[go: up one dir, main page]

JPH04145926A - Exhaust gas purifying material and purifying method - Google Patents

Exhaust gas purifying material and purifying method

Info

Publication number
JPH04145926A
JPH04145926A JP2270200A JP27020090A JPH04145926A JP H04145926 A JPH04145926 A JP H04145926A JP 2270200 A JP2270200 A JP 2270200A JP 27020090 A JP27020090 A JP 27020090A JP H04145926 A JPH04145926 A JP H04145926A
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
catalyst
particulates
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2270200A
Other languages
Japanese (ja)
Inventor
Akira Muramatsu
暁 村松
Kiyohide Yoshida
吉田 清英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2270200A priority Critical patent/JPH04145926A/en
Priority to GB9121396A priority patent/GB2248560B/en
Priority to DE4133337A priority patent/DE4133337A1/en
Priority to US07/773,113 priority patent/US5213781A/en
Publication of JPH04145926A publication Critical patent/JPH04145926A/en
Priority to US08/016,764 priority patent/US5340548A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To effectively remove both of particulate carbon matter and NOx in exhaust gas by using a purifying material obtd. by depositing a catalyst comprising an alkali metal and a specified transition metal and a rare earth metal on a porous ceramic layer provided on a heat-resistant porous filter. CONSTITUTION:A purifying material used is prepared by depositing a catalyst comprising an alkali metal and a specified transition metal and a rare earth metal on a porous ceramic layer provided on a heat-resistant porous filter. The material to form the filter is a ceramics such as alumina, silica, zirconia, etc. The alkali metal is preferably lithium, sodium, potassium, and cesium. The specified transition metal is Cu and V. The rare earth metal is cerium, lanthanum, neodymium, etc. With this filter, particulate carbon matter in exhaust gas from a diesel engine or the like is oxidized, and simultaneously, these particulate carbon matter acts as a reducing agent to reduce NOx.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排ガス浄化材及びこの排ガス浄化材を使用した
排ガス浄化方法に関し、更に詳しくは、ディーゼルエン
ジン等の排ガス中の窒素酸化物(以下1110xと呼ぶ
)と微粒子状炭素物質(以下パティキュレートと呼ぶ)
とを同時に除去することのできる排ガス浄化材、及びそ
の排ガス浄化材を使用した排ガス浄化方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an exhaust gas purification material and an exhaust gas purification method using this exhaust gas purification material. (hereinafter referred to as particulates) and particulate carbon materials (hereinafter referred to as particulates)
The present invention relates to an exhaust gas purification material that can simultaneously remove the following: and an exhaust gas purification method using the exhaust gas purification material.

〔従来の技術及び発明が解決しようとする課題〕近年、
ディーゼルエンジン等から排出される排ガス中の微粒子
状炭素物質(主として固体状炭素微粒子からなり、パテ
ィキュレートと称される)や、NOX等が環境衛生上有
害なものとして問題化している。特に、パティキュレー
トは、平均粒径が0,1〜1μmで大気中に浮遊しゃす
いた杓、呼吸により人体内に取り込まれやすく、また最
近の臨床試験結果では、発ガン性物質をも含んでいるこ
とが確認されている。
[Problems to be solved by conventional techniques and inventions] In recent years,
Particulate carbon substances (mainly composed of solid carbon particles, called particulates), NOx, etc. in exhaust gas emitted from diesel engines and the like have become a problem as harmful to environmental health. In particular, particulates have an average particle size of 0.1 to 1 μm, and are easily absorbed into the human body through airborne air or breathing, and recent clinical test results indicate that they also contain carcinogenic substances. This has been confirmed.

パティキュレートの除去方法としては、人別して以下の
2つの方法が検討されている。その−っは、耐熱性フィ
ルタを用いて排ガスを濾過することによりパティキュレ
ートを捕捉し、これによる圧力損失が上昇したらバーナ
、電気ヒータ等によって、捕捉したパティキュレートを
燃焼せしめてフィルタを再生する方法である。用いられ
る耐熱フィルタとしては、ハニカム型セラミックフィル
タ、三次元網目構造を持つフオーム型セラミックフィル
タ、スチールウール、ワイヤメツシュ等がある。
As methods for removing particulates, the following two methods are being considered depending on the person. The method is to trap particulates by filtering the exhaust gas using a heat-resistant filter, and when the resulting pressure loss increases, the filter is regenerated by burning the trapped particulates with a burner, electric heater, etc. It is. Heat-resistant filters that can be used include honeycomb ceramic filters, foam ceramic filters with a three-dimensional mesh structure, steel wool, wire mesh, and the like.

他の一つは、上述したようなフィルタに担持した触媒の
作用で、パティキュレートの濾過操作とともにこれを自
己燃焼させる方法である。
The other method is to filter particulates and self-combust them using the action of a catalyst supported on a filter as described above.

前者の場合、パティキュレートの除去効果を高めれば高
めるほど圧力損失の上昇が速く、再生頻度も多くなり、
再生に高い信頼性が要求され、しかも経済的にも不利に
なると考えられる。
In the former case, the higher the particulate removal effect, the faster the pressure drop will rise, and the more frequently the regeneration will occur.
High reliability is required for reproduction, and it is considered to be economically disadvantageous.

これに対して、後者の方法は、ディーゼルエンジンの排
気ガスの排出条件(ガス組成及び温度)において触媒活
性を保持しうる触媒があれば、はるかに優れた方法と考
えられる。
On the other hand, the latter method is considered to be a much better method if there is a catalyst that can maintain catalytic activity under the exhaust gas emission conditions (gas composition and temperature) of a diesel engine.

しかしながら、ディーゼルエンジンは燃料として軽油を
用いるため、排ガス中に802を多く含み、また、ディ
ーゼルエンジンの運転状況によって、排ガス中の酸素濃
度が2〜20%の広範囲に変化する。このような排ガス
条件下で、蓄積したパティキュレートを良好に着火燃焼
し、しかも二次公害を起こさない排ガス浄化フィルタの
再生方法はまだ確立されていない。
However, since diesel engines use light oil as fuel, the exhaust gas contains a large amount of 802, and the oxygen concentration in the exhaust gas varies over a wide range of 2 to 20% depending on the operating conditions of the diesel engine. Under such exhaust gas conditions, a method for regenerating an exhaust gas purification filter that satisfactorily ignites and burns the accumulated particulates and does not cause secondary pollution has not yet been established.

たとえば、これまでに提案されたディーゼルエンジン等
の排ガス中のパティキュレートの浄化用触媒としては、
貴金属系、卑金属系のものがあるが、貴金属系の触媒は
、耐久性や、CD、未燃焼の炭化水素(以下これをl(
cと呼ぶ)等の酸化特性が高い反面、排ガス中に存在す
るS02を803に転化しやすく、二次公害を生む可能
性が高い。またパティキュレート中の煤分の燃焼特性を
低下させる欠点もある。一方、卑金属系の触媒は、パテ
ィキュレートの浄化触媒としては効果があるが、耐久性
の点で問題がある。
For example, the catalysts proposed so far for purifying particulates in exhaust gas from diesel engines, etc.
There are noble metal-based and base metal-based catalysts, but noble metal catalysts have low durability, CD, and unburned hydrocarbons (hereinafter referred to as l).
Although it has high oxidizing properties such as (referred to as c), it easily converts S02 present in exhaust gas into 803, and is highly likely to cause secondary pollution. It also has the disadvantage that the soot in the particulates deteriorates the combustion characteristics. On the other hand, base metal catalysts are effective as particulate purification catalysts, but have problems in terms of durability.

また、これまでに提案された排ガス浄化触媒や浄化材の
ほとんどは、パティキュレートの着火温度を低下させる
ことに主眼がおかれ、排ガス中の酸素濃度が一般に高い
か、又は酸素濃度が大きく変化するようなディーゼルエ
ンジン等の排ガスでは、それに含まれるNOxの除去は
未解決のまま残されている。
In addition, most of the exhaust gas purification catalysts and purification materials proposed so far have focused on lowering the ignition temperature of particulates, and the oxygen concentration in the exhaust gas is generally high or changes significantly. Removal of NOx contained in exhaust gas from diesel engines and the like remains unresolved.

従って本発明の目的は、ディーゼルエンジン等が排出す
るような酸素濃度変化の大きい排ガス中に含まれるパテ
ィキュレートを効率的に燃焼除去し、同時に窒素酸化物
をも効果的に除去できる排ガス浄化材及び排ガス浄化方
法を提供することである。
Therefore, an object of the present invention is to provide an exhaust gas purifying material that can efficiently burn and remove particulates contained in exhaust gas with large changes in oxygen concentration, such as those emitted by diesel engines, and at the same time, can also effectively remove nitrogen oxides. An object of the present invention is to provide a method for purifying exhaust gas.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題に鑑み鋭意研究の結果、本発明者は、耐熱性の
ある多孔性フィルタ上に設けた多孔質のセラミック層上
に、アルカリ金属元素と、特定の遷移金属元素と、希土
類金属元素とからなる触媒を担持してなる浄化材を用い
れば、酸素濃度が大きく変化する排ガスでも効率良くパ
ティキュレートとNOXとを同時に除去することができ
、かつその除去能力も長時間持続することを発見し、本
発明を完成した。
As a result of intensive research in view of the above issues, the present inventor has discovered that an alkali metal element, a specific transition metal element, and a rare earth metal element are added to a porous ceramic layer provided on a heat-resistant porous filter. We discovered that by using a purifying material that supports a catalyst, it is possible to efficiently remove particulates and NOX at the same time even in exhaust gas where the oxygen concentration changes greatly, and that the removal ability lasts for a long time. The invention has been completed.

すなわち本発明の排ガス浄化材は、耐熱多孔性フィルタ
上に設けた多孔質のセラミック層上に、(a)アルカリ
金属元素と、(b)Cu元素及びV元素と、(c)希土
類元素とからなる触媒を担持してなることを特徴とする
In other words, the exhaust gas purifying material of the present invention comprises (a) an alkali metal element, (b) a Cu element and a V element, and (c) a rare earth element on a porous ceramic layer provided on a heat-resistant porous filter. It is characterized by supporting a catalyst.

また本発明の排ガス浄化方法は、前記排ガス浄化材を用
い、フィルタに担持した前記触媒によって排ガス中のパ
ティキュレートを酸化すると同時に、前記パティキュレ
ートを還元剤として窒素酸化物を還元することを特徴と
する。
Further, the exhaust gas purification method of the present invention is characterized in that, using the exhaust gas purification material, particulates in the exhaust gas are oxidized by the catalyst supported on a filter, and at the same time, nitrogen oxides are reduced using the particulates as a reducing agent. do.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のフィルタは、高温の排ガスを濾過するものであ
るため、そのフィルタ形成材料としては、多孔性で耐熱
性、特に耐熱衝撃特性の高いものを用いる。しかも必要
なパティキュレート捕集性能を保有しつつ、圧力損失が
許容範囲内であることが必要である。そのようなフィル
タ形成材料としては、アルミナ、シリカ、チタニア、ジ
ルコニア、シリカ−アルミナ、アルミナ−ジルコニア、
アルミナ−チタニア、シリカ−チタニア、シリカ−ジル
コニア、チタニア−ジルコニア、ムライト、コージェラ
イト等のセラミックスが挙げられる。
Since the filter of the present invention filters high-temperature exhaust gas, a material that is porous and has high heat resistance, particularly high thermal shock resistance, is used as the material for forming the filter. Moreover, it is necessary that the pressure loss be within an allowable range while maintaining the necessary particulate collection performance. Such filter forming materials include alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia,
Examples include ceramics such as alumina-titania, silica-titania, silica-zirconia, titania-zirconia, mullite, and cordierite.

フィルタのポロシティは40〜80%であるのが良い。The porosity of the filter is preferably 40-80%.

フィルタの形状と大きさは、目的に応じて種々変更する
ことができるが、一般に円筒形に形成され、その直径は
30〜400mm 、厚さは50〜300mmとするの
が好ましい。また必要に応じて、複数枚積層してもよい
The shape and size of the filter can be varied depending on the purpose, but it is generally cylindrical, with a diameter of 30 to 400 mm and a thickness of 50 to 300 mm. Moreover, if necessary, a plurality of sheets may be laminated.

上記のフィルタに担持する触媒としては、(a)アルカ
リ金属(Li 、 Na、 K 、 Cs等)と、(b
)Cu及びVと、(c)希土類元素(ce SLa、 
Nd、 Sm等)とからなるものを用いる。
The catalysts supported on the above filter include (a) alkali metals (Li, Na, K, Cs, etc.) and (b)
) Cu and V, and (c) rare earth elements (ce SLa,
(Nd, Sm, etc.) is used.

上述の構成の触媒を用いることによって、比較的低温で
排ガス中のパティキュレートを着火燃焼させることがで
きるとともに、NOXの除去を効果的に行うことができ
る。すなわち、フィルタ内で排ガス中のパティキュレー
トが上記触媒元素及び酸素と共存することによって着火
温度が下がり、パティキュレートが400℃以下で燃焼
(酸化)される。また、それと同時に、パティキュレー
トが還元剤として作用してNOxを還元し、排ガスが効
果的に浄化される。このように、比較的低温でN。
By using the catalyst configured as described above, particulates in exhaust gas can be ignited and burned at a relatively low temperature, and NOx can be effectively removed. That is, the particulates in the exhaust gas coexist with the catalyst element and oxygen in the filter, thereby lowering the ignition temperature and burning (oxidizing) the particulates at 400° C. or lower. At the same time, the particulates act as a reducing agent to reduce NOx, thereby effectively purifying the exhaust gas. In this way, N at relatively low temperatures.

×の還元が効率よく起こるのは、排ガス中のパティキュ
レートと上記の触媒成分(a)、(b)及び(c)が同
時に存在することによる相乗効果によるものと思われる
The reason why the reduction of x occurs efficiently is thought to be due to the synergistic effect caused by the simultaneous presence of the particulates in the exhaust gas and the above catalyst components (a), (b) and (c).

NOXとパティキュレートとの同時除去は、アルカリ金
属と、遷移金属と、希土類金属とからなる触媒、特に遷
移金属としてCuを用いた場合、その浄化能は使用初期
においては優れたものとなるが、単に上記の三種の元素
(アルカリ金属、遷移金属としてCu、希土類金属)の
組合せとしただけでは、排ガス中に含まれる硫黄及びそ
の酸化物の存在によりしだいに触媒の浄化特性が低下し
てしまう。
For simultaneous removal of NOX and particulates, a catalyst consisting of an alkali metal, a transition metal, and a rare earth metal, especially Cu as the transition metal, has excellent purification ability in the initial stage of use. If the above three elements (alkali metal, Cu as a transition metal, and rare earth metal) are simply combined, the purification properties of the catalyst will gradually deteriorate due to the presence of sulfur and its oxides contained in the exhaust gas.

特に排ガスは高温であるので、S[12等の硫黄酸化物
により触媒の浄化特性の低下が急激に起こる。
In particular, since the exhaust gas is at a high temperature, sulfur oxides such as S[12] rapidly deteriorate the purification properties of the catalyst.

そこで、本発明においては、(b)遷移金属として、C
uとVを用いる。■の添加により、すなわちアルカリ金
属、Cu及びv1希土類金属の組合せとすることにより
、触媒の初期特性に関してはそれほど大きな向上は期待
できないが、長期にわたる安定したNOxとパティキュ
レートの同時除去特性が得られる。
Therefore, in the present invention, as (b) transition metal, C
Use u and V. By adding (ii), that is, a combination of alkali metals, Cu, and v1 rare earth metals, it is not expected that the initial properties of the catalyst will be significantly improved, but stable simultaneous removal properties of NOx and particulates can be obtained over a long period of time. .

(a)アルカリ金属としては、リチウム、ナトリウム、
カリウム、及びセシウムを用いるのが好ましい。ら)遷
移金属としてはCu及びVを用いる。また、(c)希土
類金属としては、セリウム、ランタン、ネオジウム等を
用いるのが好ましい。
(a) Alkali metals include lithium, sodium,
Preferably, potassium and cesium are used. (3) Cu and V are used as transition metals. Furthermore, as the rare earth metal (c), it is preferable to use cerium, lanthanum, neodymium, or the like.

上記の触媒各成分(a)、ら)及び(c)の配合量は、
それぞれの金属分の重量比で、(a)が10〜50%、
ら)が30〜90%、(c)が10〜50%とするのが
よい。また、ら)のCuとVとの比率は重量比で5/1
〜1/15程度とするのがよい。
The amounts of each of the above catalyst components (a), ra) and (c) are as follows:
The weight ratio of each metal component is 10 to 50% (a),
(a) is preferably 30 to 90%, and (c) is preferably 10 to 50%. In addition, the ratio of Cu and V in (ra) is 5/1 by weight
It is best to set it to about 1/15.

上述した触媒の耐熱多孔性フィルタへの担持は、フィル
タ上に、フィルタより多孔性で表面積の大きいセラミッ
クスからなる担体層を形成した後、この担体層に触媒を
担持する。
To support the above-mentioned catalyst on the heat-resistant porous filter, a carrier layer made of ceramic, which is more porous and has a larger surface area than the filter, is formed on the filter, and then the catalyst is supported on this carrier layer.

担体層を形成する材料としては、チタニア、アルミナ、
シリカ、チタニア−アルミナ、チタニアシリカ、等の多
孔性で表面積の大きいセラミックスを用い、担持量は、
セラミックスフィルタの場合はフィルタの3〜15重量
%、好ましくは5〜12重量%である。触媒活性種とし
ては、その合計が前記担体の1〜40重量%、好ましく
は5〜30重量%である。
Materials for forming the carrier layer include titania, alumina,
Using porous and large surface area ceramics such as silica, titania-alumina, titania-silica, etc., the amount supported is
In the case of a ceramic filter, the amount is 3 to 15% by weight, preferably 5 to 12% by weight of the filter. The total amount of catalytically active species is 1 to 40% by weight, preferably 5 to 30% by weight of the carrier.

セラミックスからなる担体層の形成は、ウォッシュコー
ト法やゾル−ゲル法等により行うことができる。
The carrier layer made of ceramics can be formed by a wash coat method, a sol-gel method, or the like.

ウォッシュコート法は、上記した多孔性のセラミックス
のスラリー中にフィルタを浸漬し、乾燥することにより
フィルタ上に担体層を形成する方法である。
The wash coat method is a method in which a carrier layer is formed on the filter by immersing the filter in the above-mentioned porous ceramic slurry and drying it.

また、ゾル−ゲル法による担体層の形成は以下の通り行
う。
Further, the formation of the carrier layer by the sol-gel method is performed as follows.

担体層用セラミックスを形成する金属の有機塩(例えば
アルコキシド)を加水分解し、得られたゾルをフィルタ
にコーティングし、水蒸気等との接触によりコロイド粒
子の膜を生成させた後、乾燥、焼成して触媒の担体層を
フィルタ上に形成する。例えば、担体層用セラミックス
としてチタニア(T102)を用いる場合、まずTiの
アルコキシド(例えば、Ti(0−iso C3H7)
4)のアルコール溶液に、Cll3COOH、HNO3
、HCβ等の酸を加えたコーテイング液を生成する。こ
のコーテイング液にフィルタを浸漬し、引き上げた後、
水蒸気あるいは水と反応させてゲル化を行う。次いで、
フィルタを乾燥、焼成すれば、フィルタの空孔表面にチ
タニアの膜が形成される。ゾル−ゲル法において、ゲル
化の際の加水分解反応の触媒として酸を添加するが、酸
の代わりにアルカリを添加しても、加水分解反応を促進
することができる。
The organic salt of the metal (e.g. alkoxide) that forms the ceramic for the carrier layer is hydrolyzed, the resulting sol is coated on a filter, a film of colloidal particles is generated by contact with water vapor, etc., and then dried and fired. to form a catalyst carrier layer on the filter. For example, when using titania (T102) as the ceramic for the carrier layer, first a Ti alkoxide (e.g., Ti(0-iso C3H7)
4) Into the alcohol solution, Cll3COOH, HNO3
, to produce a coating liquid to which an acid such as HCβ is added. After immersing the filter in this coating liquid and pulling it out,
Gelation is achieved by reacting with steam or water. Then,
When the filter is dried and fired, a titania film is formed on the pore surface of the filter. In the sol-gel method, an acid is added as a catalyst for the hydrolysis reaction during gelation, but the hydrolysis reaction can also be promoted by adding an alkali instead of the acid.

なお、以上において担体層用セラミックスとしてチタニ
アを例に説明したが、それ以外のセラミックの場合でも
、同様にゾル−ゲル法により担持することができる。例
えば、アルミナの担体層とする場合は、八βのアルコキ
シドを用い、上述のチタニアの場合と同様の方法で行う
。その他の多孔質担体を用いるときも同様である。
Although titania has been described above as an example of the ceramic for the carrier layer, other ceramics can be similarly supported by the sol-gel method. For example, when forming an alumina carrier layer, an octaβ alkoxide is used and the same method as in the case of titania described above is used. The same applies when using other porous carriers.

上述のウォッシュコート法又はゾル−ゲル法等により、
セラミックスからなる多孔性の担体層をフィルタ上に形
成したら、次に、触媒活性種の炭酸塩、硝酸塩、酢酸塩
、水酸化物などの水溶液を担体層に含浸して、再び乾燥
、焼成して触媒の担持を行う。なお、触媒活性金属種の
塩としては、水に溶解するものであれば、上述した通り
炭酸塩、硝酸塩、酢酸塩、水酸化物等、どのような種類
のものでも用いることができる。■の担持ては、NH4
VO3としゅう酸の溶液を用いることができる。またア
ルカリのバナジン酸塩を用い、アルカリ金属とVとを同
時に担体することもできる。
By the above-mentioned wash coat method or sol-gel method, etc.
After forming a porous ceramic carrier layer on the filter, the carrier layer is impregnated with an aqueous solution of catalytically active species such as carbonate, nitrate, acetate, and hydroxide, and then dried and fired again. Supports the catalyst. As the salt of the catalytically active metal species, any salt can be used as long as it dissolves in water, such as carbonates, nitrates, acetates, and hydroxides, as described above. ■ is responsible for NH4
A solution of VO3 and oxalic acid can be used. Furthermore, an alkali metal and V can be simultaneously supported using an alkali vanadate.

〔実施例〕〔Example〕

本発明を以下の具体的実施例によりさらに詳細に説明す
る。
The present invention will be explained in more detail by the following specific examples.

実施例1 コージェライト製セラミックフオーム(見かけの体積2
1、密度Ot65g/d)に、ウォッシュコート法によ
りTlO2をフィルタに対して10%(重量%、以下同
じ)コートした。
Example 1 Cordierite ceramic foam (apparent volume 2
1. The filter was coated with 10% (weight %, the same applies hereinafter) of TlO2 by the wash coating method.

得られたフィルタに、CuCl2、La(NO3)+及
びCsNO3の水溶液を用いてCu、 La及びCsを
それぞれTiO2に対して2.5%含浸し、乾燥後、7
00℃で焼成した。次いで、上記で得られたフィルタを
NH,VO。
The obtained filter was impregnated with Cu, La and Cs at 2.5% relative to TiO2 using aqueous solutions of CuCl2, La(NO3)+ and CsNO3, and after drying,
It was fired at 00°C. Next, the filter obtained above was treated with NH and VO.

としゅう酸の混合水溶液に浸漬し、■を2.5%含浸し
た。このフィルタを乾燥後、再び700℃で3時間焼成
し、浄化材を得た。
It was immersed in a mixed aqueous solution of oxalic acid and impregnated with 2.5% of ■. After drying this filter, it was fired again at 700° C. for 3 hours to obtain a purifying material.

この浄化材について、排気量510ccのディーゼルエ
ンジンを用い、パティキュレートが着火燃焼してフィル
タが再生されるときの温度(圧力損失の低下するときの
温度)と、そのときのNOXの転化率を求めた。なお、
この再生温度及びNOXの転化率は、浄化材の使用初期
(初めて圧力損失の低下が観測された時)と、浄化材を
使用して10時間経過した時点での圧力損失の低下時の
2点において求めた。エンジンの運転は、回転数を15
0Orpmとし、負荷90%とした。この運転条件での
排ガス中のHCは全炭化水素の合計で90ppm SC
Oは460ppm、NOXは480 ppm 、 02
は10%、及びSO2は200 ppmであった。
For this purifying material, using a diesel engine with a displacement of 510 cc, the temperature at which the particulates ignite and burn and the filter is regenerated (the temperature at which the pressure loss decreases) and the conversion rate of NOx at that time were determined. Ta. In addition,
The regeneration temperature and NOX conversion rate are determined at two points: at the beginning of the use of the purification material (when a decrease in pressure loss is observed for the first time) and at the time when the pressure drop decreases after 10 hours of using the purification material. It was found in The engine is operated at a rotation speed of 15
It was set to 0 rpm and the load was set to 90%. Under these operating conditions, the total amount of HC in the exhaust gas is 90 ppm SC
O is 460 ppm, NOX is 480 ppm, 02
was 10%, and SO2 was 200 ppm.

結果を第1表に示す。The results are shown in Table 1.

実施例2〜4 実施例1と同様にしてフオームフィルタにTlO2を1
0%コートし、CuCl2、Ce(NL)3及びC8N
O3の各水溶液を用いてCu、 Ce及びCsをTlO
2層に対して2.5%ずつ含浸し、実施例1と同様に乾
燥及び焼成した。次に、実施例1と同様の方法によりV
を2.5%担持し、Cu、 Cs、 Ce及びVからな
る触媒を担持した浄化材を得た(実施例2)。
Examples 2 to 4 In the same manner as in Example 1, 1 TlO2 was added to the foam filter.
0% coated with CuCl2, Ce(NL)3 and C8N
Cu, Ce and Cs were converted to TlO using each aqueous solution of O3.
The two layers were impregnated at 2.5% each, and dried and fired in the same manner as in Example 1. Next, V
A purification material was obtained in which 2.5% of Cu, Cs, Ce and V were supported (Example 2).

同様に、CuCl2 、La (NO3) 3、及びK
Clの各水溶液及びN11.VD、水溶液を用い、Cu
、 La、 K及びVをそれぞれTlO2に対して2.
5%担持した浄化材を得た(実施例3)。
Similarly, CuCl2, La(NO3)3, and K
Each aqueous solution of Cl and N11. VD, using an aqueous solution, Cu
, La, K and V to TlO2, respectively.
A purifying material having a loading of 5% was obtained (Example 3).

さらに、CuCl2、Ce (NO3) 3、KCl及
びNIl、VO,水溶液を用い、Cu、 Ce、 K及
びVを各2.5%担持した浄化材を得た(実施例4)。
Furthermore, using CuCl2, Ce(NO3)3, KCl, NIl, VO, and aqueous solutions, a purification material carrying 2.5% each of Cu, Ce, K, and V was obtained (Example 4).

得られた各浄化材について、実施例1と同様にして再生
温度とNOxの浄化率を求めた。
For each of the obtained purification materials, the regeneration temperature and NOx purification rate were determined in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

比較例1〜4 実施例1と同様のコージェライト製フオームフィルタを
用い、ウォッシュコート法によりTiO2をフィルタに
対して10%担持した。
Comparative Examples 1 to 4 Using the same cordierite foam filter as in Example 1, 10% TiO2 was supported on the filter by the wash coating method.

得られたフィルタに対して、La (NO3) 3、C
uCL、C3NO3及びKCff水溶液を用いて、以下
に示す金属を担持した浄化材を作成した。各金属の担持
方法は、実施例1と同様とし、また担持の量は、それぞ
れ2,5%とした。
For the obtained filter, La (NO3) 3,C
Using uCL, C3NO3, and KCff aqueous solution, a purification material supporting the following metals was created. The method of supporting each metal was the same as in Example 1, and the amount of each metal supported was 2.5%.

比較例1 : Cs/ Cu/ La 比較例2 : Cs/ Cu/ Ce 比較例3 : K / Cu/ La 比較例4 : K / Cu/ Ce 得られた浄化材について、実施例1と同様に再生温度及
びN[]X除去率を求めた。
Comparative Example 1: Cs/Cu/La Comparative Example 2: Cs/Cu/Ce Comparative Example 3: K/Cu/La Comparative Example 4: K/Cu/Ce The obtained purification material was recycled in the same manner as in Example 1. The temperature and N[]X removal rate were determined.

結果を第1表に示す。The results are shown in Table 1.

第1表 注(1):初めての圧力損失の低下が観測された時点。Table 1 Note (1): The point at which the first decrease in pressure drop is observed.

(2):ガスをフィルタに通過させ始めてから10時間
経過した時点での圧力損失の低下時。
(2): When the pressure loss decreases 10 hours after gas starts passing through the filter.

(3):フィルタ通過前と、通過後の排ガス中のNOX
量から計算したNOXの浄化率(%)。
(3): NOX in exhaust gas before and after passing through the filter
NOx purification rate (%) calculated from the amount.

第1表から明らかなように、本実施例の排ガス浄化材は
、使用開始から10時間経過しても比較例に比して高い
NOX浄化率を有する。またその時のフィルタの再生温
度(パティキュレートが着火燃焼される温度)も低く、
良好な排ガスの浄化が行われたのがわかる。
As is clear from Table 1, the exhaust gas purification material of this example has a higher NOx purification rate than that of the comparative example even after 10 hours have passed since the start of use. Also, the regeneration temperature of the filter at that time (the temperature at which particulates are ignited and burned) is low.
It can be seen that the exhaust gas was well purified.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の排ガス浄化材を用いれば
、排ガス中のパティキュレートと窒素酸化物との双方が
効果的に除去される。また、ディーゼルエンジン等の比
較的低温の排ガスであっても、その浄化は効率よく行わ
れる。
As explained above, by using the exhaust gas purifying material of the present invention, both particulates and nitrogen oxides in the exhaust gas can be effectively removed. Further, even relatively low-temperature exhaust gas from a diesel engine or the like can be efficiently purified.

本発明の浄化材は、まず、ウォッシュコート法やゾル−
ゲル法等によって多孔質のセラミック層をフィルタ上に
形成し、そのセラミック層に触媒を担持してなるので、
フィルタ上に高濃度で均に触媒が担持され、良好な排ガ
ス浄化能が得られる。
The purifying material of the present invention can first be applied using a wash coat method or a sol method.
A porous ceramic layer is formed on the filter using a gel method, etc., and the catalyst is supported on the ceramic layer.
The catalyst is evenly supported on the filter at a high concentration, resulting in good exhaust gas purification performance.

また、本発明の浄化材は、触媒中に遷移金属としてCu
とVとを含んでいるので、SO2濃度が高い排ガスでも
その浄化特性を低下させることなく、長期にわたって良
好なNOXとパティキュレートの同時除去を行うことが
できる。
In addition, the purifying material of the present invention contains Cu as a transition metal in the catalyst.
and V, it is possible to simultaneously remove NOx and particulates satisfactorily over a long period of time without degrading the purification characteristics even in exhaust gas with a high SO2 concentration.

本発明の浄化材は、 アイ ゲルエンジン等の排 ガスの浄化に好適である。The purifying material of the present invention is Eye Exhaust from gel engines, etc. Suitable for gas purification.

出 願 人 株 式 手 続 補 正 書(自 発) 平成3年10月8日 平成2年特許願第270200号 発明の名称 排ガス浄化材及び排ガス浄化方法 補正をする者 事件との関係  特許出願人 氏 名     株式会社リケンOut wish Man KK formula hand Continued Supplementary Positive Calligraphy (self-published) October 8, 1991 1990 Patent Application No. 270200 name of invention Exhaust gas purification materials and exhaust gas purification methods person who makes corrections Relationship to the case Patent applicant Name Riken Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)耐熱多孔性フィルタ上に設けた多孔質のセラミッ
ク層上に触媒を担持してなる排ガス浄化材であって、前
記触媒が(a)アルカリ金属元素と、(b)Cu元素及
びV元素と、(c)希土類元素とからなることを特徴と
する排ガス浄化材。
(1) An exhaust gas purifying material comprising a catalyst supported on a porous ceramic layer provided on a heat-resistant porous filter, the catalyst comprising (a) an alkali metal element, and (b) a Cu element and a V element. and (c) a rare earth element.
(2)請求項1に記載の排ガス浄化材において、前記セ
ラミック層がTiO_2であることを特徴とする排ガス
浄化材。
(2) The exhaust gas purifying material according to claim 1, wherein the ceramic layer is TiO_2.
(3)請求項1又は2に記載の排ガス浄化材を用いて排
気ガスを浄化する方法であって、前記フィルタに担持し
た触媒によって排ガス中のパティキュレートを酸化する
と同時に、前記パティキュレートを還元剤として窒素酸
化物を還元することを特徴とする排ガス浄化方法。
(3) A method for purifying exhaust gas using the exhaust gas purifying material according to claim 1 or 2, wherein particulates in the exhaust gas are oxidized by a catalyst supported on the filter, and at the same time, the particulates are oxidized by a reducing agent. An exhaust gas purification method characterized by reducing nitrogen oxides.
JP2270200A 1990-10-08 1990-10-08 Exhaust gas purifying material and purifying method Pending JPH04145926A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2270200A JPH04145926A (en) 1990-10-08 1990-10-08 Exhaust gas purifying material and purifying method
GB9121396A GB2248560B (en) 1990-10-08 1991-10-08 Exhaust gas cleaner and method of cleaning exhaust gas
DE4133337A DE4133337A1 (en) 1990-10-08 1991-10-08 EXHAUST GAS CLEANER AND METHOD FOR CLEANING EXHAUST GAS
US07/773,113 US5213781A (en) 1990-10-08 1991-10-08 Method of cleaning nitrogen oxide containing exhaust gas
US08/016,764 US5340548A (en) 1990-10-08 1993-02-11 Exhaust gas cleaner and method of cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270200A JPH04145926A (en) 1990-10-08 1990-10-08 Exhaust gas purifying material and purifying method

Publications (1)

Publication Number Publication Date
JPH04145926A true JPH04145926A (en) 1992-05-19

Family

ID=17482927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270200A Pending JPH04145926A (en) 1990-10-08 1990-10-08 Exhaust gas purifying material and purifying method

Country Status (1)

Country Link
JP (1) JPH04145926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174111A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Exhaust gas purifying material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174111A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Exhaust gas purifying material

Similar Documents

Publication Publication Date Title
US5340548A (en) Exhaust gas cleaner and method of cleaning exhaust gas
US5320999A (en) Exhaust gas cleaner and method of cleaning exhaust gas
JP2863567B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH0459049A (en) Catalyst for diesel engine exhaust gas cleanup
US5108977A (en) Catalyst for cleaning exhaust gas
US5154901A (en) Method of cleaning an exhaust gas containing nitrogen oxides and fine carbon-containing particulates
JP2007503977A (en) Diesel particulate filter carrying a catalyst with improved thermal stability
JP2004216305A (en) Exhaust gas purification catalyst, exhaust gas purification material using same, and production method therefor
JPH05184929A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH0440235A (en) Exhaust gas purifying material and method
JPH03207451A (en) Material for purification of exhaust gas and method for purifying exhaust gas
JPH05115782A (en) Material for cleaning exhaust gas and method for cleaning exhaust gas
JPH0442063B2 (en)
JPH04145926A (en) Exhaust gas purifying material and purifying method
JPH0531330A (en) Decontamination of exhaust gas
JPH04354518A (en) Material and method for purifying exhaust gas
JPH0347539A (en) Exhaust gas purifying material and method
JPS63242324A (en) Exhaust gas purifying method
JPH04363119A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPS6164331A (en) Catalyst for purifying exhaust gas
JPH0440237A (en) Exhaust gas purifying material and method
JPH04354519A (en) Material and method for purifying exhaust gas
JP2854371B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH04145927A (en) Exhaust gas purifying material and purifying method
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas