[go: up one dir, main page]

JPH04145621A - Semiconductor thin film vapor growth device - Google Patents

Semiconductor thin film vapor growth device

Info

Publication number
JPH04145621A
JPH04145621A JP27018590A JP27018590A JPH04145621A JP H04145621 A JPH04145621 A JP H04145621A JP 27018590 A JP27018590 A JP 27018590A JP 27018590 A JP27018590 A JP 27018590A JP H04145621 A JPH04145621 A JP H04145621A
Authority
JP
Japan
Prior art keywords
raw material
tantalum
thin film
vapor phase
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27018590A
Other languages
Japanese (ja)
Inventor
Nozomi Matsuo
松尾 望
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27018590A priority Critical patent/JPH04145621A/en
Publication of JPH04145621A publication Critical patent/JPH04145621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve corrosion resistance and safety and to assure crystal quality by coating inside of a raw material container and a piping for raw gas with a specified metallic film. CONSTITUTION:Inside of a raw gas container of a metallic material and a piping which raw gas passes through is coated with a metallic film tantalum- base tantalum alloy containing 50% or less tungsten; thereby, corrosion resistance and safety are improved and thin film vapor growth whose crystal quality is assured can be carried out using oxidizing or reducing raw gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料容器や配管部品の耐食性を向上せしめた
半導体1m気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor 1m vapor phase growth apparatus that improves the corrosion resistance of raw material containers and piping parts.

(従来の技術とその課題〕 半導体薄膜を成長させる気相成長装置として有機金属気
相成長装置、クロライドV、P、E装置、ハライドV、
P、E装置などがある。
(Prior art and its problems) As a vapor phase growth apparatus for growing semiconductor thin films, metal organic vapor phase growth apparatus, chloride V, P, E apparatus, halide V,
There are P and E devices.

これらの装置のうち例えば有機金属気相成長装置として
第1図に示すようなものがある0図において(1)は石
英またはステンレス鋼で作製された反応容器、(2)は
カーボン製のサセプタ、(3)は半導体基板、(4)は
基板加熱用の誘導コイルである。この装置により例えば
InP/ Ir1GaAsP系の結晶薄膜を成長させる
には、誘導コイル(4)によりサセプタ(2)および半
導体基板(3)を500〜800°Cに加熱した状態で
反応容器(1)内にステンレス製の原料供給管(8)を
通してH2ガスで希釈されトリメチルガリウム(TMG
a)、トリメチルインジウム(TMIn)等の有機金属
ガスおよびアルシン(AsHs)フォスフイン(PH3
)等の水素化金属ガスを供給し、これらの原料ガスの熱
分解反応を利用して半導体基板上にInP/InCaA
sP系の結晶薄膜を形成する。ここで原料ガスのうち、
Hlは可燃性を有し、またTMGa STMIn等の有
機金属ガスは空気に触れると自然発火する。
Among these devices, for example, there is an organometallic vapor phase growth device as shown in FIG. 1. In FIG. 1, (1) is a reaction vessel made of quartz or stainless steel, (2) is a susceptor made of carbon, (3) is a semiconductor substrate, and (4) is an induction coil for heating the substrate. To grow an InP/IrGaAsP-based crystal thin film using this device, for example, the susceptor (2) and semiconductor substrate (3) are heated to 500 to 800°C by the induction coil (4) in the reaction vessel (1). Trimethylgallium (TMG) is diluted with H2 gas through a stainless steel raw material supply pipe (8).
a), organometallic gases such as trimethylindium (TMIn) and arsine (AsHs) phosphine (PH3
), etc., and by utilizing the thermal decomposition reaction of these raw material gases, InP/InCaA is formed on the semiconductor substrate.
An sP-based crystal thin film is formed. Of the raw material gas,
Hl is flammable, and organometallic gases such as TMGa STMIn spontaneously ignite when exposed to air.

さらにASHs 、PHx等は人体に対し極めて有害で
ある。したがってこれらの原料ガスを用いる有機金属成
長装置の構造においては、これらの原料ガスが絶対に漏
洩しないように反応容器や配管および接続部等は強度、
耐食性を考慮して設計する必要がある。
Furthermore, ASHs, PHx, etc. are extremely harmful to the human body. Therefore, in the structure of an organometallic growth apparatus that uses these raw material gases, the strength of reaction vessels, piping, connections, etc. must be ensured to ensure that these raw material gases do not leak.
It is necessary to design with corrosion resistance in mind.

また上記の装置では結晶薄膜成長時に原料ガスの熱分解
によって生じたGa、In、As、、P等が反応容器の
内壁やサセプタの表面に付着、堆積し、結晶薄膜の組成
や表面状態に悪影響を及ぼすので、これを防止するため
に定期的に反応容器やサセプタ表面の堆積物を除去する
ためのHClやP(1,等の腐食性ガス原料容器(5)
が配管ラインに設けられている。
In addition, in the above-mentioned apparatus, Ga, In, As, P, etc. generated by thermal decomposition of the raw material gas during crystal thin film growth adhere to and accumulate on the inner wall of the reaction vessel and the surface of the susceptor, which adversely affects the composition and surface condition of the crystal thin film. To prevent this, a corrosive gas raw material container (5) such as HCl or P (1) is used to periodically remove deposits on the surface of the reaction vessel and susceptor.
is installed in the piping line.

上記の腐食性原料ガスを用いるに当っては種々の課題が
残されている。例えば上記PCffi3は室温でもステ
ンレス鋼をはじめとする金属材料を腐食するためこの原
料ガス容器にはガラスが用いられており、またPCJ2
xを反応容器に供給する腐食性ガス配管(6)や腐食性
ガスパルプ(7)にもガラスやテフロン等の樹脂材が用
いられている。しかしガラスは、機械的な衝撃による破
損の可能性が大きく、テフロンを用いた場合は接続部で
の漏洩の危険が懸念される。
Various problems remain when using the above corrosive raw material gas. For example, the PCffi3 mentioned above corrodes metal materials such as stainless steel even at room temperature, so glass is used for this raw material gas container, and the PCffi3
Resin materials such as glass and Teflon are also used for the corrosive gas pipe (6) and the corrosive gas pulp (7) that supply x to the reaction vessel. However, glass is highly susceptible to breakage due to mechanical impact, and if Teflon is used, there is a risk of leakage at connections.

またH(l原料はPCj!3はど腐食性が大きくないこ
とからステンレス鋼などの原料容器(22)に封入され
、ステンレス鋼配管(9)やステンレス製の減圧弁(1
0)、パルプ(11)、流量調整器(12)等の配管部
品が用いられており、同じくステンレス鋼製の原料供給
管(8)を通して反応容器内に供給されている。
In addition, since the H(l raw material PCj!3 is not highly corrosive, it is sealed in a raw material container (22) made of stainless steel, etc., and is installed in stainless steel piping (9) and a stainless steel pressure reducing valve (1).
0), pulp (11), flow rate regulator (12), and other piping parts are used, and the raw material is supplied into the reaction vessel through a raw material supply pipe (8) also made of stainless steel.

しかしHC1原料は上記のステンレス製の原料容器や配
管部品に対し、特に微量の水分が存在する場合に腐食性
が促進され、配管部品に穴があいたり、腐食によりガス
中にとり込まれたステンレス鋼の構成元素が反応容器内
に運ばれ結晶Ti1Hの品質に悪影響を与えることがあ
る。
However, the HC1 raw material becomes corrosive to the above-mentioned stainless steel raw material containers and piping parts, especially when a small amount of moisture is present, causing holes in the piping parts, or stainless steel being incorporated into the gas due to corrosion. constituent elements may be carried into the reaction vessel and adversely affect the quality of crystalline Ti1H.

一方反応容器の下流の排気管(13)やバルブ(14)
も同様にステンレス鋼で作製されており、上記の腐食性
ガスに対して同じ問題がある。さらに排気管はサセプタ
で加熱されたH2ガスに接触するために長期的にはステ
ンレス鋼材の水素脆化を招く問題もある。
On the other hand, the exhaust pipe (13) and valve (14) downstream of the reaction vessel
are also made of stainless steel and have the same problem with the corrosive gases mentioned above. Furthermore, since the exhaust pipe comes into contact with H2 gas heated by the susceptor, there is a problem that hydrogen embrittlement of the stainless steel material may occur in the long term.

このように有機金属気相成長装置には、ステンレス鋼製
の原料容器や配管部品が多数使用されているが腐食性ガ
スに対する耐食性に問題があった。
As described above, many raw material containers and piping parts made of stainless steel are used in organometallic vapor phase growth apparatuses, but they have a problem in corrosion resistance against corrosive gases.

また類似の半導体′ril膜気相成長装置で例えば原料
ガス中にA s CIls 、P Cj! sガス等を
用いるクロライドV、P、E装置では結晶薄膜作製中に
も腐食性ガスを用いるため問題は上記と同様あるいは、
それ以上に深刻である。
Further, in a similar semiconductor 'ril film vapor phase growth apparatus, for example, A s CIls, P Cj! Chloride V, P, E equipment that uses s gas etc. uses corrosive gas even during the production of crystal thin films, so the problem is the same as above, or
It's more serious than that.

[発明が解決しようとする課題〕 本発明は上記の問題について検討の結果なされたもので
、酸化性または還元性の原料ガスに対して、優れた耐食
性を有し、安全性を向上し、かつ結晶の品質を保証し得
る半導体薄膜気相成長装置を開発したものである。
[Problems to be Solved by the Invention] The present invention has been made as a result of studies on the above problems, and has excellent corrosion resistance against oxidizing or reducing raw material gases, improves safety, and We have developed a semiconductor thin film vapor phase growth system that can guarantee the quality of crystals.

〔課題を解決するための手段および作用〕本発明は、酸
化性または還元性を有する原料ガスを用い、少なくとも
上記原料ガスの原料容器あるいは原料ガスの通過する配
管部品が金属製である半導体薄膜気相成長装置において
、上記原料容器あるいは原料ガスの通過する配管部品の
内面にタンタルを主成分とする金属膜を被覆したことを
特徴とする半導体薄膜気相成長装置である。
[Means and effects for solving the problems] The present invention uses a raw material gas having an oxidizing or reducing property, and provides a semiconductor thin film vaporizer in which at least the raw material container for the raw material gas or the piping parts through which the raw material gas passes are made of metal. The present invention is a semiconductor thin film vapor phase growth apparatus characterized in that the inner surface of the raw material container or the piping component through which the raw material gas passes is coated with a metal film containing tantalum as a main component.

すなわち本発明は、半導体気相成長装置の腐食性ガスと
接触する原料容器、配管および流量調整器、減圧弁、バ
ルブ類等の全部もしくは一部について、上記の腐食性ガ
スと接触する部分にタンタルおよびタンタルを含むタン
タル合金の金属膜を被覆することにより、耐食性を向上
し、安全性を高めたものである。
That is, the present invention provides tantalum in all or part of the raw material container, piping, flow rate regulator, pressure reducing valve, valves, etc. that come into contact with the corrosive gas of a semiconductor vapor phase growth apparatus. Corrosion resistance and safety are improved by coating with a tantalum alloy metal film containing tantalum.

〔実施例〕〔Example〕

以下に本発明の実施例について説明する。 Examples of the present invention will be described below.

例えば第1図に示す有機金属気相成長装置の少なくとも
腐食性ガス原料容器(5)および原料容器(22)ある
いは原料ガスの通過する腐食性ガス配管(6)、腐食性
ガスバルブ(7)、原料供給管(8)、ステンレス鋼配
管(9)、減圧弁(10)、バルブ(11)、流量調整
器(12)、排気管(13)、バルブ(14)などのス
テンレス鋼製の配管および配管部品の全部もしくは一部
について、腐食性ガスと接触する内面にタンタルを主成
分とする金属膜を被覆するものである。
For example, in the organometallic vapor phase growth apparatus shown in FIG. 1, at least the corrosive gas raw material container (5) and the raw material container (22), the corrosive gas pipe (6) through which the raw material gas passes, the corrosive gas valve (7), and the raw material Stainless steel pipes and pipes such as supply pipes (8), stainless steel pipes (9), pressure reducing valves (10), valves (11), flow regulators (12), exhaust pipes (13), valves (14), etc. All or part of the parts are coated with a metal film containing tantalum as the main component on the inner surface that comes into contact with corrosive gas.

例えば腐食性ガス原料容器(5)については、第2図に
示すように、ステンレス製の容器基体(15)の腐食性
ガスが接触する内面にタンタルを主成分とする金属!I
(16)を被覆する。また腐食性ガス配管(6)、原料
供給管(8)、ステンレス鋼配管(9)、排気管(13
)などの配管については、第3図に示すようにステンレ
ス鋼製の管基体(18)の内面にタンタルを主成分とす
る金属膜(16)を被覆する。
For example, regarding the corrosive gas raw material container (5), as shown in FIG. 2, the inner surface of the container base (15) made of stainless steel, which is in contact with the corrosive gas, contains a metal whose main component is tantalum! I
(16) Cover. Also, corrosive gas piping (6), raw material supply pipe (8), stainless steel piping (9), exhaust pipe (13)
), the inner surface of a stainless steel pipe base (18) is coated with a metal film (16) containing tantalum as a main component, as shown in FIG.

さらに減圧弁(10)、バルブ(11)、(14)、流
量調整器(12)などについても上記の原料容器の場合
と同様に腐食性ガスが接触する内面にタンタルを主成分
とする金属膜を被覆とするもので2ある。
Furthermore, the pressure reducing valve (10), valves (11), (14), flow rate regulator (12), etc. are also coated with a metal film containing tantalum as a main component on the inner surface that comes into contact with the corrosive gas, as in the case of the raw material container described above. There are 2 types of coatings.

しかして上記のタンタルを主成分とする金属膜は、タン
タルでもよく、またタンタルに50%以下のタングステ
ンを含むタンタル合金でもよい。
The metal film containing tantalum as a main component may be tantalum or a tantalum alloy containing tantalum and 50% or less of tungsten.

上記のタンタルおよびタンタル合金の金属膜は、フッ酸
を除(殆ど全ての酸に対して耐食性を有するためHCl
、PCI’+、AsCj!、等の酸化性の腐食性ガスに
よっても腐食を受けることがない。
The metal films of tantalum and tantalum alloys mentioned above are corrosion resistant to almost all acids except hydrofluoric acid (HCl).
, PCI'+, AsCj! It is not corroded by oxidizing and corrosive gases such as .

これはTa表面に形成されるTaの酸化膜(T a *
O1が優れた耐食性を有するためである。したがって上
記の原料容器、配管の腐食に起因する安全上の問題は解
消する。
This is a Ta oxide film (Ta*
This is because O1 has excellent corrosion resistance. Therefore, the safety problems caused by the corrosion of the raw material containers and piping described above are resolved.

またPCN、のような腐食性の強い原料に対しても優れ
た耐食性を有するので、従来のようなガラスや樹脂製の
原料容器や配管部品を用いる必要はなくなり、したがっ
て機械的強度や、漏洩に関する問題も軽減される。
In addition, it has excellent corrosion resistance against highly corrosive raw materials such as PCN, so there is no need to use conventional glass or resin raw material containers and piping parts, and this reduces mechanical strength and leakage. Problems are also reduced.

さらに上記の排気管に用いれば、タンタルは水素脆化を
起し難いことから、従来のステンレス鋼のものより、著
しく耐用期間が長くなる。
Furthermore, when used in the above-mentioned exhaust pipe, since tantalum is difficult to cause hydrogen embrittlement, the service life will be significantly longer than that of conventional stainless steel.

タンタルはフッ酸に対しては耐食性が劣るが、タンタル
にタングステンを含むTa −W合金はフッ酸に対する
耐食性が向上することから例えばClF5等の腐食性ガ
スを用いる場合には、この合金を被覆すると効果的であ
る。
Tantalum has poor corrosion resistance to hydrofluoric acid, but a Ta-W alloy containing tantalum and tungsten has improved corrosion resistance to hydrofluoric acid, so when using a corrosive gas such as ClF5, it is recommended to coat this alloy. Effective.

しかして上記の金属膜の厚みは0.05〜1.0mm程
度とすることが好ましく、これ未満の厚みでは被覆層の
均一性やピンホール等が問題となり十分な耐食性が得ら
れず、また1■を越える場合、原料容器の大きさや配管
の長さによっては経済上の問題が生じる。したがって金
属膜の厚みは原料容器、配管などの形状寸法などにより
上記の配管に固執せず適宜設定できる。
Therefore, it is preferable that the thickness of the metal film is approximately 0.05 to 1.0 mm.If the thickness is less than this, problems such as uniformity of the coating layer and pinholes will occur, and sufficient corrosion resistance will not be obtained. If it exceeds (2), economic problems may arise depending on the size of the raw material container and the length of the piping. Therefore, the thickness of the metal film can be appropriately set depending on the shape and dimensions of the raw material container, piping, etc. without being limited to the piping described above.

また上記の金属膜の被覆方法は例えば第4図(a)に示
すようにステンレス鋼など基体(19)の表面に直接、
溶射法や爆着法を用いてタンタル膜(20)を形成でき
るが、基体と被覆する金属との密着性が問題となる場合
は、(b1図に示すように銅または銅を主成分とする銅
−二ノケルなどの銅合金の中間層(21)を介在させる
ことにより密着性を向上できる。
Furthermore, as shown in FIG. 4(a), the above-mentioned method of coating a metal film can be applied directly to the surface of a substrate (19) such as stainless steel.
The tantalum film (20) can be formed using the thermal spraying method or the explosion bonding method, but if the adhesion between the substrate and the coating metal is a problem, (as shown in Figure b1) Adhesion can be improved by interposing an intermediate layer (21) of a copper alloy such as copper-Ninokel.

上記の例では原料容器や腐食性ガス配管、流量調整器な
ど基体がステンレス鋼製の場合について述べたが、これ
らがアルミニウム或いはその他の金属製のものに被覆し
ても同様の効果がある。
In the above example, the base materials such as the raw material container, corrosive gas piping, and flow rate regulator are made of stainless steel, but the same effect can be obtained even if these materials are coated with aluminum or other metals.

また本発明は、腐食性ガスと接触する気相成長装置の全
部または一部の部品に被覆できるもので、施工の難易、
経済上の点などを考慮し選択して施すものである。
In addition, the present invention can coat all or some parts of a vapor phase growth apparatus that come into contact with corrosive gas, making it difficult to install.
It is selected and applied taking economic considerations into account.

さらに本発明の対象とする半導体薄膜気相成長装置は、
上記の有機金属気相成長装置およびクロライドV、P、
E装置、ハライドV、P、E装置の他酸化性または還元
性を有する原料ガスを用いる気相成長装置に適用できる
Furthermore, the semiconductor thin film vapor phase growth apparatus targeted by the present invention includes:
The above-mentioned organometallic vapor phase epitaxy apparatus and chloride V, P,
It can be applied to vapor phase growth apparatuses that use source gases having oxidizing or reducing properties, as well as E apparatuses, halide V, P, and E apparatuses.

また半導体材料もrnP/InGaAsP、GaAs/
AllGaAsの他Stなど通常の半導体材料の成長装
置にも適用し得るものである。
In addition, semiconductor materials include rnP/InGaAsP, GaAs/
The present invention can also be applied to growth apparatuses for ordinary semiconductor materials such as AllGaAs and St.

〔効果〕〔effect〕

以上に説明したように本発明によれば、半導体薄膜気相
成長装置の耐食性および安全性が向上すると共に結晶の
品質向上にも寄与するもので工業上顕著な効果を奏する
ものである。
As explained above, according to the present invention, the corrosion resistance and safety of a semiconductor thin film vapor phase growth apparatus are improved, and it also contributes to improving the quality of crystals, which is an industrially significant effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る半導体薄膜気相成長装
置の概略図、第2図は本発明の一実施例に係る腐食性ガ
ス原料容器の断面図、第3図は本発明の一実施例に係る
配管の断面図、第4図は本発明の一実施例に係る金属膜
の被覆方法を説明する断面図である。 1・・・反応容器、 2・・・サセプタ、 3・・・半
導体基板、 4・・・誘導コイル、 5・・・腐食性ガ
ス原料容器、 6・・・腐食性ガス配管。
FIG. 1 is a schematic diagram of a semiconductor thin film vapor phase growth apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of a corrosive gas raw material container according to an embodiment of the present invention, and FIG. 3 is a schematic diagram of a semiconductor thin film vapor phase growth apparatus according to an embodiment of the present invention. FIG. 4 is a sectional view of a pipe according to an embodiment of the present invention, and is a sectional view illustrating a method of coating with a metal film according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Susceptor, 3... Semiconductor substrate, 4... Induction coil, 5... Corrosive gas raw material container, 6... Corrosive gas piping.

Claims (4)

【特許請求の範囲】[Claims] (1)酸化性または還元性を有する原料ガスを用い、少
なくとも上記原料ガスの原料容器あるいは原料ガスの通
過する配管部品が金属製である半導体薄膜気相成長装置
において、上記原料容器あるいは原料ガスの通過する配
管部品の内面にタンタルを主成分とする金属膜を被覆し
たことを特徴とする半導体薄膜気相成長装置。
(1) In a semiconductor thin film vapor phase growth apparatus that uses a raw material gas having oxidizing or reducing properties and in which at least the raw material container for the raw material gas or the piping parts through which the raw material gas passes are made of metal, A semiconductor thin film vapor phase growth apparatus characterized in that the inner surface of the piping parts that it passes through is coated with a metal film containing tantalum as a main component.
(2)タンタルを主成分とする金属膜がタンタルおよび
タンタルに50%以下のタングステンを含むタンタル合
金であることを特徴とする請求項1記載の半導体薄膜気
相成長装置。
(2) The semiconductor thin film vapor phase growth apparatus according to claim 1, wherein the metal film containing tantalum as a main component is tantalum and a tantalum alloy containing 50% or less of tungsten in tantalum.
(3)タンタルを主成分とする金属膜の厚みを0.05
〜1.0mmとしたことを特徴とする請求項1または2
記載の半導体薄膜気相成長装置。
(3) The thickness of the metal film whose main component is tantalum is 0.05
Claim 1 or 2 characterized in that the diameter is 1.0 mm.
The semiconductor thin film vapor phase growth apparatus described above.
(4)タンタルを主成分とする金属膜と原料容器あるい
は配管部品の基体との中間に銅または銅を主成分とする
銅合金の中間層を介在させたことを特徴とする請求項1
または2記載の半導体薄膜気相成長装置。
(4) Claim 1 characterized in that an intermediate layer of copper or a copper alloy containing copper as a main component is interposed between the metal film containing tantalum as the main component and the base of the raw material container or piping component.
or 2. The semiconductor thin film vapor phase growth apparatus according to 2.
JP27018590A 1990-10-08 1990-10-08 Semiconductor thin film vapor growth device Pending JPH04145621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27018590A JPH04145621A (en) 1990-10-08 1990-10-08 Semiconductor thin film vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27018590A JPH04145621A (en) 1990-10-08 1990-10-08 Semiconductor thin film vapor growth device

Publications (1)

Publication Number Publication Date
JPH04145621A true JPH04145621A (en) 1992-05-19

Family

ID=17482710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27018590A Pending JPH04145621A (en) 1990-10-08 1990-10-08 Semiconductor thin film vapor growth device

Country Status (1)

Country Link
JP (1) JPH04145621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524244A (en) * 2006-01-19 2009-06-25 エーエスエム アメリカ インコーポレイテッド High temperature ALD inlet manifold
WO2012053332A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element and multi-wavelength-emitting group-iii-nitride semiconductor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524244A (en) * 2006-01-19 2009-06-25 エーエスエム アメリカ インコーポレイテッド High temperature ALD inlet manifold
WO2012053332A1 (en) * 2010-10-19 2012-04-26 昭和電工株式会社 Group-iii-nitride semiconductor element and multi-wavelength-emitting group-iii-nitride semiconductor layer

Similar Documents

Publication Publication Date Title
KR100907392B1 (en) HIGH FLOW GaCl3 DELIVERY
US5226968A (en) Apparatus and method for oxidation treatment of metal
JP4986845B2 (en) Vacuum deposition system
JPH02270964A (en) Device for forming tungsten film
EP3010035B1 (en) Aluminium-based group iii nitride single crystal production method
TW554063B (en) Chemical vapor deposition system and method
US4294871A (en) Method for depositing a layer on the inside of cavities of a work piece
JPH0459971A (en) Method of forming silicon nitride film
US5951787A (en) Method of forming oxide-passivated film, ferrite system stainless steel, fluid feed system and fluid contact component
US20240052484A1 (en) Supply system for low volatility precursors
EP0596121A1 (en) Process for forming passive film on stainless steel, and stainless steel and gas- and liquid-contacting part
US5224998A (en) Apparatus for oxidation treatment of metal
US20070269595A1 (en) Method for preventing metal leaching from copper and its alloys
JPH04145621A (en) Semiconductor thin film vapor growth device
US3321337A (en) Process for preparing boron nitride coatings
KR20160087773A (en) Gas cylinder for the storage and delivery of p-type dopant gases
JPS59223294A (en) Vapor phase growth device
JPH0586476A (en) Chemical vapor growth device
JPH04142729A (en) Semiconductor thin film vapor growth device
JP7605751B2 (en) Polycrystalline silicon manufacturing method
JP4373723B2 (en) Cylinder type vapor phase growth equipment
WO2002023594A2 (en) Apparatus and method for reducing contamination on thermally processed semiconductor substrates
US20090162997A1 (en) Thin diamond like coating for semiconductor processing equipment
JP2578517B2 (en) Semiconductor wafer processing equipment
JPS59219462A (en) Depositing method of boron layer