JPH04144566A - Production of bioactive hydroxyl apatite film - Google Patents
Production of bioactive hydroxyl apatite filmInfo
- Publication number
- JPH04144566A JPH04144566A JP2269217A JP26921790A JPH04144566A JP H04144566 A JPH04144566 A JP H04144566A JP 2269217 A JP2269217 A JP 2269217A JP 26921790 A JP26921790 A JP 26921790A JP H04144566 A JPH04144566 A JP H04144566A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- base material
- glass
- powder glass
- soln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Materials For Medical Uses (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は骨修復材料・体内埋め込み式医療器具器材・
医療用品・各種人工臓器等の生体中で使われる材料の製
造方法に関する。更に詳しくは、この発明は無機材料、
金属材料、有機材料を問わず生体内で使われる種々の形
状を有するすべての材料表面に、骨と類似した組成と構
造を有する生体活性な水酸アパタイトの膜の製造方法に
関するものである。[Detailed Description of the Invention] (Industrial Application Field) This invention is applicable to bone repair materials, implantable medical devices,
This field relates to methods for manufacturing materials used in living organisms, such as medical supplies and various artificial organs. More specifically, this invention relates to inorganic materials,
The present invention relates to a method for producing a bioactive hydroxyapatite film having a composition and structure similar to bone on the surfaces of all materials of various shapes used in living organisms, regardless of whether they are metal or organic materials.
(従来の技術)
水酸アパタイトを基材ヘコーティングする方法としては
、
■プラズマ溶射法を用いたもの(特開昭62−3455
9づ公報、特開昭62−57548号公報、特開昭63
−1−60663号公報)
■CaとPとを含んだ溶液または化合物を基材表面へ塗
布(2焼結させる方法(特開昭62−231゜669号
公報、特開昭63・−24952号公報、特開昭63−
46165号公報)、
C)スパックリング法によるものく特”開閉58 10
9049号公報)1、
■フIノーム溶射法によるもの(8本セラミックス協会
1988第1回秋期シンポジウム講演予稿ip、p、4
01−402)、、
■ガラスフリッI・の焼イ寸は法にJ′るもの(第9回
バイオマテリアル学会大会予稿集(1987) 11.
6)■電気泳動法によるもの(日本セラミックス協会1
988第1回秋期シンポジウム講演予稿集p、p。41
’?−418)が発表された。(Prior art) Methods for coating base materials with hydroxyapatite include: ■ Plasma spraying method (Japanese Patent Laid-Open No. 62-3455
9zu Publication, JP-A-62-57548, JP-A-63
-1-60663 Publication) ■Method of applying (2) sintering a solution or compound containing Ca and P to the surface of the base material (Japanese Unexamined Patent Publications No. 62-231゜669, No. 63-24952) Publication, JP-A-63-
46165 Publication), C) MONOKUTOKU” Opening and Closing by Spackling Method 58 10
Publication No. 9049) 1, ■Funome spraying method (8 Ceramics Association 1988 1st Autumn Symposium Lecture Proceedings ip, p, 4)
01-402), ■The baking dimensions of glass frits are legally required (Proceedings of the 9th Biomaterials Society Conference (1987) 11.
6) ■Through electrophoresis (Japan Ceramics Association 1)
988 1st Autumn Symposium Lecture Proceedings p, p. 41
'? -418) was announced.
(発明が解決I7ようとする問題点)
を記の従ヌ?技術はイーれぞれ次のような問題点を勺す
る。(Problem that the invention seeks to solve) Each technology presents the following problems.
■プラズマ溶U’U法・フ)ノーム溶射法は、複雑で高
価な装置を必要とすること、緻密な膜を作りにくいこと
、原料の水酸アパタイトがいったん高温で溶融されるの
で生体内のアパタイトと異なるアバタイI・の膜が形成
されること等、
■スパッタリング法は、複雑で高価な装置を必要とする
こと、原料の水酸アパタイトがいったん高エネルギー=
・で分解されるので生体内のアパタイトと異なる種類の
アパタイトの膜が形成されること等、
■焼結法″()ガラスフリット法は、850℃前後の熱
処理を必要とするため耐熱性の高い基材にしか適用でき
ないJ二と、更にこの場合も原料の水酸アバクイI・が
いったん高温で加熱処理されるので生体内のγバクイ1
−と異なる種類のアパタイト膜が形成される、−と等、
■電気泳動法は、基材自身を電極と17で用いるため、
良導性の金属基材に[2か適用できないこと、原料ε、
二焼結アパタイトを用いるためやはり生体内のアパタイ
トとは異なるアパタイトの膜が形成されること等、
である。■Plasma melting U'U method/F) Nome spraying method requires complicated and expensive equipment, is difficult to make a dense film, and because the raw material hydroxyapatite is melted at high temperature, it is difficult to use in vivo. The sputtering method requires complicated and expensive equipment, and once the raw material hydroxyapatite is heated to high energy
・As it decomposes, a film of apatite different from the apatite in the living body is formed. ■Sintering method" ()Glass frit method requires heat treatment at around 850 degrees Celsius, so it has high heat resistance. J2, which can only be applied to the base material, and also in this case, the raw material hydroxyl Abakui I is once heat-treated at a high temperature, so that it can be applied to the in vivo γ Bakui I.
- different types of apatite films are formed, -, etc. In the electrophoresis method, the base material itself is used as the electrode and 17.
[2 or not applicable, raw material ε,
Because bisintered apatite is used, an apatite film that is different from the apatite in the body is formed.
一力゛、この発明者らはさきに、ガラス中にアパタイト
とウオラストナイトとを析出させる方法によ・ンて、生
体内で自然に強く化学的に結合する生体活性を有1−1
しかも長期間にわたって高い機械的強度保−)結晶化ガ
ラスを開発した。この発明者らはこの生体活性を支配す
る因子を追求する過程で、セラミックスが骨と結合する
際に重要な役割を果たすのは、焼結法やガラス結晶化法
により作られたセラミックス中に存在するアパタイト層
ではなく、それらが体内に埋入された時周囲の体液と反
応1.て表面に新しく生成するf!′類似のアパタイト
層であること、更にこのアパタイト層は、(・れらの骨
と結合するセラミックスを細胞を含まず無機イオン濃度
だけをヒトの体液に等1.<シた水溶液に浸漬しただけ
でも作られること、およびこのアパタイト層の生成には
結晶化ガラスから溶出するCaとSiどが極めて重要な
役割を果たすことを解明した。これらの知見を基に、こ
の発明者らは種々の基I(表面に骨類似のアパタイト層
を形成させることにつき、鋭意研究を重ねた結果、この
発明を完成させたものである。First, the inventors have previously discovered that apatite and wollastonite have biological activity that naturally forms strong chemical bonds in living organisms by precipitating them in glass.
Furthermore, we have developed a crystallized glass that maintains high mechanical strength over a long period of time. In the process of pursuing the factors governing this bioactivity, the inventors discovered that the factors present in ceramics made by sintering and glass crystallization methods play an important role when ceramics fuse with bone. When they are implanted into the body, they react with surrounding body fluids.1. newly generated f! on the surface. 'It is a similar apatite layer, and furthermore, this apatite layer is similar to that of human body fluids. The inventors discovered that Ca and Si eluted from crystallized glass play an extremely important role in the formation of this apatite layer.Based on these findings, the inventors developed various base materials. I (This invention was completed as a result of extensive research into forming an apatite layer similar to bone on the surface.
すなわち1.−の発明の目的は、無機材料・金属材料・
有機材料を問わず種々の形状を有するすべての基材の上
に、加熱処理を行うことなく生体内の骨と類似の生体活
性アパタイトの膜を基材表面の全面に均一に極めて簡便
にコーティングする方法を提供I−ようとするものであ
る。That is, 1. - The purpose of the invention is to provide inorganic materials, metallic materials,
A film of bioactive apatite similar to bone in living bodies can be coated uniformly and extremely easily on all base materials of various shapes, regardless of organic materials, without heat treatment. The present invention seeks to provide a method.
(課題を解決するための手段)
すなわち、第1の発明は、基材と少なくともCaOと5
iOpを主成分とする粉体ガラスとを共存ぜ17め、水
、または少なくともリンイオンを含む水溶液に浸漬する
こと(Jより、基材表面に水酸アパタイトの核を形成さ
せることを特徴とする生体活性水酸アパタイト膜の製造
方法である。(Means for Solving the Problems) That is, the first invention provides a base material and at least CaO and 5
Coexistence with a powder glass containing iOp as a main component is performed by immersing it in water or an aqueous solution containing at least phosphorus ions (from J. This is a method for producing an activated hydroxyapatite film.
また、第2の発明は、この操作に引き続いて基材を飽和
濃度近くか飽和濃度を越え、る量の水酸アパタイト成分
を溶解した水溶液にさらに浸漬することによりアパタイ
ト膜を形成させることを特徴とする生体活性水酸アパタ
イト膜の製造方法である。Further, the second invention is characterized in that, following this operation, the base material is further immersed in an aqueous solution in which an amount of hydroxyapatite component is dissolved near or exceeding the saturation concentration, thereby forming an apatite film. This is a method for producing a bioactive hydroxyapatite film.
(作用)
本発明方法により、生体活性水酸アパタイト膜が製造さ
れるメカニズムを簡単に説明すると、以下のとおりであ
る。(Function) The mechanism by which a bioactive hydroxyapatite film is produced by the method of the present invention is briefly explained below.
つまり、粉体ガラスを水溶液に浸漬すると、ガラスから
その構成成分であるCa2“、5i(IV)イオン(H
8iOs−が代表的なイオンである)等が溶出する。こ
こで、5i(IV)イオンは基材に吸着してアパタイト
核の形成に有利なサイトを提供し、また、Ca”+イオ
ンは水溶液のアパタイトに対する過飽和度を高めること
になる。過飽和度が高まると5i(IV)イオンの吸着
している部分でアパタイトの核が形成されることになる
。すなわち、環形成に際し、重要な点は基材に5i(I
V)イオンが吸着し、基材近傍で過飽和度が局部的に上
昇することである。この場合、過飽和度を上昇させるC
a ”″イオン、および5i(TV)イオンは両者を
ガラスから供給してもよいし、水溶液にP(V)イオン
(HP O4’−が代表的なイオンである)を含有させ
ておき、ガラスからはCa2“イオンを供給してもよい
。In other words, when powder glass is immersed in an aqueous solution, its constituent components Ca2", 5i (IV) ions (H
8iOs- is a typical ion) etc. are eluted. Here, 5i(IV) ions are adsorbed to the substrate and provide favorable sites for the formation of apatite nuclei, and Ca''+ ions increase the degree of supersaturation of apatite in the aqueous solution.The degree of supersaturation increases. An apatite nucleus is formed at the part where 5i(IV) ions are adsorbed.In other words, when forming a ring, the important point is that 5i(IV) ions are adsorbed on the base material.
V) Ions are adsorbed and the degree of supersaturation locally increases near the base material. In this case, C which increases the degree of supersaturation
Both a ``'' ions and 5i (TV) ions may be supplied from glass, or P(V) ions (HP O4'- is a typical ion) may be contained in an aqueous solution and then supplied from glass. Ca2'' ions may be supplied from.
このようなメカニズムでアパタイト核の形成が行なわれ
たのちに、次に第2の発明を実施する場合、アパタイト
の核を形成した基材を飽和濃度近くか飽和濃度を越える
量の水酸アパタイト成分を溶解した水溶液にさらに浸漬
するが、ここでは上記の粉体ガラスは不要となる。もし
、粉体ガラスを共存させておくと、粉体ガラスの表面に
アパタイトが成長し、水溶液のCa”、P (V)イオ
ンが消費されるという悪影響が現われる。After apatite nuclei are formed by such a mechanism, when carrying out the second invention next, the base material in which the apatite nuclei have been formed is treated with a hydroxyapatite component in an amount close to or exceeding the saturation concentration. The glass powder is further immersed in an aqueous solution in which the powdered glass is dissolved, but the above-mentioned powder glass is not needed here. If powder glass is allowed to coexist, apatite will grow on the surface of the powder glass, resulting in the negative effect of consuming Ca'' and P (V) ions in the aqueous solution.
以下、本発明方法の構成をその作用とともに詳述する。Hereinafter, the structure of the method of the present invention will be explained in detail along with its operation.
本発明方法を効率よ〈実施するには、基材と共存させる
粉体ガラスの組成ならびに粒径、および基材を浸漬する
水溶液のイオン濃度、pH並びに温度をそれぞれ所定範
囲に限定することが好ましい。In order to carry out the method of the present invention efficiently, it is preferable to limit the composition and particle size of the powder glass coexisting with the substrate, and the ion concentration, pH, and temperature of the aqueous solution in which the substrate is immersed, respectively, to predetermined ranges. .
まず第1に、本発明の目的に適した粉体ガラスは少なく
とも主成分をCaOと5i02とすることを要する。First of all, a powder glass suitable for the purpose of the present invention must contain at least CaO and 5i02 as main components.
その例を第1表に示す。同表中、試料1〜3はCaOと
5iOzのみを含む粉体ガラスである。Examples are shown in Table 1. In the same table, samples 1 to 3 are powder glasses containing only CaO and 5iOz.
試料4〜10はCaOと5iOiの他にPzOsも含む
粉体ガラスである。試料11はバイオガラスと同じ組成
の粉体ガラスである。試料12は本発明者らが夷に開発
した生体活性結晶化ガラスと同じ組成を持つ粉体ガラス
である。試料13〜24はCaOと5insを主成分と
し、Na、l01K20、MgO1P 20 s、Ca
F sなどを種々の量含有する粉体ガラスである。こ
れらはいずれも各種基板上に水酸アパタイトの核の形成
能力を有する。Samples 4 to 10 are powder glasses containing PzOs in addition to CaO and 5iOi. Sample 11 is a powder glass having the same composition as bioglass. Sample 12 is a powder glass having the same composition as the bioactive crystallized glass previously developed by the present inventors. Samples 13 to 24 mainly contain CaO and 5ins, and also contain Na, 101K20, MgO1P20s, Ca
It is a powder glass containing various amounts of Fs and the like. All of these have the ability to form hydroxyapatite nuclei on various substrates.
ただし、CaOと5insの配合比についてみれば、C
aOが20mo1%未満では粉体ガラスの核形成能力が
過小となり70mo1%以上ではガラスが得られ難くな
る。また、S iOsが30mo1%未満では同様にガ
ラスが得られ難(,80mo1%以上では粉体ガラスの
水酸アパタイト核形成能力が過小となる。さらに、粉体
ガラスの全体量中、CaOとSiO*の合計が65mo
1%未満では粉体ガラスの水酸アパタイト核形成能力が
著しく減少する。したがって、CaOは20〜70mo
1%に、5iftは30〜80mo1%に、かつCaO
とS iOzの合計は65mo1%以上であることが好
ましい。However, if we look at the blending ratio of CaO and 5ins, C
If aO is less than 20 mo1%, the nucleation ability of the powder glass becomes too small, and if it is more than 70 mo1%, it becomes difficult to obtain glass. Furthermore, if SiOs is less than 30 mo1%, it is difficult to obtain glass (and if SiOs is more than 80 mo1%, the hydroxyapatite nucleation ability of the powder glass becomes too small. Furthermore, in the total amount of powder glass, CaO and SiO The total of * is 65mo
If it is less than 1%, the hydroxyapatite nucleation ability of the powder glass is significantly reduced. Therefore, CaO is 20-70mo
1%, 5ift is 30-80mo1%, and CaO
It is preferable that the total of SiOz and SiOz is 65mol% or more.
また、CaOと5insのガラスにさらにP3O6を含
ませる場合、Ca O,S i O2およびP、0゜の
配合比についてみれば、P2O6が0.1mo1%未満
ではガラスのアパタイト膜形成能力が著しく小さく、2
5mo1%を越えるとガラスそのものを構成できなくな
る。したがって、この場合、粉体ガラスの全体量中、C
aOは20〜70m01%に、StO□は30〜80m
01%に、かつCaOと5iOaの合計は65mo1%
以上であり、P2O,は0.1〜25 mo1%である
ことが好ましい。In addition, when P3O6 is further included in CaO and 5ins glass, looking at the blending ratio of CaO, SiO2 and P, 0°, if P2O6 is less than 0.1 mo1%, the ability of the glass to form an apatite film is extremely small. ,2
If it exceeds 5 mo1%, the glass itself cannot be formed. Therefore, in this case, in the total amount of powder glass, C
aO is 20-70m01%, StO□ is 30-80m
01%, and the total of CaO and 5iOa is 65mo1%
This is the above, and P2O is preferably 0.1 to 25 mol%.
(以下、余白)
第
表
次に、粉体ガラスの粒径であるが、粉体は粒径が小さく
なるに従って比表面積が増大し1、活性が高くなる。こ
の方法の場合、粉体ガラスを水溶液に浸漬すると粒径が
減少するにつれてガラス成分の水溶液への溶出速さが増
大する。第2表に示すように粉体ガラスの粒径が0.5
μm未満になるとガラスからのイオンの溶出速さが急激
に増加し、溶出と同時に粉体ガラス表面にアパタイト膜
を形成してそれ以降の溶出を抑制して1.まう。その結
果、基材表面で選択的に起こるべきアパタイトの核形成
が阻害され、被覆率(核形成部分の面@/基材表面@)
が低下1.、でしまう。また、粒径が10000μmを
越えると基材と粉体ガラスとの距離が不均一となり、基
材表面近傍におけるアパタイトに対する過飽和度が均一
に上昇せず核形成がまばらにしか起こらなくなり、被覆
率が低下してしまう。従って、粉体ガラスの粒径は、0
.5〜10000μmの範囲にあることが好ましい。(Hereinafter, blank spaces) Table 1 Next, the particle size of the powder glass is shown.As the particle size of the powder decreases, the specific surface area increases1, and the activity increases. In this method, when powdered glass is immersed in an aqueous solution, the rate at which glass components dissolve into the aqueous solution increases as the particle size decreases. As shown in Table 2, the particle size of powder glass is 0.5
When it is less than μm, the elution rate of ions from the glass increases rapidly, and at the same time as the elution, an apatite film is formed on the surface of the powder glass to suppress further elution.1. Mau. As a result, the nucleation of apatite that should occur selectively on the base material surface is inhibited, and the coverage rate (nucleation part surface @ / base material surface @)
decreased 1. , it ends up. In addition, if the particle size exceeds 10,000 μm, the distance between the base material and the powder glass becomes uneven, and the degree of supersaturation of apatite near the base material surface does not increase uniformly, causing nucleation to occur only sparsely, resulting in a reduction in coverage. It will drop. Therefore, the particle size of powder glass is 0
.. It is preferably in the range of 5 to 10,000 μm.
(以下、余白)
第 2 表
(粉体ガラスの粒径と被覆率の関係)
次に、アパタイトの核形成のために適17た水溶液は、
水または少なくともリンイオンを含む水溶液からなる。(Hereinafter, blank space) Table 2 (Relationship between particle size and coverage of powder glass) Next, the aqueous solution suitable for apatite nucleation is as follows:
It consists of water or an aqueous solution containing at least phosphorus ions.
より具体的には、次の3つの水溶液が使用できる。つま
り、
■アパタイトの少なくとも主要構成成分を実質的に飽和
乃至過飽和濃度で含んでいる水溶液である。More specifically, the following three aqueous solutions can be used. That is, (1) it is an aqueous solution containing at least the main constituent components of apatite at a substantially saturated or supersaturated concentration.
ここに「実質的に飽和濃度」とは飽和濃度に近い濃度で
あって飽和濃度と略略同等の作用を示す濃度の意味と介
するものとする。The expression "substantially saturated concentration" herein refers to a concentration that is close to the saturated concentration and exhibits an effect substantially equivalent to that of the saturated concentration.
■アパタイトに対して不飽和であるが、リンイオン(P
(V) )を多量に含んでいる水溶液である。■It is unsaturated with respect to apatite, but phosphorus ion (P
It is an aqueous solution containing a large amount of (V) ).
■水またはアパタイトに対して不飽和で、カルシウムイ
オン(C,9+)とリンイオン(P (V) )を一定
叡越えて含まない水溶液である。(2) It is an aqueous solution that is unsaturated with water or apatite and does not contain more than a certain amount of calcium ions (C, 9+) and phosphorus ions (P (V) ).
」−記した水溶液■−■は、粉体ガラスの成分と密接な
関係がある。The aqueous solutions (■-■) described in "-" are closely related to the components of the powder glass.
つまり、Ca O、、、S i Osを主成分とする粉
体ガラスについては、■、■の水溶液と糾合せることに
より、アパタイトの核形成が可能である。CaO,Si
n、を主成分とする粉体ガラスの具体的な組成としては
、CaOは20〜70mo1%に、SiO,は3(1”
80mo1%に、かっcaOとS i02の合計は65
XIIO1%以上の粉体ガラスが用いられる。この他、
N a *、 0、K、0、M g O,、P %lQ
、等を種々の低含有させた粉体ガラスを用いでもよい。In other words, apatite can be nucleated by combining powdered glass containing CaO, . CaO,Si
The specific composition of the powder glass whose main component is CaO is 20 to 70 mo1%, and SiO is 3 (1").
At 80mo1%, the total of caO and S i02 is 65
Powder glass containing 1% or more of XIIO is used. In addition,
N a *, 0, K, 0, M g O,, P %lQ
, etc. may be used.
CaO,5iOs、P2O,を主成分とする粉体ガラス
については、■〜■の水溶液のいずれでも、アパタイト
の核形成が可能である。CaO,SiO□、P、O,を
主成分とする粉体ガラスの具体的な組成としては、Ca
Oは20〜70mo1%に、5tOWは30〜80mo
1%に、かつCaOと5i02の合計は65mo1%以
上で、P2O,は0,1〜25mo1%である粉体ガラ
スが用いられる。この他、Na、Q、K、01Mg0等
を種々の量含有させてもよい。Regarding powder glass containing CaO, 5iOs, and P2O as main components, apatite nuclei can be formed in any of the aqueous solutions (1) to (2). The specific composition of powder glass whose main components are CaO, SiO□, P, O,
O is 20-70mo1%, 5tOW is 30-80mo
1%, the total of CaO and 5i02 is 65 mo1% or more, and P2O is 0.1 to 25 mo1%. In addition, various amounts of Na, Q, K, 01Mg0, etc. may be contained.
水溶液の組成を第3表に示した、第3表中、試料1はイ
オン交換水である。試料2〜6はp(v)イオンのみを
含有する水溶液である。試料7〜15はCa”+イオン
とp (v)イオンを含む水溶液である。試料16〜1
9はCa2+イオンとp(v)イオンを含まず、Na”
、K+、Mg!+、Cl−HCO1−1S Oa”−な
どを種々の量含有する水溶液である。試料20〜34は
CaトイオンやP(V)イオンを含み、この他Na”、
K+ Mg*、Cl−1HCO8−1so、”−など
を種々の量含有する水溶液である。組成35はヒトの血
漿とほぼ等しいイオン濃度を有する水溶液である。これ
らはいずれも種々の基材上の水酸アパタイトの核を形成
させる能力を有する。The composition of the aqueous solution is shown in Table 3, in which Sample 1 is ion-exchanged water. Samples 2 to 6 are aqueous solutions containing only p(v) ions. Samples 7 to 15 are aqueous solutions containing Ca''+ ions and p(v) ions. Samples 16 to 1
9 does not contain Ca2+ ions and p(v) ions, and contains Na”
, K+, Mg! +, Cl-HCO1-1S Oa''-, etc. Samples 20 to 34 contain Ca ion and P(V) ion, and in addition, Na'',
K+ is an aqueous solution containing various amounts of Mg*, Cl-1HCO8-1so, "-, etc. Composition 35 is an aqueous solution having an ion concentration approximately equal to that of human plasma. It has the ability to form the nucleus of hydroxyapatite.
■の水溶液について、具体的に説明すれば、Ca!+ま
たはp (v)がそれぞれ0.1mM未満では核形成能
力が過小であり、Ca”+またはp(v)イオンがそれ
ぞれ10mM、 50mMを越えると水溶液中至るとこ
ろに水酸アパタイトの沈澱が生じ、核形成および結晶成
長しない傾向がある。よって、Ca”+は0.1〜10
mMに、p (v)イオンは0゜1〜50mMの範囲で
含有されているものである。To explain specifically about the aqueous solution (2), Ca! If Ca'+ or p(v) ions are less than 0.1mM, the nucleation ability is too small, and if Ca''+ or p(v) ions exceed 10mM or 50mM, respectively, hydroxyapatite will precipitate everywhere in the aqueous solution. , there is a tendency for no nucleation and crystal growth. Therefore, Ca"+ is 0.1 to 10
p(v) ions are contained in the range of 0.1 to 50 mM.
水溶液の溶質として重要なイオンはCa”+とP(V)
イオンの2つであるが、それ以外にNa”K+、M g
2 +、Cl−1HCOs−1so、”−などのイオ
ンを含んでいてもかまわない。しかし水溶液が長期間に
わたって安定したイオン状態を保つためには組成35の
疑似体液の組成がもっとも望ましい。Important ions as solutes in aqueous solutions are Ca”+ and P(V)
ion, but other than that, Na"K+, Mg
2 +, Cl-1HCOs-1so, "-, etc. ions may be included. However, in order for the aqueous solution to maintain a stable ionic state over a long period of time, the composition of the simulated body fluid of composition 35 is most desirable.
■の水溶液について、具体的に説明すれば、p (v)
イオンの濃度が0.1mM未満では核形成能力が過小で
あり、5000mMを越えるとイオンとして存在しない
。したがって、Ca”は0−0゜1 mM!、:、p
(v)イオンは0.1〜5ooomMの範囲で含有され
ているものである。水溶液の溶質として重要なイオンは
Ca”+とp (v)イオンの2つであるが、それ以外
にNa”、K” Mg”Cl−1Ht o 5−1s
o、”−などのイオンを含んでいてもかまわない。To explain specifically about the aqueous solution (①), p (v)
If the ion concentration is less than 0.1mM, the nucleation ability is too small, and if it exceeds 5000mM, it does not exist as an ion. Therefore, Ca” is 0-0゜1 mM!, :,p
(v) Ions are contained in a range of 0.1 to 500mM. There are two important ions as solutes in aqueous solutions: Ca"+ and p(v) ions, but other ions include Na", K"Mg"Cl-1Ht o 5-1s
It may contain ions such as o and "-".
■の水溶液について、具体的に説明すれば、Ca″+、
p (v)イオンがそれぞれ0−0. 1mMノ範囲で
含有されているものである。To explain specifically about the aqueous solution (①), Ca″+,
p (v) ions are respectively 0-0. It is contained in a range of 1mM.
また、本発明の第2の発明を実施する場合、基材の表面
にアパタイトの核を形成したのち、■の水溶液、つまり
、実質的に飽和乃至過飽和濃度の水酸アパタイト成分を
溶解した水溶液に浸漬することにより、均一なアパタイ
トの膜が形成される。In addition, when carrying out the second invention of the present invention, after forming apatite nuclei on the surface of the base material, the aqueous solution of By dipping, a uniform apatite film is formed.
(以下、余白)
次に水溶液のpHTあるが、水酸アパタイト・は酸性域
では不安定で、中性またはアルカリ性域で安定に析出す
ることが知られている。本発明方法で水酸アパタイトの
核を形成する場合、水溶液のp Hは一般に第4=j表
に示すように調整時と浸漬後で異なり、浸漬中に粉体ガ
ラス成分の溶出によりp Hが大きくなる方向に変化す
る。水酸アバタイI・の核を形成するためには浸漬後に
pHが7以−1−になることが好まj4、い。そのため
には調整時のp Hを5以上とすることがよい。また、
調整時のp Hが9を越えると、水酸アパタイトの沈澱
が水溶液中で発生17、基材表面における選択的な核形
成が回灯となる。よって、好適な水溶液のI) Hは5
−9の範囲にある。1.かじ液のpHは調整時から水酸
アバタイI・核生成終了まで弱アルカリ性域にありほと
んど変化[7ないことが9ましく、そのlこめには例え
ばトリス1ニドロギシメチルアミノメタン((C1(2
011)3CNH2) 50 ynMと塩酸(HCI)
45 mMなどの緩衝剤を水溶液に加えてp Hを7
−9に保つことが有効である。(Hereinafter, in the margins) Next, there is the pH of the aqueous solution.It is known that hydroxyapatite is unstable in an acidic region and stably precipitates in a neutral or alkaline region. When forming hydroxyapatite nuclei using the method of the present invention, the pH of the aqueous solution generally differs during preparation and after immersion, as shown in Table 4=j, and the pH changes due to elution of powder glass components during immersion. It changes in the direction of becoming larger. In order to form the nucleus of hydroxyl abatai I, it is preferable that the pH becomes 7 or more -1- after immersion. For this purpose, it is preferable to adjust the pH to 5 or higher. Also,
When the pH at the time of adjustment exceeds 9, hydroxyapatite precipitates occur in the aqueous solution17, and selective nucleation on the surface of the substrate results in round lighting. Therefore, I) H of a suitable aqueous solution is 5
-9 range. 1. The pH of the liquid is in the weakly alkaline range from the time of adjustment until the completion of hydroxyl abatai I/nucleation, and it is preferable that there is almost no change. (2
011) 3CNH2) 50 ynM and hydrochloric acid (HCI)
Add a buffer such as 45 mM to the aqueous solution to bring the pH to 7.
It is effective to keep it at -9.
次に、アパタイトの核を形成し5た基材を浸漬する水溶
液のp Hであるが、第4−2表に示すように、中性域
のpH6から水酸アパタイト膜が成長する3、pH6よ
り小さい場合、核が消失することもある。1.たが−)
で、好適な水溶液のl) Hは6−9の範囲にある。Next, the pH of the aqueous solution in which the apatite nucleus is formed and the base material is immersed is as shown in Table 4-2. If it is smaller, the nucleus may disappear. 1. Taga-)
and l) H of a suitable aqueous solution is in the range 6-9.
第 4−】 表
(pHと核形成、成膜領域の関係(36,5℃))第4
−2表
(pHと水酸アパタイト膜の成長速度の関係)次に基材
と粉体ガラスを浸漬する水溶液の温度であるが、水酸ア
パタイトの溶解度は温度が」−昇するにつれて低くなる
ことが知られている。本発明方法の要点は、水または少
なくともP (V)イオンを含む水溶液に、CaOとS
IO!Jを主成分とする粉体ガラスを浸漬し、粉体ガラ
ス成分の溶出によって徐々に水溶液のアパタイトに対す
る過飽和度を高める点にある。水溶液の温度を低くする
と溶解度が大きくなりつまり過飽和度は小さくなり、か
つガラス成分の溶出量が少なくなる。第5−3表に示す
ように5℃未満になると核形成領域が急激に小さくなる
。また温度を高くすると過飽和度は大きくしやすいが7
0℃を越えると膜の相が水酸アパタイトの単相ではなく
なる。よって水溶液の好適な温度は5〜70℃にある。Part 4-] Table (Relationship between pH, nucleation, and film formation area (36.5°C)) Part 4
Table 2 (Relationship between pH and growth rate of hydroxyapatite film) Next is the temperature of the aqueous solution in which the base material and powder glass are immersed.The solubility of hydroxyapatite decreases as the temperature rises. It has been known. The key point of the method of the present invention is that CaO and S are added to water or an aqueous solution containing at least P (V) ions.
IO! Powdered glass containing J as a main component is immersed, and the degree of supersaturation of the aqueous solution with respect to apatite is gradually increased by elution of the powdered glass component. When the temperature of the aqueous solution is lowered, the solubility increases, that is, the degree of supersaturation decreases, and the amount of elution of the glass component decreases. As shown in Table 5-3, when the temperature is lower than 5°C, the nucleation region becomes rapidly smaller. Also, when the temperature is raised, the degree of supersaturation tends to increase, but 7
When the temperature exceeds 0°C, the phase of the film is no longer a single phase of hydroxyapatite. Therefore, the preferred temperature of the aqueous solution is 5 to 70°C.
次にアパタイトの核を形成した基材を浸漬する水溶液の
温度であるが、第5−2表に示すように5℃未満になる
と膜成長速度が小さくなり、また70℃を越えると水酸
アパタイト単相ではなくなる。よって水溶液の好適な温
度は同じく5〜70℃にある。Next, regarding the temperature of the aqueous solution in which the base material in which the apatite nucleus has been formed is immersed, as shown in Table 5-2, when the temperature is less than 5℃, the film growth rate decreases, and when it exceeds 70℃, the hydroxyapatite It is no longer single phase. Therefore, the preferred temperature of the aqueous solution is also 5 to 70°C.
第5−1表
(水溶液の温度と核形成領域、膜相の関係)HAp :
水酸アパタイト OCP ニリン酸基カルシウムCC:
炭酸カルシウム6水和物
第5−2表
(水溶液の温度と膜成長速度、膜相の関係)(効果)
本発明方法にかかる生体活性水酸アパタイト膜の製造方
法によれば、無機材料・金属材料・有機材料を問わず種
々の形状を有するすべての基材の上に、加熱処理を行う
ことなく生体内の骨と類似の生体活性アパタイトの膜を
基材表面の全面に均一に極めて簡便にコーティングする
ことができる。Table 5-1 (Relationship between temperature of aqueous solution, nucleation region, and film phase) HAp:
Hydroxyapatite OCP diphosphate calcium CC:
Calcium carbonate hexahydrate Table 5-2 (Relationship between aqueous solution temperature, film growth rate, and film phase) (Effects) According to the method for producing a bioactive hydroxyapatite film according to the method of the present invention, inorganic materials and metals A bioactive apatite film similar to bone in living bodies can be uniformly and extremely easily applied to all base materials of various shapes, regardless of material or organic material, without heat treatment. Can be coated.
(実施例) 以下、本発明を実施例に従って説明する。(Example) Hereinafter, the present invention will be explained according to examples.
実施例1゜
基材には第6表に示す種々の径を有するアルミナボール
を用いた。直径0.5mm以下のアルミナボールについ
ては、シアノアクリレート系接着剤によりアルミナ基板
に固定した。次に、第1表の試料12に示す組成が得ら
れるように特級試薬の炭酸カルシウム、二酸化ケイ素、
酸化マグネシウム、ピロリン酸カルシウム、フッ化ケイ
素を所定量秤量後混合し、1450℃、2時間で溶融、
融液を鉄板上に流し出しガラス化した。得られたガラス
をメノウ乳鉢で粉砕し、篩で分級を行うことにより種々
の粒度を有する粉体ガラスを得た。その中から粒径30
〜50μmの粉体ガラスを50g計り取り、第3表の試
料35に示すイオン濃度を有する水溶液2000m1中
に基材とともに第1図に示すように、基材表面を粉体ガ
ラスが完全に覆うようにして36.5℃で浸漬した。第
1図において、1は容器、2はアルミナボール、3はア
ルミナ基板、4は粉体ガラス、5は水溶液、6は蓋であ
る。水溶液は、特級試薬の塩化ナトリウム、炭酸水素ナ
トリウム、塩化カリウム、リン酸水素2カリウム・3水
和物、塩化マグネシウム・6水和物、塩化カルシウム、
硫酸ナトリウムを所定量秤量しイオン交換水に溶解して
得た。緩衝剤としてトリスヒドロキシメチルアミノメタ
ン50mMと塩酸的45mMを添加し、pHを7.25
に保った。Example 1 Alumina balls having various diameters shown in Table 6 were used as the base material. Alumina balls having a diameter of 0.5 mm or less were fixed to an alumina substrate using a cyanoacrylate adhesive. Next, special grade reagents such as calcium carbonate, silicon dioxide, and
Predetermined amounts of magnesium oxide, calcium pyrophosphate, and silicon fluoride were weighed and mixed, and melted at 1450°C for 2 hours.
The melt was poured onto an iron plate and vitrified. The obtained glass was crushed in an agate mortar and classified using a sieve to obtain powder glass having various particle sizes. Among them, particle size 30
Weigh out 50 g of powder glass with a diameter of ~50 μm and place it together with the base material in 2000 ml of an aqueous solution having the ion concentration shown in Sample 35 in Table 3 so that the powder glass completely covers the surface of the base material as shown in Figure 1. and immersed at 36.5°C. In FIG. 1, 1 is a container, 2 is an alumina ball, 3 is an alumina substrate, 4 is powder glass, 5 is an aqueous solution, and 6 is a lid. The aqueous solution contains special grade reagents sodium chloride, sodium hydrogen carbonate, potassium chloride, dipotassium hydrogen phosphate trihydrate, magnesium chloride hexahydrate, calcium chloride,
A predetermined amount of sodium sulfate was weighed and dissolved in ion-exchanged water. 50mM of trishydroxymethylaminomethane and 45mM of hydrochloric acid were added as a buffer to adjust the pH to 7.25.
I kept it.
2日後、基材を取り出し基材のみをさらに同じく第3表
の試料35のイオン濃度を有する水溶液2000m1に
45℃で浸漬した。浸漬2.4.6日後基材を取り出す
と、浸漬日数に比例してそれぞれ膜厚的5.10,15
μmの水酸アパタイト膜が基材の表面全面に形成された
。Two days later, the base material was taken out, and the base material alone was further immersed at 45°C in 2000 ml of an aqueous solution having the same ion concentration as Sample 35 in Table 3. When the substrate was taken out after 2, 4 and 6 days of immersion, the film thickness was 5, 10 and 15, respectively, in proportion to the number of days of immersion.
A μm-thick hydroxyapatite film was formed on the entire surface of the base material.
第6表 基材のアルミナボールの直径(mm)実施例2
゜
実施例1と同じ直径2mmのアルミナボールを第1表の
試料j、jの組成を有する粒径5〜10μmの粉体ガラ
ス5gの」二に第2図に示すように埋もれないように軽
く乗せ、第3表の試料33のイオン濃度を有する水溶液
20Oynl中に30℃で2日間浸漬した。第2図にお
いて、J、は容器、2はアルミナボール、4は粉体ガラ
ス、5は水溶液、6は蓋である。粉体ガラスは実施例1
.で用いた試薬にさらに特級試薬の炭酸すl・リウムを
用い、実施例1゜と同様の方法で作成j7た。浸漬りま
た後、取り出してアルミナボールのみを第3表の試料3
4のイオン濃度を有する水溶液50m1に50℃で更に
浸漬した。水溶液は特級試薬の水酸化カルシウム、リン
酸2水素カルシウム、炭酸水素ナトリウム、塩化マグネ
シウム、塩化すトリウム、塩化カリウムを所定量秤量後
イオン交換水に溶解1.て作成Iまた。また、水溶液に
はMtfai剤としてl・リスヒドロキシメチルアミノ
メタンと塩酸を添加し、pHを7.25に保った。2日
間浸漬したところ、最初の浸漬で粉体ガラスと接1.て
覧、)る部分、そうでない部分とで相違無く、アルミナ
ボール表面全面にWさ約5μmのアパタイト膜が得られ
た。Table 6 Diameter of alumina ball as base material (mm) Example 2
゜An alumina ball with a diameter of 2 mm, which is the same as in Example 1, was placed in 5 g of powdered glass with a particle size of 5 to 10 μm having the composition of samples j and j in Table 1, as shown in Figure 2, lightly so as not to be buried. The sample was placed on the substrate and immersed in 20 Oynl of an aqueous solution having an ion concentration of Sample 33 in Table 3 at 30° C. for 2 days. In FIG. 2, J is a container, 2 is an alumina ball, 4 is a powder glass, 5 is an aqueous solution, and 6 is a lid. Powder glass is Example 1
.. It was prepared in the same manner as in Example 1, using the special grade reagent sulfur and lithium carbonate in addition to the reagent used in Example 1. After immersion, take out the alumina ball and prepare it as Sample 3 in Table 3.
It was further immersed in 50 ml of an aqueous solution having an ion concentration of 4 at 50°C. The aqueous solution is prepared by weighing the specified amounts of special grade reagents calcium hydroxide, calcium dihydrogen phosphate, sodium bicarbonate, magnesium chloride, thorium chloride, and potassium chloride and dissolving them in ion-exchanged water.1. Created again. In addition, 1-lishydroxymethylaminomethane and hydrochloric acid were added as Mtfai agents to the aqueous solution, and the pH was maintained at 7.25. When immersed for 2 days, it came into contact with the powder glass during the first immersion. An apatite film with a W width of about 5 μm was obtained on the entire surface of the alumina ball, regardless of whether it was visible or not.
実施例3゜
実施例〕、で用いた直径0.5mmのアルミナボールを
第1表の試料17の組成を有する粒径20〜40μmの
粉体ガラス5gと目開き200μm1厚さ100μmの
ナイロンメツシュで隔てて対峙ぜI−め、第3表の試料
22のイオン濃度を有する水溶液2001+111申に
40℃で2日間浸漬りまた。粉体ガラスは実施例′36
.で用いた試薬にさらに特級試薬の炭酸カルシウムを用
い、実施例1.と同様に方法で作成した。浸漬した後、
アルミナボールを取り出り、 、アルミナボールのみを
第3図に示すように第3表の試料33のイオン濃度を有
する水溶液200F111に40℃で更に浸漬した。第
3図において、1、は容器、2はアルミナボール、4は
粉体ガラス、5は水溶液、6は蓋、7はナイロンメツシ
ュ、である。水溶液は実施例J1、と同じものに特級試
薬のリン酸水素すトリウムを加えたものとし、これを所
定量秤量後イオン交換水に溶解して作成した。また、水
溶液には緩衡削どしてトリスヒドロキシメチルアミノメ
タンと塩酸を添加j7、p Hを7.25に保った。6
日間の浸漬によりアルミナボール表面全部に均一に厚ざ
約5μmのアパタイト膜が得られた。Example 3 The alumina balls with a diameter of 0.5 mm used in Example] were mixed with 5 g of powder glass having the composition of Sample 17 in Table 1 with a particle size of 20 to 40 μm and a nylon mesh with an opening of 200 μm and a thickness of 100 μm. The specimens were then immersed in an aqueous solution 2001+111 having the ion concentration of Sample 22 in Table 3 at 40°C for 2 days. Powder glass is Example '36
.. In addition to the reagent used in Example 1, calcium carbonate, which is a special grade reagent, was used. Created using the same method. After soaking,
The alumina balls were taken out, and only the alumina balls were further immersed at 40° C. in an aqueous solution 200F111 having an ion concentration of Sample 33 in Table 3 as shown in FIG. In FIG. 3, 1 is a container, 2 is an alumina ball, 4 is a powder glass, 5 is an aqueous solution, 6 is a lid, and 7 is a nylon mesh. The aqueous solution was the same as in Example J1 with the addition of a special grade reagent, sodium hydrogen phosphate, and was prepared by weighing a predetermined amount and dissolving it in ion-exchanged water. In addition, trishydroxymethylaminomethane and hydrochloric acid were added to the aqueous solution after buffering, and the pH was maintained at 7.25. 6
After being immersed for several days, an apatite film having a thickness of approximately 5 μm was obtained uniformly over the entire surface of the alumina ball.
実施例4゜
第7表に示す種々の径を有する長さ5cmのアルミナフ
ァイバー、ガラスファイバー、ナイロン糸およびステン
レスワイヤー(以下、ファイバーという)を10=20
μmの粒度、第1表の試料J8の組成を有する粉体ガラ
ス50 gと共に、第4図に示すように第3表の試料〕
、のイオン交換水3000o+1に36゜5℃で浸漬し
た。第4図において、1は容器、4は粉体ガラス、5は
水溶液、6は蓋、8はファイバーのうち、アルミナファ
イバー、ガラスファイバ・−、ナイロン糸であり、9は
ファイバーのうち、ステンレスワイヤーである。Example 4゜Alumina fibers, glass fibers, nylon threads, and stainless steel wires (hereinafter referred to as fibers) each having a length of 5 cm and having various diameters shown in Table 7 were 10=20
sample of Table 3 as shown in FIG.
It was immersed in 3000o+1 ion-exchanged water at 36°5°C. In Figure 4, 1 is a container, 4 is powder glass, 5 is an aqueous solution, 6 is a lid, 8 is alumina fiber, glass fiber, nylon thread among fibers, and 9 is stainless steel wire among fibers. It is.
2日後、ファイバーを取り出しファイバーのみを更に2
日間、第3表の試料32のイオン濃度を有する水溶液3
0θ0rniに3665℃で更に浸漬した。粉体ガラス
は、実施例3.で用いた試薬を実施例〕、。と同様の方
法で作成17だ。また、水溶液は実施例1.で用いた試
薬にさらに特R試薬のリン酸水素ナトリウムを加えたも
のを用い、実施例1、と同様の方法で作成[また。なお
、イオン交換水、および水溶液は実施例1.と同様にp
H7゜25に保った。2その結果、股厚約5μmの水酸
アパタイト膜がすべてのファイバーの表面全面に形成さ
れた。After 2 days, take out the fiber and add only the fiber for 2 more times.
day, aqueous solution 3 having an ion concentration of sample 32 in Table 3
It was further immersed in 0θ0rni at 3665°C. The powder glass was prepared in Example 3. The reagents used in Example]. Created in the same way as 17. In addition, the aqueous solution was prepared in Example 1. [Also] was prepared in the same manner as in Example 1 using the reagent used in Example 1 with the addition of the special R reagent sodium hydrogen phosphate. Note that the ion-exchanged water and aqueous solution were as described in Example 1. Similarly, p
It was maintained at H7°25. 2 As a result, a hydroxyapatite film with a crotch thickness of about 5 μm was formed on the entire surface of all fibers.
第 7 表
(基材のファイバーの直径(順))
実施例5゜
基材には第6表に示す種々の径を有するアルミナポール
を用いた。直径0.5mm以下のアルミナボールについ
ては、シアノアクリレート系接着剤によりアルミナ基板
に固定した。次に、第1表の試料1に示す組成の粉体ガ
ラスが得られるように特級試薬の炭酸カルシウム、二酸
化ケイ素を所定量秤量後混合し、1600℃、2時間で
溶融し、以下は実施例1.と同様の方法で粉体ガラスを
作成した。粒径30〜50μmの粉体ガラスを50g計
り取り、第3表の試料35に示すイオン濃度を有する水
溶液2000m1中に基材とともに、第1図に示すよう
に基材表面を粉体ガラスが完全に覆うようにして36.
5℃で浸漬した。2日後、基材を取り出し基材のみをさ
らに第8表の試料31のイオン濃度を有する水溶液20
00m1に45℃で浸漬した。水溶液は、実施例1.同
じ試薬を用い、同様の方法で作成した。また、pHは7
゜25に保った。浸漬して2.4.6日後基材を取り出
すと、浸漬日数に比例してそれぞれ膜厚的5.10.1
5μmの水酸アパタイト膜が基材の表面全面に形成され
た。Table 7 (Diameters of fibers in base material (in order)) Example 5 Alumina poles having various diameters shown in Table 6 were used as base materials. Alumina balls having a diameter of 0.5 mm or less were fixed to an alumina substrate using a cyanoacrylate adhesive. Next, predetermined amounts of calcium carbonate and silicon dioxide, which are special grade reagents, were weighed and mixed to obtain powder glass having the composition shown in Sample 1 in Table 1, and melted at 1600°C for 2 hours. 1. Powdered glass was created using the same method. Weigh out 50 g of powdered glass with a particle size of 30 to 50 μm, add it to 2000 ml of an aqueous solution having the ion concentration shown in Sample 35 in Table 3, and place it together with the base material. 36.
Immersed at 5°C. After 2 days, the base material was removed and only the base material was further treated with an aqueous solution 20 having an ion concentration of Sample 31 in Table 8.
00ml at 45°C. The aqueous solution was prepared in Example 1. It was prepared in a similar manner using the same reagents. Also, the pH is 7
The temperature was kept at 25°. When the substrate was taken out after 2.4.6 days of immersion, the film thickness was 5.10.1 in proportion to the number of days of immersion.
A 5 μm hydroxyapatite film was formed on the entire surface of the base material.
実施例6゜
実施例5と同じ直径2mmのアルミナボールを第1表の
試料2の組成を有する粒径5〜10μmの粉体ガラス5
gの上に第2図に示すように埋もれないように軽く乗せ
、第3表の試料12のイオン濃度を有する水溶液200
m1中に30’Cで2日間浸漬した。浸漬した後、取り
出してアルミナボールのみを第8表の試料30のイオン
濃度を有する水溶液50m1に50℃で更に浸漬した。Example 6 Alumina balls with a diameter of 2 mm as in Example 5 were mixed with powder glass 5 having a particle size of 5 to 10 μm and having the composition of Sample 2 in Table 1.
Lightly place the aqueous solution 200 having the ion concentration of Sample 12 in Table 3 on top of g as shown in Figure 2 so as not to bury it.
ml for 2 days at 30'C. After immersion, the alumina balls were taken out and further immersed in 50 ml of an aqueous solution having an ion concentration of Sample 30 in Table 8 at 50°C.
粉体ガラスは実施例5.と同じ試薬、方法で作成した。The powder glass was prepared in Example 5. It was made using the same reagents and method.
水溶液は実施例1.同じ試薬にリン酸水素アンモニウム
、リン酸水素ナトリウムを加え、同様の方法で作成した
。またpHは7.25に保った。2日間浸漬したところ
、最初の浸漬で粉体ガラスと接している部分、そうでな
い部分とで相違無く、アルミナボール表面全面に厚さ約
5μmのアパタイト膜が得られた。The aqueous solution is Example 1. It was prepared in the same manner by adding ammonium hydrogen phosphate and sodium hydrogen phosphate to the same reagent. Further, the pH was maintained at 7.25. When immersed for 2 days, an apatite film with a thickness of approximately 5 μm was obtained on the entire surface of the alumina ball, regardless of whether the ball was in contact with the powder glass during the first immersion or not.
実施例7゜
実施例5で用いた直径0.5mmのアルミナボールを第
1表の試料14の組成を有する粒径2o〜40μmの粉
体ガラス5gと目開き200μm厚さ100μmのナイ
ロンメツシュで隔てて対峙せしめ、第3表の試料8のイ
オン濃度を有する水溶液200m1中に40℃で2日間
浸漬した。浸漬した後、アルミナボールを取り出し、ア
ルミナボールのみを第3図に示すように第3表の試料2
9のイオン濃度を有する水溶液200m1に40℃で更
に浸漬した。粉体ガラスは実施例1.の試薬に炭酸ナト
リウムを加え、同様の方法で作成した。また、水溶液は
実施例1.及び6.と同じ試薬を用い、同様の方法で作
成した。またpHも7.25に保った。6日間の浸漬に
よりアルミナボール表面全部に均一に厚さ約5μmのア
パタイト膜が得られた。Example 7 The alumina balls with a diameter of 0.5 mm used in Example 5 were mixed with 5 g of powder glass having the composition of Sample 14 in Table 1 and having a particle size of 20 to 40 μm and a nylon mesh with an opening of 200 μm and a thickness of 100 μm. The specimens were placed facing each other and immersed in 200 ml of an aqueous solution having the ion concentration of Sample 8 in Table 3 at 40° C. for 2 days. After immersion, the alumina balls were taken out, and only the alumina balls were prepared as sample 2 in Table 3, as shown in Figure 3.
It was further immersed in 200 ml of an aqueous solution having an ion concentration of 9 at 40°C. The powder glass was prepared in Example 1. It was prepared in the same manner by adding sodium carbonate to the reagent. In addition, the aqueous solution was prepared in Example 1. and 6. It was prepared in the same manner using the same reagents. The pH was also maintained at 7.25. After 6 days of immersion, an apatite film with a thickness of about 5 μm was obtained uniformly over the entire surface of the alumina ball.
実施例8゜
第7表に示す種々の径を有する長さ5cmのアルミナフ
ァイバー、ガラスファイバー、ナイロン糸及びステンレ
スワイヤーを10〜20μmの粒度、第1表の試料19
の組成を有する粉体ガラス50gと共に、第4図に示す
ように第3表の試料4のイオン濃度の水溶液3000m
lに36.5℃で浸漬した。2日後、ファイバーを取り
出しファイバーのみを更に2日間第3表の試料28のイ
オン濃度を有する水溶液3000mlに36.5℃で更
に浸漬した。粉体ガラスは、実施例1.と同じ試薬に炭
酸ナトリウム、炭酸カリウムを加えたものを用い、同様
の方法で作成した。水溶液は実施例1゜と同じ試薬にリ
ン酸アンモニウム、リン酸水素ナトリウムを加えたもの
を用い、同様の方法で作成した。その結果、膜厚的5μ
mの水酸アパタイト膜がすべてのファイバーの表面全面
に形成された。Example 8 Alumina fibers, glass fibers, nylon threads, and stainless steel wires with a length of 5 cm having various diameters shown in Table 7 were prepared with a particle size of 10 to 20 μm, Sample 19 in Table 1.
Along with 50 g of powdered glass having the composition of
1 at 36.5°C. After 2 days, the fiber was taken out and the fiber alone was further immersed for 2 days in 3000 ml of an aqueous solution having the ion concentration of Sample 28 in Table 3 at 36.5°C. The powder glass was prepared in Example 1. It was prepared in the same manner using the same reagent as above with addition of sodium carbonate and potassium carbonate. The aqueous solution was prepared in the same manner as in Example 1, using the same reagents plus ammonium phosphate and sodium hydrogen phosphate. As a result, the film thickness was 5μ
A hydroxyapatite film of m was formed on the entire surface of all fibers.
第1図〜第4図は、本発明方法を実施するための装置の
概略断面図である。
1は容器、2はアルミナボール、4は粉体ガラス、5は
水溶液、6は蓋。1 to 4 are schematic cross-sectional views of an apparatus for carrying out the method of the invention. 1 is a container, 2 is an alumina ball, 4 is a powder glass, 5 is an aqueous solution, and 6 is a lid.
Claims (6)
する粉体ガラスとを共存せしめ、水、または少なくとも
リンイオンを含む水溶液に浸漬することにより、基材表
面に水酸アパタイトの核を形成させることを特徴とする
生体活性水酸アパタイト膜の製造方法。(1) Forming hydroxyapatite nuclei on the surface of the substrate by making the substrate coexist with powder glass containing at least CaO and SiO_2 and immersing it in water or an aqueous solution containing at least phosphorus ions. A method for producing a bioactive hydroxyapatite film characterized by:
飽和乃至過飽和濃度の水酸アパタイト成分を溶解した水
溶液に更に浸漬することによりアパタイト膜を形成させ
ることを特徴とする生体活性水酸アパタイト膜の製造方
法。(2) Bioactivity characterized by forming an apatite film by further immersing the base material in an aqueous solution in which a hydroxyapatite component is dissolved at a substantially saturated or supersaturated concentration following the operation of claim (1). A method for producing a hydroxyapatite film.
の範囲にある請求項(1)に記載の生体活性水酸アパタ
イト膜の製造方法。(3) The particle size of the powder glass is 0.5 to 10,000 μm
The method for producing a bioactive hydroxyapatite film according to claim (1), which falls within the scope of the following.
)記載の生体活性水酸アパタイト膜の製造方法。(4) Claim (1) wherein the aqueous solution has a pH range of 5 to 9.
) The method for producing a bioactive hydroxyapatite film.
)記載の生体活性水酸アパタイト膜の製造方法。(5) Claim (2) wherein the aqueous solution has a pH range of 6 to 9.
) The method for producing a bioactive hydroxyapatite film.
(1)または(2)記載の生体活性水酸アパタイト膜の
製造方法。(6) The method for producing a bioactive hydroxyapatite film according to claim (1) or (2), wherein the aqueous solution has a temperature range of 5 to 70°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2269217A JPH0724686B2 (en) | 1990-10-05 | 1990-10-05 | Method for producing bioactive hydroxyapatite film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2269217A JPH0724686B2 (en) | 1990-10-05 | 1990-10-05 | Method for producing bioactive hydroxyapatite film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04144566A true JPH04144566A (en) | 1992-05-19 |
JPH0724686B2 JPH0724686B2 (en) | 1995-03-22 |
Family
ID=17469303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2269217A Expired - Lifetime JPH0724686B2 (en) | 1990-10-05 | 1990-10-05 | Method for producing bioactive hydroxyapatite film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0724686B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153266A (en) * | 1997-12-08 | 2000-11-28 | Japan As Represented By Director General Agency Of Industrial Science And Technology | Method for producing calcium phosphate coating film |
-
1990
- 1990-10-05 JP JP2269217A patent/JPH0724686B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153266A (en) * | 1997-12-08 | 2000-11-28 | Japan As Represented By Director General Agency Of Industrial Science And Technology | Method for producing calcium phosphate coating film |
Also Published As
Publication number | Publication date |
---|---|
JPH0724686B2 (en) | 1995-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02255515A (en) | Coating method for bioactive hydroxylapatite film | |
Jonášová et al. | Biomimetic apatite formation on chemically treated titanium | |
US4437192A (en) | Implants of biologically active glass or glass ceramic containing titania | |
Pourhashem et al. | Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method | |
Plewinski et al. | The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation | |
US9326995B2 (en) | Oxides for wound healing and body repair | |
Di Nunzio et al. | Silver containing bioactive glasses prepared by molten salt ion-exchange | |
Bharati et al. | Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF | |
Chien et al. | Investigation into microstructural properties of fluorapatite Nd-YAG laser clad coatings with PVA and WG binders | |
WO2007022264A2 (en) | Oxides for wound healing and body repair | |
Aalto-Setälä et al. | Dissolution of glass–ceramic scaffolds of bioactive glasses 45S5 and S53P4 | |
Díaz-Pérez et al. | CaO–MgO–SiO2–P2O5-based multiphase bio-ceramics fabricated by directional solidification: microstructure features and in vitro bioactivity studies | |
Lopez‐Esteban et al. | Interfaces in graded coatings on titanium‐based implants | |
JPH04144566A (en) | Production of bioactive hydroxyl apatite film | |
Cortés et al. | Effect of wollastonite ceramics and bioactive glass on the formation of a bonelike apatite layer on a cobalt base alloy | |
Aravindan et al. | Investigations on in vitro and degradation properties of ZnO‐added phosphate‐based glasses and glass ceramics | |
JPH0773600B2 (en) | Coating method of bioactive hydroxyapatite film | |
JP5162749B2 (en) | Apatite composite and production method thereof | |
CN102886072A (en) | Degraded glass ceramic thin film for medical magnesium alloy surface and preparation method of degraded glass ceramic thin film | |
Saravanakumar et al. | Electrochemical Deposition of 58SiO2‐33CaO‐9P2O5 Nanobioactive Glass Particles on Ti‐6Al‐4V Alloy for Biomedical Applications | |
JPH05103829A (en) | Bioactive layer coating method | |
JP2535662B2 (en) | Method for producing bioactive hydroxyapatite film | |
KR100465984B1 (en) | Bioactive Ceramics, Metallic Replacement Coated With Bioactive Ceramics And Method Thereof | |
Leonor et al. | Effecs of the incorporation of proteins and active enzymes on biomimetic calcium-phosphate coatings | |
JPH04367665A (en) | Coating method for bioactive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 16 |