniform. However, it is difficult to grow the buffer layer uniformly, especially in the case of InP-based materials.
そこで本発明では、基板となる半導体層の表面の凹凸形
状を印刻した後、その凹凸形状の影響が残るように緩衝
層を成長させる。このとき凹部は埋められてしまうが、
緩衝層の表面には、半導体層の凹凸形状に相応する周期
の凹凸が残る。これに活性層を成長させれば、この活性
層にも凹凸形状が形成される。Therefore, in the present invention, after the uneven shape on the surface of the semiconductor layer serving as the substrate is imprinted, a buffer layer is grown so that the influence of the uneven shape remains. At this time, the recess is filled, but
On the surface of the buffer layer, irregularities with a period corresponding to the irregular shape of the semiconductor layer remain. If an active layer is grown on this, an uneven shape will also be formed in this active layer.
第1図は本発明第一実施例半導体分布帰還型レーザ装置
の斜視図である。FIG. 1 is a perspective view of a semiconductor distributed feedback laser device according to a first embodiment of the present invention.
この半導体分布帰還型レーザ装置は、誘導放出光を発生
させる活性層7と、この活性層の一方の面に設けられこ
の活性層に光分布帰還を施す回折格子とを備え、この回
折格子は、活性層7の一方の面に凹凸形状として形成さ
れている。This semiconductor distributed feedback laser device includes an active layer 7 that generates stimulated emission light, and a diffraction grating that is provided on one surface of this active layer and that performs distributed light feedback to this active layer. An uneven shape is formed on one surface of the active layer 7.
さらに詳しく説明すると、基板1上にクラッド層3、半
導体層4、緩衝層6、活性層7、クラッド層8およびコ
ンタクト層9が積層され、基板1の裏面には電極層10
が設けられ、コンタクト層9には絶縁層12を介して電
極層11が接続される。More specifically, a cladding layer 3, a semiconductor layer 4, a buffer layer 6, an active layer 7, a cladding layer 8, and a contact layer 9 are laminated on the substrate 1, and an electrode layer 10 is formed on the back surface of the substrate 1.
is provided, and an electrode layer 11 is connected to the contact layer 9 via an insulating layer 12.
ここで本実施例の特徴とするところは、活性層7の凹凸
形状に接して半導体緩衝層6を備え、この緩衝層6は基
台となる半導体層4に印刻された凹凸形状の凹部を部分
的に埋めた形状に形成されたことにある。Here, the feature of this embodiment is that a semiconductor buffer layer 6 is provided in contact with the uneven shape of the active layer 7, and this buffer layer 6 partially covers the uneven shaped recesses stamped on the semiconductor layer 4 serving as a base. This is due to the fact that it was formed in a buried shape.
このレーザ装置を製造するには、まず、高濃度n形1n
P基板1上にダブルへテロ接合構造の各層を二段階にわ
けてエピタキシャル成長させる。各層はInP基板1に
格子整合させる。To manufacture this laser device, first, a high concentration n-type 1n
Each layer of a double heterojunction structure is epitaxially grown on a P substrate 1 in two stages. Each layer is lattice matched to the InP substrate 1.
第一段階のエピタキシャル成長では、基板1の上に、例
えば1μm厚のn形1nP クラッド層3と0.1μm
厚のn形1no、 t2Gao、 28ASO0s+P
o、 39半導体層4とを結晶成長させる。次に、干渉
露光法と化学エツチングとにより、半導体層4に周期2
56nmの回折格子に相当する凹凸形状5を印刻する。In the first stage of epitaxial growth, for example, a 1 μm thick n-type 1nP cladding layer 3 and a 0.1 μm thick n-type cladding layer 3 are formed on the substrate 1.
Thick n-type 1no, t2Gao, 28ASO0s+P
o. 39 Semiconductor layer 4 is grown as a crystal. Next, the semiconductor layer 4 is etched with a period of 2 by interference exposure method and chemical etching.
An uneven shape 5 corresponding to a 56 nm diffraction grating is imprinted.
第二段階では、凹凸形状5を印刻した半導体層4の上に
、平均3Qnm厚のn形InP緩衝層6を成長させる。In the second step, an n-type InP buffer layer 6 having an average thickness of 3 Q nm is grown on the semiconductor layer 4 on which the uneven shape 5 is imprinted.
さらに、この緩衝層6の上に、平均1100n厚の低純
物濃度Ino、 53Gao、 aJS活性層7と、1
μm厚のp形1nPクラッド層8と、0.5μm厚の高
濃度p形Inn、 s+Gao、 <JSコンタクト層
9とを順に連続して成長させ、ダブルへテロ接合構造を
完成させる。Further, on this buffer layer 6, a low-purity concentration Ino, 53Gao, aJS active layer 7 with an average thickness of 1100n, and 1
A μm-thick p-type 1nP cladding layer 8 and a 0.5 μm-thick high-concentration p-type Inn, s+Gao, <JS contact layer 9 are sequentially grown to complete a double heterojunction structure.
次いで、5102絶縁層12をコンタクト層9の上面に
堆積させ、例えば幅10μmのストライプ状窓を形成し
、その後に電極層11および10を蒸着する。さらに、
これを襞間して、個々の半導体レーザ素子を完成する。A 5102 insulating layer 12 is then deposited on the top surface of the contact layer 9 to form a striped window with a width of, for example, 10 μm, followed by the deposition of the electrode layers 11 and 10. moreover,
This is folded to complete individual semiconductor laser devices.
回折格子に相応する凹凸形状5を印刻した半導体層4の
上に緩衝層6および活性層7を成長させるときには、有
機金属気相成長法を用いる。このとき、緩衝層6につい
ては、凹凸形状が完全には平坦化されないようにし、活
性層7の成長時に、残った凹凸形状の凹部を埋めるよう
にする。これにより、活性層7の下面に回折格子を形成
することができる。When growing the buffer layer 6 and the active layer 7 on the semiconductor layer 4 on which the concavo-convex shape 5 corresponding to a diffraction grating is imprinted, metal organic vapor phase epitaxy is used. At this time, the uneven shape of the buffer layer 6 is not completely flattened, and when the active layer 7 is grown, the remaining uneven recesses are filled. Thereby, a diffraction grating can be formed on the lower surface of the active layer 7.
緩衝層6は、半導体層4への印刻により発生した半導体
結晶構造の欠陥の影響が活性層7に及ぶのを防ぐ役割を
果たす。この緩衝層6の成長時には、凹部が埋まり易い
条件であっても、緩衝層6の厚さを半導体層4に印刻し
た凹凸形状5よりも薄くすることで、緩衝層6の上面、
すなわち活性層7の下面に凹凸を残すことができる。The buffer layer 6 serves to prevent defects in the semiconductor crystal structure caused by the imprinting on the semiconductor layer 4 from affecting the active layer 7 . When growing the buffer layer 6, even under conditions where the recesses are easily filled, by making the thickness of the buffer layer 6 thinner than the uneven shape 5 imprinted on the semiconductor layer 4, the upper surface of the buffer layer 6,
In other words, unevenness can be left on the lower surface of the active layer 7.
上述した各層の導電型および組成を第1表にまとめて示
す。The conductivity type and composition of each layer described above are summarized in Table 1.
第1表
第2図は実際に試作した半導体分布帰還形レーザ装置の
活性層の方向に沿った断面の走査電子顕微鏡写真を示す
。この写真から、半導体層4、緩衝層6および活性層7
を認識できる。緩衝層6の成長条件は、特に凹凸形状を
保存しやすいように変更されたものではなく、凹部が凸
部の5倍程度の速度で成長している。このような成長条
件でも、活性層7の下面に回折格子が形成される。有機
金属気相成長による成長条件は、
〔原料〕ホスフィン PH3
アルシン AsH。Table 1 and FIG. 2 show scanning electron micrographs of a cross section along the direction of the active layer of an actually prototype semiconductor distributed feedback laser device. From this photograph, we can see that the semiconductor layer 4, the buffer layer 6 and the active layer 7
can be recognized. The growth conditions for the buffer layer 6 were not particularly changed to make it easier to preserve the uneven shape, and the concave portions grew at about five times the rate of the convex portions. Even under such growth conditions, a diffraction grating is formed on the lower surface of the active layer 7. The growth conditions for organometallic vapor phase epitaxy are as follows: [Raw materials] Phosphine PH3 Arsine AsH.
トリエチルインジウム(CJs)3Jnトリエチルガリ
ウム (C2H5) 、Gaジメチルジンク (
CH3) 2Zn硫化水素 H2S
〔条件〕圧力 76 Torr
全流量 5 slm
基板温度 700℃(1回目)、
650 ℃(2回目)
とした。また、半導体層4への印刻により発生した欠陥
の影響が活性層7に及んでいないことは、フォトルミネ
ッセンス強度の測定により確かめられた。Triethyl indium (CJs) 3Jn triethyl gallium (C2H5), Ga dimethyl zinc (
CH3) 2Zn hydrogen sulfide H2S [Conditions] Pressure: 76 Torr Total flow rate: 5 slm Substrate temperature: 700°C (first time), 650°C (second time). Furthermore, it was confirmed by measuring the photoluminescence intensity that the active layer 7 was not affected by the defects caused by the marking on the semiconductor layer 4.
このように、活性層7に形成された回折格子により、利
得係数の周期的変化が得られ、利得係数の摂動に基づく
光分布帰還により、利得係数の変化の周期に対応したブ
ラッグ波長で、単一モード発振が得られた。In this way, periodic changes in the gain coefficient can be obtained by the diffraction grating formed in the active layer 7, and the light distribution feedback based on the perturbation of the gain coefficient allows a simple signal to be generated at the Bragg wavelength corresponding to the period of change in the gain coefficient. Unimode oscillation was obtained.
以上の実施例ではInP系の場合について説明したが、
同様の構造をALGaAs系でも実施できる。その場合
の各層の導電形および組成の例を第2表に示す。In the above embodiment, the InP-based case was explained, but
A similar structure can also be implemented based on ALGaAs. Examples of the conductivity type and composition of each layer in that case are shown in Table 2.
(以下本頁余白)
第
表
第3図は本発明第二実施例半導体分布帰還型レーザ装置
の斜視図である。(Hereinafter, the margin of this page) Table 3 is a perspective view of a semiconductor distributed feedback laser device according to a second embodiment of the present invention.
この実施例は、基板1と緩衝層6との間に別の半導体層
を設けることなく、クラッド層として作用する基板1に
直接に、回折格子に相応の凹凸形状5を印刻する。この
凹凸形状5が印刻された基板1の上に、緩衝層6を成長
させる。これ以外の構造は第一実施例と同等である。In this embodiment, an uneven shape 5 corresponding to the diffraction grating is imprinted directly on the substrate 1, which acts as a cladding layer, without providing another semiconductor layer between the substrate 1 and the buffer layer 6. A buffer layer 6 is grown on the substrate 1 on which the uneven shape 5 is imprinted. The structure other than this is the same as that of the first embodiment.
以上の説明では、結晶成長法として有機金属気相成長法
を用いた場合の例について説明した。しかし、緩衝層6
の膜厚を精密に制御できることと、活性層7の上面で平
坦化できることとが満足されるなら、その他の結晶成長
法、例えば分子線エピタキシャル成長法を用いても本発
明を同様に実施できる。In the above explanation, an example has been described in which metal organic vapor phase epitaxy is used as the crystal growth method. However, the buffer layer 6
The present invention can be similarly implemented using other crystal growth methods, such as molecular beam epitaxial growth, as long as the ability to precisely control the film thickness and the ability to flatten the upper surface of the active layer 7 are satisfied.
以上説明したように、本発明の半導体分布帰還型レーザ
装置は、従来の屈折率結合型半導体分布帰還型レーザ装
置とは異なり、完全に単一の波長の縦モード発振が行わ
れ、従来装置におけるような発振波長の不確定性も見ら
れないと考えられる。As explained above, the semiconductor distributed feedback laser device of the present invention is different from the conventional index-coupled semiconductor distributed feedback laser device in that it performs longitudinal mode oscillation of a completely single wavelength. It is thought that such uncertainty in the oscillation wavelength is not observed.
もっとも、従来の半導体分布帰還型レーザ装置でも完全
単一縦モード化は可能であるが、いずれも半導体レーザ
装置の構成が複雑化し、その上、レーザ素子端面への反
射防止膜形成が必要など、その製造工程数が増大するの
に対し、本発明装置では、従来の製造工程をほとんど変
えることなく、反射防止措置も要らずに簡単に完全単一
縦モード化を実現できる。However, although it is possible to achieve a completely single longitudinal mode with conventional semiconductor distributed feedback laser devices, in both cases the configuration of the semiconductor laser device becomes complicated, and in addition, it is necessary to form an anti-reflection film on the end face of the laser element, etc. In contrast to the increase in the number of manufacturing steps, the device of the present invention can easily realize a complete single longitudinal mode with almost no changes to the conventional manufacturing steps and without the need for anti-reflection measures.
また、本発明の半導体分布帰還型レーザ装置は、利得結
合によって光分布帰還を達成しているので、近端あるい
は遠端からの反射戻り光などによって誘起される干渉雑
音は、生じたとしても、従来の屈折率結合による場合に
比較して格段に小さくなることが期待される。Furthermore, since the semiconductor distributed feedback laser device of the present invention achieves optical distributed feedback through gain coupling, even if interference noise is induced by reflected return light from the near end or far end, It is expected that the size will be much smaller than in the case of conventional refractive index coupling.
さらに、本発明の半導体分布帰還型レーザ装置では、共
振器が電流注入によって生じる利得の周期分布に起因す
るため、高速電流変調において超短パルス発生が可能で
あり、かつ発振波長のチャーピングも小さいと期待され
る。Furthermore, in the semiconductor distributed feedback laser device of the present invention, since the resonator is caused by a periodic distribution of gain caused by current injection, it is possible to generate ultrashort pulses in high-speed current modulation, and the chirping of the oscillation wavelength is small. It is expected that
さらに加えて本発明の半導体分布帰還型レーザ装置は、
長波長発振が可能なInP系の素子に適した構造であり
、長距離光通信、波長多重通信などに必要な高性能光源
として有望であるばかりでなく、光情報処理および記録
や、光応用計測、高速光学現象の光源などの分野で従来
用いられていた気体レーザ装置や固体レーザ装置に代替
しつる高性能の小型光源としての利用が見込まれる。Furthermore, the semiconductor distributed feedback laser device of the present invention includes:
The structure is suitable for InP-based elements capable of long-wavelength oscillation, and it is not only promising as a high-performance light source required for long-distance optical communications and wavelength multiplexing communications, but also for optical information processing and recording, and optical applied measurement. The present invention is expected to be used as a high-performance, compact light source that can replace gas laser devices and solid-state laser devices that have been conventionally used in fields such as light sources for high-speed optical phenomena.
第1図は本発明第一実施例半導体分布帰還型レーザ装置
の構造を示す斜視図。
第2図は試作例の結晶構造を示す走査型電子顕微鏡写真
。
第3図は本発明第二実施例半導体分布帰還型レーザ装置
の構造を示す斜視図。
1・・・基板、3.8・・・クラッド層、4・・・半導
体層、5・・・凹凸形状、6・・・緩衝層、7・・・活
性層、9・・・コンタクト層、10.11川電極層、1
2・・・絶縁層。
特許出願人 光計測技術開発株式会社
代理人 弁理士 井 出 直 孝FIG. 1 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to a first embodiment of the present invention. Figure 2 is a scanning electron micrograph showing the crystal structure of the prototype. FIG. 3 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to a second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 3.8... Clad layer, 4... Semiconductor layer, 5... Uneven shape, 6... Buffer layer, 7... Active layer, 9... Contact layer, 10.11 River electrode layer, 1
2...Insulating layer. Patent applicant: Optical Measurement Technology Development Co., Ltd. Agent: Naotaka Ide, patent attorney
Claims (1)
方の面に設けられこの活性層に光分布帰還を施す回折格
子とを備え、 この回折格子は前記活性層の一方の面に凹凸形状として
形成された半導体分布帰還型レーザ装置において、 前記凹凸形状に接して半導体緩衝層を備え、この緩衝層
は基台となる半導体層に印刻された凹凸形状の凹部を部
分的に埋めた形状に形成された ことを特徴とする半導体分布帰還型レーザ装置。 2、活性層は格子定数を実質的にInPの格子定数に一
致させた材料の層である請求項1記載の半導体分布帰還
型レーザ装置。[Claims] 1. An active layer that generates stimulated emission light, and a diffraction grating that is provided on one surface of this active layer and that performs light distribution feedback to this active layer, and this diffraction grating is provided in the active layer. In a semiconductor distributed feedback laser device having an uneven shape formed on one surface of the semiconductor layer, a semiconductor buffer layer is provided in contact with the uneven shape, and this buffer layer has an uneven shape recessed part imprinted on a semiconductor layer serving as a base. A semiconductor distributed feedback laser device characterized by being formed in a partially buried shape. 2. The semiconductor distributed feedback laser device according to claim 1, wherein the active layer is a layer of a material whose lattice constant substantially matches that of InP.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26946590A JPH04146679A (en) | 1990-10-09 | 1990-10-09 | Distributed feedback semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26946590A JPH04146679A (en) | 1990-10-09 | 1990-10-09 | Distributed feedback semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04146679A true JPH04146679A (en) | 1992-05-20 |
Family
ID=17472818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26946590A Pending JPH04146679A (en) | 1990-10-09 | 1990-10-09 | Distributed feedback semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04146679A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003028076A1 (en) * | 2001-09-27 | 2003-04-03 | Tongji University | Method of manufacturing semiconductor device having composite buffer layer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62144381A (en) * | 1985-12-19 | 1987-06-27 | Matsushita Electric Ind Co Ltd | Buried type optical waveguide |
JPS63153884A (en) * | 1986-12-17 | 1988-06-27 | Nec Corp | Distributed feedback type semiconductor laser |
JPH01248585A (en) * | 1988-03-30 | 1989-10-04 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
-
1990
- 1990-10-09 JP JP26946590A patent/JPH04146679A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62144381A (en) * | 1985-12-19 | 1987-06-27 | Matsushita Electric Ind Co Ltd | Buried type optical waveguide |
JPS63153884A (en) * | 1986-12-17 | 1988-06-27 | Nec Corp | Distributed feedback type semiconductor laser |
JPH01248585A (en) * | 1988-03-30 | 1989-10-04 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003028076A1 (en) * | 2001-09-27 | 2003-04-03 | Tongji University | Method of manufacturing semiconductor device having composite buffer layer |
US7192872B2 (en) | 2001-09-27 | 2007-03-20 | Tongji University | Method of manufacturing semiconductor device having composite buffer layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7842532B2 (en) | Nitride semiconductor device and method for manufacturing the same | |
US5292685A (en) | Method for producing a distributed feedback semiconductor laser device | |
US5289494A (en) | Distributed feedback semiconductor laser | |
JP5673253B2 (en) | Optical semiconductor device, semiconductor laser, and manufacturing method of optical semiconductor device | |
JPH05145169A (en) | Semiconductor distributed feedback laser apparatus | |
JPH021386B2 (en) | ||
JP4886634B2 (en) | Quantum well structure, optical confinement quantum well structure, semiconductor laser, distributed feedback semiconductor laser, and method of manufacturing quantum well structure | |
JPH04146679A (en) | Distributed feedback semiconductor laser device | |
JPH06314657A (en) | Manufacture of optical semiconductor element | |
JPH04155987A (en) | Semiconductor distribution feedback laser device and its manufacture | |
JPH04155986A (en) | Semiconductor distribution feedback type laser device | |
WO2023000430A1 (en) | Gain coupling distributed feedback semiconductor laser and manufacturing method therefor | |
JPH0334489A (en) | Semiconductor laser and manufacture thereof | |
JP2957198B2 (en) | Semiconductor laser device | |
JP3465349B2 (en) | Semiconductor multilayer substrate and method of manufacturing semiconductor multilayer film | |
JPH0349284A (en) | Semiconductor laser device and manufacturing process | |
JP3075821B2 (en) | Semiconductor distributed feedback laser device and method of manufacturing the same | |
JP3192693B2 (en) | Distributed feedback semiconductor laser and method of manufacturing the same | |
JPH07249575A (en) | Method for manufacturing semiconductor optical device | |
JPH0555686A (en) | Semiconductor distributed feedback type laser device | |
JPH0349286A (en) | Semiconductor laser device and manufacturing process | |
JPH055390B2 (en) | ||
JPS617680A (en) | Nanufacture of semiconductor laser | |
JPH03148889A (en) | Semiconductor laser | |
Mayer et al. | Tertiarybutylarsine (TBAs) and-phosphine (TBP) as group V-precursors for gas source molecular beam epitaxy for optoelectronic applications |